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This paper presents an approach for the semi-automatic, uniform extraction of synonymies, hyponymies,
overlappings and homonymies holding among concepts of different XML Schemas. The proposed ap-
proach is specialized for XML, is almost automatic and “light”. As a further, original, peculiarity, it is
parametric w.r.t. a “severity level” against which the extraction task is performed. First the paper presents
an overview of the interschema property extraction approaches already presented in the past, as well as a
set of criteria for classifying this kind of approaches. After this, it describes the proposed approach in all
details, illustrates various theoretical results, presents the experiments we have performed for testing it and
compares it with the interschema property extraction approaches previously proposed in the literature.

Povzetek: Opisan je polavtomatski postopek za ekstrakcijo sinonimov iz XML shem.

1 Introduction

The Web is becoming the reference infrastructure for most
of the applications conceived to handle the interoperability
among partners. As a matter of fact, it is presently playing
a key role for both the publication and the exchange of in-
formation among organizations. In order to make Web ac-
tivities easier, the World Wide Web Consortium proposed
XML (eXtensible Markup Language) for unifying repre-
sentation capabilities, typical of HTML, and data manage-
ment features, typical of classical DBMSs.

The exploitation of XML is crucial for improving the
interoperability of Web partners; as a matter of fact, this
language provides a uniform format for exchanging data
among them. However, XML usage alone is not enough
for guaranteeing such a cooperation. In fact, the hetero-
geneity of data exchanged over the Web regards not only
their formats but also their semantics. The use of XML al-
lows format heterogeneity to be faced; the exploitation of
XML Schemas allows the definition of a reference context
for exchanged data and is a first step for handling semantic
diversities; however, in order to completely and satisfacto-
rily manage these last, the knowledge of interschema prop-
erties (see Section 2.1), possibly holding among concepts

belonging to different sources, is necessary.
The most common interschema properties previ-

ously considered in the literature are synonymies and
homonymies. A synonymy between two concepts indicates
that they have the same meaning. An homonymy between
two concepts denotes that they refer to different meanings,
yet having the same name. In the past some approaches
have been also proposed for deriving other interschema
properties, e.g., hyponymies and overlappings. A concept
C1 is a hyponym of a concept C2 (that is, in its turn, a hy-
pernym of C1) if C1 has a more specific meaning than C2.
As an example, “PhD Student” is a hyponym of “Student”.
An Overlapping holds between two concepts if they are not
synonymous but share a significant set of properties.

For a more detailed survey about the semantic relation-
ships possibly occurring between two concepts the reader
is referred to [24]. In this paper semantic relationships are
defined and classified according to different perspectives
and disciplines, such as linguistics, logics and cognitive
psychology. From a comparison between the definitions
of [24] and those introduced in this paper we can observe
that: (i) our definition of synonymy exactly matches the
definition of synonymy provided in [24]; (ii) our concept
of homonymy can be regarded as a special case of the con-
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cept of antinomy specified in [24]; specifically, in that pa-
per, an antinomy exists between two terms if they denote
opposite (or, at least, different) concepts; our definition of
homonymy, instead, requires that two terms indicate dif-
ferent concepts and, in addition, that they share the same
name; (iii) our hyponymy property corresponds to the in-
clusion relationship specified in [24]; (iv) our overlapping
property is similar to some kinds of meronymic relation-
ship introduced in [24] (these last indicate that a part of a
concept A is someway related to a part of a concept B).

Owing to the enormous increase of the number of avail-
able information sources, all the approaches for inter-
schema property extraction currently proposed in the liter-
ature are semi-automatic; specifically, they require the hu-
man intervention only during a pre-processing phase and
for the validation of obtained results. The rapid develop-
ment of the Web leads each interschema property extrac-
tion approach to operate on a great number of sources; this
requires a further effort for conceiving approaches with less
manual intervention.

Since the possible interschema properties to consider are
numerous and various, the capability of uniformly deriv-
ing distinct properties appears to be a crucial feature for a
new interschema property derivation approach. As a mat-
ter of fact, different strategies for extracting distinct inter-
schema properties could lead to different interpretations of
the same reality; this is a situation that must be avoided.

Finally, the large number of currently available informa-
tion sources makes it evident the necessity that an inter-
schema property derivation approach should be “light”, i.e.,
it should minimize the exploitation of thresholds and/or
weights whose tuning requires a lot of efforts.

This paper provides a contribution in this setting and pro-
poses an approach for uniformly extracting synonymies,
hyponymies, overlappings and homonymies from a set of
XML Schemas.

Our approach satisfies all the desiderata mentioned
above. In fact, (i) it is almost automatic; specifically, it re-
quires the user intervention only in few specific cases. (ii)
it is “light”; specifically, it does not exploit thresholds or
weights; as a consequence, it does not need a tuning activ-
ity. However, in spite of this “lightness”, obtained results
are precise and satisfactory, as shown in Section 5. (iii) it
allows the derivation of the various interschema properties
within a uniform framework; such a framework consists of
a set of maximum weight matchings computed on suitable
bipartite graphs. (iv) it is specific for XML; in fact, the
framework underlying our approach has been defined for
directly covering the XML specificities (see, below, Sec-
tion 3). (v) it allows the choice of the “severity level”
against which the property extraction task is performed;
such a feature derives from the consideration that appli-
cations and scenarios possibly benefiting of derived inter-
schema properties are numerous and extremely various. In
some situations the extraction process must be very severe
in that it can state the existence of an interschema prop-
erty between two concepts only if this fact is confirmed

by various clues. In other situations, the extraction task
can be looser and can assume the existence of an inter-
schema property between two concepts if it has been de-
rived by some computation, without requiring various con-
firmations. At the beginning of the extraction activity our
approach asks the user to specify the desired severity level;
this is the only information required to him until the end
of the extraction task, when he has to validate obtained re-
sults.

It is worth pointing out that, in the past, we have
proposed some algorithms for deriving synonymies and
homonymies specifically conceived to operate on XML
Schemas [5]. They do not exploit thresholds and weights
and consider a “severity” level; as a consequence, they fol-
low the same philosophy as the approach we are present-
ing here; however, they are not able to derive hyponymies
and overlappings. In this context the approach presented
here can be considered an advancement of this research line
and provides a further component allowing the construc-
tion of a framework for uniformly deriving a large variety
of interschema properties among a great number of XML
Schemas.

2 Background

2.1 An overview of the interschema
property extraction approaches

In [9] the system CGLUE is proposed. It exploits machine
learning techniques for deriving semantic matchings be-
tween two given ontologies O1 and O2. In [11] the authors
propose a formal method, based on fuzzy relations, capable
of performing the semantic reconciliation of heterogeneous
data sources.

In [17] the authors propose Cupid, a system that detects
semantic matchings holding between two schemas. First,
Cupid represents input schemas by means of trees. Then it
computes a coefficient, named linguistic similarity for each
pair of schema elements. After this Cupid computes the
structural similarity coefficient by means of a suitable tree-
based algorithm. Finally it combines linguistic and struc-
tural similarity coefficients to derive semantic matchings.

In [1] the authors describe MOMIS, a system devoted
to handle both integration and querying activities on het-
erogeneous data sources. MOMIS follows a “semantic ap-
proach” to interschema property extraction, based on an in-
tensional study of information sources.

In [14] a statistical framework for performing schema
matching tasks on Web query interfaces (i.e., on data
sources containing the results of the execution of queries
posed through Web interfaces) is proposed. In their ap-
proach, the authors hypothesize the presence, for each ap-
plication context, of a “hidden schema model” which acts
as a unified generative model describing how schemas are
derived from a finite vocabulary of attributes.

In [4] the authors propose a matching algorithm for mea-
suring the structural similarity between an XML document
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D and a DTD T . This algorithm assigns a score (called
similarity measure) to D, indicating how much D is simi-
lar to T . The approach represents both D and T as labelled
trees. In [20, 21] the system DIKE is proposed. This sys-
tem is devoted to extract interschema properties from E/R
Schemas. DIKE has been conceived to operate with quite
a small number of information sources; as a consequence,
it privileges accuracy to computation time. This system
exploits a support dictionary containing an initial set of
(generally lexical) similarities constructed with the support
of human experts during a training phase. The extraction
task is graph-based and takes into account the “context” of
the concepts into examination; it exploits a large variety of
thresholds and weights in order to better adapt itself to the
sources which it currently operates on; these thresholds and
these weights must be tuned during the training phase.

2.2 Classification criteria

In the literature various classification criteria have been
proposed for comparing schema matching approaches (see,
for example, [23]). They allow the approaches to be exam-
ined from various points of view. Specifically, the criteria
appearing particularly interesting in our context are the fol-
lowing:
Schema Types. Some matching algorithms can operate
only on a specific kind of data sources (e.g., XML, rela-
tional, and so on); these approaches are called specific in
the following. On the contrary, other approaches are able
to manage every kind of data sources; we call these ap-
proaches generic in the following. A generic approach is
usually more versatile than a specific one because it can
be applied on data sources characterized by heterogeneous
representation formats. On the contrary, a specific ap-
proach can take advantage of the peculiarities of the cor-
responding data model.
Instance-Based versus Schema-Based. In order to detect
interschema properties, schema matching approaches can
consider data instances (i.e., the so-called extensional in-
formation) or schema-level information (i.e., the so-called
intensional information). The former class of approaches
is called instance-based; the latter one is known as schema-
based. An intermediate category is represented by mixed
approaches, i.e., those ones exploiting both intensional and
extensional information. Instance-based approaches are
generally very precise because they look at the actual con-
tent of the involved sources; however, they are quite expen-
sive since they must examine the extensional component of
the involved sources. On the contrary, schema-based ap-
proaches look at the intensional information only and, con-
sequently, they are less expensive; however, they could be
less precise. Finally, the results of an instance-based ap-
proach are valid only for the sources it has been applied to,
whereas the results of a schema-based approach are valid
for all those sources conforming to the considered schemas.
As a consequence, instance-based and mixed approaches
are more suited for those application contexts characterized

by few sources and requiring very accurate results, whereas
schema-based approaches are more suited for those appli-
cation contexts involving a great number of sources.
Individual versus Combinatorial. An individual matcher
exploits just one matching criterion; on the contrary, com-
binatorial approaches integrate different individual match-
ers to perform schema matching activities. Combinatorial
matchers can be further classified as: (i) hybrid match-
ers, if they directly combine several schema matching ap-
proaches into a unique matcher; (ii) composite matchers, if
they combine the results of several independently executed
matchers; they are sometimes called multi-strategy ap-
proaches. The individual matchers are simpler and, conse-
quently, less time consuming than the combinatorial ones;
however, the results they obtain are generally less accurate
than those returned by combinatorial matchers.
Matching Cardinality. Some approaches have been con-
ceived to derive only semantic similarities between two
single components of different schemas (1:1 matchings).
Other approaches are capable of deriving also semantic
similarities between one single component of a schema and
a group of components of the other schemas (1:n match-
ings) or between two groups of components of different
schemas (m:n matchings).
Exploitation of Auxiliary Information. Some approaches
could exploit auxiliary information (e.g., dictionaries, the-
sauruses, and so on) for their activity; on the contrary,
this information is not needed in other approaches. Aux-
iliary information represents an effective way to enrich the
knowledge that an approach can exploit. However, in order
to maintain its effectiveness, the time required to compile
and/or retrieve it must be negligible w.r.t. the time required
by the whole approach to perform its matches. For this rea-
son, pre-built or automatically computed auxiliary infor-
mation would be preferred to the manually provided one.

3 Preliminaries

3.1 Neighborhood definition
We start to illustrate the definition of the neighborhood of
an element or an attribute in an XML Schema by introduc-
ing the concept of x-component, that allows both elements
and attributes of an XML Schema to be uniformly handled.

Definition 3.1 Let S be an XML Schema; an x-component
of S is either an element or an attribute of S. 2

An x-component is characterized by its name, its typol-
ogy (indicating if it is either a complex element or a simple
element or an attribute) and its data type.

Definition 3.2 Let S be an XML Schema; the sets of
its x-components, its keys and its keyrefs are denoted as
XCompSet(S), KeySet(S) and KeyrefSet(S), respec-
tively. The union of XCompSet(S), KeySet(S) and
KeyrefSet(S) is denoted as ConstructSet(S); it forms
the set of constructs of S. 2
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We now introduce some functions that allow the strength
of the relationship existing between two x-components xS

and xT of an XML Schema S to be determined. These
functions are:

– veryclose(xS , xT ), that returns true if and only if: (i)
xT = xS , or (ii) xT is an attribute of xS , or (iii) xT

is a simple sub-element of xS ; in all the other cases it
returns false;

– close(xS , xT ), that returns true if and only if: (i) xT

is a complex sub-element of xS , or (ii) xS and xT are
two complex elements of S and there exists a keyref
element stating that an attribute of xS refers to a key
attribute of xT ; in all the other cases it returns false;

– near(xS , xT ), that returns true if and only if either
veryclose(xS , xT ) = true or close(xS , xT ) = true;
in all the other cases it returns false;

– reachable(xS , xT ), that returns true if and
only if there exists a sequence of x-components
x1, x2, . . . , xn such that xS = x1, near(x1, x2) =
near(x2, x3) = . . . = near(xn−1, xn) =
true, xn = xT ; in all the other cases it returns
false.

We are now able to introduce the concept of Connection
Cost from an x-component xS to an x-component xT . It
is a measure of the correlation degree existing between xS

and xT and indicates how much the concept expressed by
xT is “close” to the concept represented by xS .

Definition 3.3 Let S be an XML Schema and let xS and
xT be two x-components of S. The Connection Cost from
xS to xT , denoted by CC(xS , xT ), is defined as: (i) 0
if veryclose(xS , xT ) = true; (ii) 1 if close(xS , xT ) =
true; (iii) CST if reachable(xS , xT ) = true and
near(xS , xT ) = false; (iv) ∞ if reachable(xS , xT ) =
false.

Here CST = minxA (CC(xS , xA) + CC(xA, xT ))
for each xA such that reachable(xS , xA) = reach-
able(xA, xT ) = true. 2

We are now provided with all tools necessary to define
the concept of neighborhood of an x-component.

Definition 3.4 Let S be an XML Schema, let xS be an
x-component of S and let j be a non-negative integer.
The jth neighborhood of xS is defined as: nbh(xS , j) =
{xT | xT ∈ XCompSet(S), CC(xS , xT ) ≤ j} 2

The next proposition provides an estimation of
the maximum number of distinct neighborhoods
for an x-component; the interested reader can find
its proof in the Appendix available at the address
http://www.mat.unical.it/terracina/
informatica07/Appendix.pdf.

Proposition 3.1 Let S be an XML Schema; let xS be an x-
component of S; let m be the number of complex elements
of S; then nbh(xS , j) = nbh(xS ,m − 1) for each j such
that j ≥ m. 2

The next proposition determines the worst case time
complexity for computing all neighborhoods of all x-
components of an XML Schema S. The interested reader
can find its proof in the Appendix.

Proposition 3.2 Let S be an XML Schema and let n be the
number of its x-components. The worst case time complex-
ity for computing all neighborhoods of all x-components of
S is O(n3). 2

3.2 Neighborhood comparison

Given two x-components x1j
and x2k

and two correspond-
ing neighborhoods nbh(x1j

, v) and nbh(x2k
, v), there

could exist different relationships between them.
Specifically, three possible relationships, namely simi-

larity, comparability and generalization, could be taken
into account. All of them are derived by computing suit-
able objective functions on the maximum weight match-
ing associated with a bipartite graph obtained from the x-
components of nbh(x1j , v) and nbh(x2k

, v).
In the following we indicate by BG(x1j , x2k

, v) =
〈NSet(x1j , x2k

, v), ESet(x1j , x2k
, v)〉 the bipartite graph

associated with nbh(x1j , v) and nbh(x2k
, v); when it is

not confusing, we shall use the notation BG(v) instead
of BG(x1j , x2k

, v). In BG(v), NSet(v) = PSet(v) ∪
QSet(v) represents the set of nodes; there is a node
in PSet(v) (resp., QSet(v)) for each x-component of
nbh(x1j , v) (resp., nbh(x2k

, v)). ESet(v) is the set of
edges; there is an edge between p ∈ PSet(v) and q ∈
QSet(v) if: (i) a synonymy between the names of the x-
components xp and xq , associated with p and q, is stored in
the reference thesaurus; (ii) the cardinalities of xp and xq

are compatible; (iii) their data types are compatible (this
last condition must be verified only if xp and xq are at-
tributes or simple elements).

Here, the cardinalities of two x-components are consid-
ered compatible if the intersection of the intervals they rep-
resent is not empty. The motivation underlying this as-
sumption is that cardinalities represent constraints associ-
ated with the involved concepts and, therefore, contribute
to define their semantics; as a consequence, completely dis-
joint intervals are a symptom that the two concepts have
different semantics. Compatibility rules associated with
data types are analogous to the corresponding ones valid
for high level programming languages.

The maximum weight matching for BG(v) is the set
ESet′(v) ⊆ ESet(v) of edges such that, for each node
x ∈ PSet(v) ∪ QSet(v), there is at most one edge of
ESet′(v) incident onto x and |ESet′(v)| is maximum (for
algorithms solving the maximum weight matching prob-
lem, see [12]).
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As previously pointed out, in our approach, all neighbor-
hood comparisons are performed by computing the maxi-
mum weight matching on a suitable bipartite graph. The
reasoning underlying this choice is the following: all types
of neighborhood comparison (i.e., similarity, comparabil-
ity and generalization) aim to determine how much two
neighborhoods are someway close. A neighborhood is a
set of x-components. Generally speaking, two sets are
close if they share a sufficiently large number of their el-
ements. In our application context, two x-components be-
longing to two different neighborhoods can be considered
as a shared x-component if a synonymy exists between
them. Then, the maximum weight matching on the bipar-
tite graph constructed from two neighborhoods allows the
maximum number of pairs of synonymous x-components
belonging to the neighborhoods to be determined; as a con-
sequence, it allows the derivation of the maximum number
of x-components that can be considered shared between the
two neighborhoods and, therefore, the computation of the
closeness degree of the two neighborhoods at hand.

3.2.1 Neighborhood similarity

Intuitively, two neighborhoods (and, more in general, two
sets of objects) are considered similar if most of their com-
ponents are similar.

In order to determine if nbh(x1j , v) and nbh(x2k
, v) are

similar, we construct BG(x1j , x2k
, v) and, then, compute

the objective function φBG(v) = 2|ESet′(v)|
|PSet(v)|+|QSet(v)| .

Here |ESet′(v)| represents the number of matches as-
sociated with BG(v), as well as the number of pairs of x-
components 〈xp

1j
, xq

2k
〉 such that xp

1j
∈ nbh(x1j , v), xq

2k
∈

nbh(x2k
, v) and a synonymy between the names of xp

1j

and xq
2k

is stored in the reference thesaurus. |PSet(v)| +
|QSet(v)| denotes the total number of nodes in BG(v), as
well as the total number of x-components associated with
nbh(x1j , v) and nbh(x2k

, v). The coefficient 2 at the nu-
merator of φBG is necessary to make the numerator and the
denominator comparable; in fact, |PSet(v)| + |QSet(v)|
refers to x-components whereas |ESet′(v)| regards pairs
of x-components. Finally, φBG(v) represents the share of
matching nodes in BG(v), as well as the share of similar
x-components present in nbh(x1j , v) and nbh(x2k

, v). The
formal definition of the neighborhood similarity is given
below.

Definition 3.5 Let S1 and S2 be two XML Schemas. Let
x1j (resp., x2k

) be an x-component of S1 (resp., S2). Two
neighborhoods nbh(x1j , v) and nbh(x2k

, v) are similar if,
given the bipartite graph BG(x1j , x2k

, v), φBG(v) > 1
2 . 2

This definition assumes that nbh(x1j , v) and
nbh(x2k

, v) are similar if φBG(v) > 1
2 ; such an as-

sumption derives from the consideration that two sets
of objects can be considered similar if the number of
similar components is greater than the number of the
dissimilar ones or, in other words, if the number of similar

components is greater than half of the total number of
components.

The following theorem states the worst case time com-
plexity for determining if two neighborhoods are similar.
Its proof is provided in the Appendix.

Theorem 3.1 Let S1 and S2 be two XML Schemas.
Let x1j (resp., x2k

) be an x-component of S1 (resp.,
S2). Let p be the maximum between |nbh(x1j

, v)| and
|nbh(x2k

, v)|. The worst case time complexity for deter-
mining if nbh(x1j

, v) and nbh(x2k
, v) are similar is O(p3).

2

3.2.2 Neighborhood comparability

Intuitively, two neighborhoods nbh(x1j , v) and nbh(x2k
,

v) are comparable if there exist at least two (quite
large) subsets XSetj of nbh(x1j , v) and XSetk of
nbh(x2k

, v) that are similar. Similarity between XSetj
and XSetk is computed by constructing a bipartite graph
BG(XSetj , XSetk) starting from the x-components of
XSetj and XSetk, and by computing φBG in a way anal-
ogous to that we have seen in Section 3.2.1. Comparability
is a weaker property than similarity. As a matter of fact, if
two neighborhoods are similar, they are also comparable.
However, it may be that two neighborhoods are not similar
but are comparable because they have quite large similar
subsets. The formal definition of neighborhood compara-
bility is provided below.

Definition 3.6 Let S1 and S2 be two XML Schemas. Let
x1j (resp., x2k

) be an x-component of S1 (resp., S2).
Two neighborhoods nbh(x1j , v) and nbh(x2k

, v) are com-
parable if there exist two subsets, XSetj of nbh(x1j , v)
and XSetk of nbh(x2k

, v), such that: (i) |XSetj | >
1
2 |nbh(x1j , v)|; (ii) |XSetk| > 1

2 |nbh(x2k
, v)|; (iii)

φBG(XSetj , XSetk) > 1
2 . 2

In this definition, conditions (i) and (ii) guarantee that
XSetj and XSetk are representative (i.e., quite large); we
assume that this happens if they involve more than half of
the components of the corresponding neighborhoods. Fi-
nally, condition (iii) guarantees that XSetj and XSetk are
similar.

The following theorem states the worst case time com-
plexity for verifying if two neighborhoods are comparable.
Its proof can be found in the Appendix.

Theorem 3.2 Let S1 and S2 be two XML Schemas.
Let x1j (resp., x2k

) be an x-component of S1 (resp.,
S2). Let p be the maximum between |nbh(x1j , v)| and
|nbh(x2k

, v)|. The worst case time complexity for deter-
mining if nbh(x1j , v) and nbh(x2k

, v) are comparable is
O(p3). 2

Corollary 3.1 Let S1 and S2 be two XML Schemas. Let
x1j (resp., x2k

) be an x-component of S1 (resp., S2). If
nbh(x1j , v) and nbh(x2k

, v) are similar, then they are also
comparable. 2
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3.2.3 Neighborhood generalization

Consider two neighborhoods α and β and assume that:
(1) they are not similar; (2) most of the x-components
of β match with x-components of α; (3) most of the x-
components of α do not match with x-components of β. If
all these conditions hold, then it is possible to conclude that
the reality represented by α is richer than that represented
by β and, consequently, that α is more specific than β or,
conversely, that β is more general than α. As an example,
α could be the set of attributes and sub-elements describ-
ing the concept PhD Student whereas β might be the set of
attributes and sub-elements describing the concept Student.
The following definition formalizes this reasoning.

Definition 3.7 Let S1 and S2 be two XML Schemas. Let
x1j

(resp., x2k
) be an x-component of S1 (resp., S2).

We say that nbh(x1j
, v) is more specific than nbh(x2k

, v)
(and, consequently, that nbh(x2k

, v) is more general than
nbh(x1j

, v)) if: (i) they are not similar and (ii) the ob-

jective function ϕBG(x1j , x2k
, v) = |ESet′(v)|

|QSet(v)| , associated
with the bipartite graph BG(x1j , x2k

, v), is greater than
1
2 ; here BG(x1j , x2k

, v) has been described in Section 3.2,
ESet′(v) represents the set of matching edges associated
with BG whereas QSet(v) is the set of nodes of BG cor-
responding to the x-components of nbh(x2k

, v). 2

The reasoning underlying Definition 3.7 derives from the
observation that ϕBG(x1j , x2k

, v) represents the share of
x-components belonging to nbh(x2k

, v) matching with the
x-components of nbh(x1j , v). If this share is sufficiently
high then most of the x-components of nbh(x2k

, v) match
with the x-components of nbh(x1j , v) (condition (2)) but,
since nbh(x1j , v) and nbh(x2k

, v) are not similar (con-
dition (1)), most of the x-components of nbh(x1j , v) do
not match with the x-components of nbh(x2k

, v) (condi-
tion (3)). As a consequence, it is possible to conclude
that nbh(x1j , v) is more specific than nbh(x2k

, v) or, con-
versely, that nbh(x2k

) is more general than nbh(x1j , v).
The following theorem states the worst case time com-

plexity for verifying if a neighborhood is more specific than
another one. Its proof is provided in the Appendix.

Theorem 3.3 Let S1 and S2 be two XML Schemas.
Let x1j (resp., x2k

) be an x-component of S1 (resp.,
S2). Let p be the maximum between |nbh(x1j , v)| and
|nbh(x2k

, v)|. The worst case time complexity for deter-
mining if nbh(x1j , v) is more specific than nbh(x2k

, v) is
O(p3). 2

4 Extraction of interschema
properties

In this section we illustrate our approach for the extrac-
tion of interschema properties. As pointed out in the In-
troduction, we shall concentrate our attention on the fol-
lowing properties: (i) Synonymies: a synonymy indicates

that two x-components have the same meaning. (ii) Hy-
ponymies/Hypernymies: given two x-components xS and
xT , xS is a hyponym of xT (that is, in its turn, the hyper-
nym of xS) if xS has a more specific meaning than xT . (iii)
Overlappings: roughly speaking, given two x-components
xS and xT , an overlapping holds between them if they are
neither synonymous nor one a hyponym of the other but
there exist non-empty sets of attributes and sub-elements
{xS1 , xS2 , . . . , xSn

} of xS and {xT1 , xT2 , . . . , xTn
} of xT

such that, for 1 ≤ i ≤ n, xSi is synonymous with xTi . (iv)
Homonymies: an homonymy states that two x-components
have the same name and the same typology, but different
meanings.

Our approach exploits a thesaurus storing lexical syn-
onymies holding among the terms of a language; specif-
ically, it uses the English language and WordNet [19].
If necessary, different (possibly existing) domain-specific
thesauruses could be used in the prototype implementing
our approach; they can be provided by means of a suitable,
friendly interface.

4.1 Derivation of candidate pairs
In order to verify if an interschema property holds be-
tween two x-components x1j , belonging to S1, and x2k

,
belonging to S2, it is necessary to examine their neigh-
borhoods. Specifically, our approach operates as follows.
First it considers nbh(x1j , 0) and nbh(x2k

, 0) and verifies
if they are comparable. In the affirmative case, it is possible
to conclude that x1j and x2k

refer to analogous “contexts”
and, presumably, define comparable concepts. As a conse-
quence, the pair 〈x1j , x2k

〉 is marked as candidate for an
interschema property. However, observe that nbh(x1j , 0)
(resp., nbh(x2k

, 0)) takes only attributes and simple sub-
elements of x1j (resp., x2k

) into account; as a consequence,
it considers quite a limited context. If a higher severity
level is required, it is necessary to verify that other neigh-
borhoods of x1j and x2k

are comparable before marking
the pair 〈x1j , x2k

〉 as candidate. Such a reasoning is for-
malized by the following definition.

Definition 4.1 Let S1 and S2 be two XML Schemas. Let
x1j (resp., x2k

) be an x-component of S1 (resp., S2). Let
u be a severity level. We say that the pair 〈x1j , x2k

〉 is
candidate for an interschema property at the severity level
u if nbh(x1j , v) and nbh(x2k

, v) are comparable for each
v such that 0 ≤ v ≤ u. 2

It is possible to define a boolean function candidate that
receives two x-components x1j and x2k

and an integer u
and returns true if 〈x1j , x2k

〉 is a candidate pair at the sever-
ity level u, false otherwise.

The following theorem states the computational com-
plexity for the detection of candidate pairs. Its proof is
immediate from Theorem 3.2 and Definition 4.1.

Theorem 4.1 Let S1 and S2 be two XML Schemas. Let
x1j (resp., x2k

) be an x-component of S1 (resp., S2). Let u
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be a severity level. Finally, let p be the maximum between
|nbh(x1j

, u)| and |nbh(x2k
, u)|. The worst case time com-

plexity for verifying if 〈x1j
, x2k

〉 is a candidate pair at the
severity level u is O(u× p3). 2

4.2 Derivation of synonymies, hyponymies,
overlappings and homonymies

Let S1 and S2 be two XML Schemas. Let x1j (resp., x2k
)

be an x-component of S1 (resp., S2). In order to verify if a
synonymy, a hyponymy, an overlapping or an homonymy
holds between x1j

and x2k
it is necessary to examine their

neighborhoods and to determine the relationships holding
among them. The following definition formalizes this rea-
soning:

Definition 4.2 Let S1 and S2 be two XML Schemas. Let
x1j

(resp., x2k
) be an x-component of S1 (resp., S2) and let

u be a severity level.

– A synonymy holds between x1j and x2k
at the sever-

ity level u if: (i) candidate(x1j , x2k
, u) = true;

(ii) nbh(x1j , v) and nbh(x2k
, v) are similar for each

v such that 0 ≤ v ≤ u (see Section 3.2.1).

– x1j is said a hyponym of x2k
(that, in its turn, is

said a hypernym of x1j ) at the severity level u if:
(i) candidate(x1j , x2k

, u) = true; (ii) nbh(x1j , 0)
is more specific than nbh(x2k

, 0) (see Section 3.2.3).

– An overlapping holds between x1j and x2k
at the

severity level u if: (i) candidate(x1j , x2k
, u) = true;

(ii) x1j and x2k
are not synonymous; (iii) x1j is nei-

ther a hyponym nor a hypernym of x2k
.

– An homonymy holds between x1j and x2k
at the

severity level u if: (i) candidate(x1j , x2k
, u) =

false; (ii) x1j and x2k
have the same name; (iii) x1j

and x2k
are both elements or both attributes. 2

It is possible to define a boolean function
synonymy(x1j , x2k

, u) (resp., hyponymy(x1j , x2k
, u),

overlapping(x1j , x2k
, u), homonymy(x1j , x2k

, u)), that
receives two x-components x1j and x2k

and an integer
u and returns true if a synonymy (resp., a hyponymy, an
overlapping, an homonymy) holds between x1j and x2k

at
the severity level u, false otherwise.

As for the computational complexity of the interschema
property derivation, it is possible to state the following the-
orem whose proof can be found in the Appendix.

Theorem 4.2 Let S1 and S2 be two XML Schemas. Let
x1j (resp., x2k

) be an x-component of S1 (resp., S2).
Let u be a severity level. Finally, let p be the maximum
between |nbh(x1j , u)| and |nbh(x2k

, u)|. The worst case
time complexity for computing synonymy(x1j , x2k

, u),
hyponymy(x1j , x2k

, u), overlapping(x1j , x2k
, u),

homonymy(x1j , x2k
, u) is O(u× p3). 2

Corollary 4.1 Let S1 and S2 be two XML Schemas. Let
u be a severity level. Let m be the maximum between the
number of complex elements of S1 and S2. Finally, let q
be the maximum cardinality of a neighborhood of S1 or
S2. The worst case time complexity for deriving all inter-
schema properties holding between S1 and S2 at the sever-
ity level u is O(u× q3 ×m2). 2

5 Experimental results

5.1 Introduction
In this section we provide a detailed description of the ex-
periments we have carried out for testing the performance
of our approach. We have performed a large variety of ex-
periments, devoted to test the various aspects of our ap-
proach; they will be presented in the next subsections.

It is worth pointing out that some of our tests have been
inspired to ideas and methodologies illustrated in [6]; in
this paper, the authors propose a catalogue of criteria for
comparing some of the most popular interschema property
extraction systems, namely, Autoplex [2], Automatch [3],
COMA [7], Cupid [17], LSD [8], GLUE [10], SemInt [16]
and SF (Similarity Flooding) [18]. In our opinion, this is
a very interesting effort and we have decided to exploit the
same criteria (and, whenever possible, the same sources)
for testing the performance of our approach. This choice al-
lowed us to obtain an objective evaluation of our approach,
as well as to make a precise comparison between it and the
other systems evaluated by [6].

5.2 Characteristics of the exploited sources
In our tests we have exploited a large variety of XML
Schemas relating to disparate application contexts; specif-
ically, we have considered XML Schemas relating to
Biomedical Data, Project Management, Property Regis-
ter, Industrial Companies, Universities, Airlines, Scientific
Publications and Biological Data. In our tests, we have
compared all pairs of XML schemas within a particular do-
main.

Biomedical Schemas have been derived
from various sites; among them we cite:
http://www.biomediator.org. XML Schemas
relating to Project Management, Property Register and In-
dustrial Companies have been derived from Italian Central
Government Office sources and are shown at the address:
http://www.mat.unical.it/terracina/
tests.html. XML Schemas relating to Uni-
versities have been downloaded from the address:
http://anhai.cs.uiuc.edu/archive/domains/
courses.html. XML Schemas relating to Air-
lines have been found in [22]. XML Schemas
relating to Scientific Publications have been sup-
plied by the authors of [15]. Finally, Biological
Schemas have been downloaded from the addresses:
http://smi-web.stanford.edu/projects/
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helix/pubs/ismb02/schemas/,
http://www.cs.toronto.edu/db/clio/data/
GeneX_RDB-s.xsd and http://www.genome.
ad.jp/kegg/soap/v3.0/KEGG.wsdl.

As far as exploited thesauruses are concerned, we have
used WordNet for XML Schemas relating to Project Man-
agement, Property Register, Industrial Companies, Uni-
versities, Airlines and Scientific Publications. On the
contrary, for Biomedical and Biological Schemas we
have exploited the Biocomplexity Thesaurus, a biolog-
ical domain specific thesaurus available at the address:
http://thesaurus.nbii.gov.

Examined sources were characterized by the following
properties, expressed according to the terminology and the
measures of [6]:
Number of schemas: we have considered 35 XML
Schemas whose characteristics are reported in Table 1; this
number of schemas is quite similar to those considered by
the authors of the other approaches for performing their
evaluation; they are reported in Table 2. From this table
it is possible to see that the number of schemas exploited
by the other approaches for carrying out their evaluation
activity ranges from 2 to 24.
Size of schemas: the size of the evaluated XML Schemas,
i.e., the number of their elements and attributes, ranges
from 12 to 645. The minimum, the maximum and the av-
erage size of the sources exploited for evaluating the other
approaches, derived by [6], are reported in Table 21. An
analysis of this table shows that the sizes of the schemas
evaluated by our approach are quite close to those of the
sources examined by the other systems. The size of a test
schema is relevant because it influences the quality of ob-
tained results; in fact, as mentioned in [6], the bigger the
input schemas are, the greater the search space for candi-
date pairs is and the lower the quality of obtained results
will be.

The number of comparisons we have carried out for each
domain are shown in the last column of Table 1.

5.3 Accuracy Measures exploited in our
experimental tests

All accuracy measures proposed in [6] and computed dur-
ing our experiments have been obtained according to the
following general framework: (i) a set of experts has been
asked to identify interschema properties existing among in-
volved XML Schemas; (ii) interschema properties among
the same XML Schemas have been determined by the ap-
proach to evaluate; (iii) the properties provided by the ex-
perts and those returned by the approach to test have been
compared and accuracy measures have been computed.

The number of experts that have been involved in manu-
ally solving the match tasks is as follows: 6 for Biomedical
Data, 3 for Project Management, 3 for Property Register, 4

1The size of a relational source has been intended as the number of its
relations and attributes.

for Industrial Companies, 4 for Universities, 2 for Airlines,
2 for Scientific Publications and 7 for Biological Data.

Let A be the set of properties provided by the experts
and let C be the set of properties returned by the approach
to evaluate; two basic accuracy measures are: (i) Precision
(hereafter Pre), that specifies the share of correct proper-
ties detected by the system among those it derived. It is
defined as: Pre = |A∩C|

|C| . (ii) Recall (hereafter Rec),
that indicates the share of correct properties detected by
the system among those the experts provided. It is defined
as: Rec = |A∩C|

|A| . Precision and Recall are typical mea-
sures of Information Retrieval (see [25]). Both of them
fall within the interval [0, 1]; in the ideal case (i.e., when
A ≡ C) they are both equal to 1. It is worth noting that
the set C of interschema properties our approach derives
varies with the severity level; in order to make this evident,
we shall use the symbol C(u) instead of C. However, as
pointed out in [6], neither Precision nor Recall alone can
accurately measure the quality of an interschema property
extraction algorithm; in order to improve the result accu-
racy, it appears necessary to consider a joint measure of
them. Two very popular measures satisfying these require-
ments are: (i) F-Measure [3, 25], that represents the har-
monic mean between Precision and Recall. It is defined as:
F -Measure = 2 · Pre·Rec

Pre+Rec . (ii) Overall [6, 18], that mea-
sures the post-match effort needed for adding false nega-
tives and removing false positives from the set of proper-
ties returned by the system to evaluate. It is defined as:
Overall = Rec · (2 − 1

Pre ). F-Measure falls within the
interval [0, 1] whereas Overall ranges between −∞ and 1;
the higher F-Measure (resp., Overall) is, the better the ac-
curacy of the tested approach will be.

5.4 Discussion of obtained results

As for the evaluation of Precision and Recall associated
with our approach, we argued that, due to its philosophy
and intrinsic structure, an increase of the severity level
should have caused an increase of its Precision and a de-
crease of its Recall. This intuition is motivated by con-
sidering that C(u + 1) ⊆ C(u) and that C(u + 1) is ob-
tained from C(u) by eliminating the weakest properties;
this should cause C(u + 1) to be more precise than C(u).
However, this filtering task could erroneously discard some
valid properties; for this reason C(u + 1) could have a
smaller Recall than C(u).

In order to verify this intuition and, possibly, to quan-
tify it, we have applied our approach on our test Schemas
and we have computed the Average Precision, the Average
Recall, the Average F-Measure and the Average Overall at
various severity levels. Obtained results are shown in Ta-
ble 3. From the analysis of this table we can draw the fol-
lowing conclusions:

– As for the severity level 0, (i) Precision shows its
lowest value; as a consequence, our approach returns
some false positives; (ii) Recall assumes its highest
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Application context Number of Schemas Max Depth Minimum, Average and Minimum, Average and Total Number
Maximum Number of Maximum Number of of Comparisons

x-components complex elements

Biomedical Data 11 8 15 - 26 - 38 4 - 8 - 16 55
Project Management 3 4 37 - 40 - 42 6 - 7 - 8 3
Property Register 2 4 64 - 70 - 75 14 - 14 - 14 1
Industrial Companies 5 4 23 - 28 - 46 6 - 8 - 9 10
Universities 5 5 15 - 17 - 19 3 - 4 - 5 10
Airlines 2 4 12 - 13 - 13 4 - 4 - 4 1
Scientific Publications 2 6 17 - 18 - 18 8 - 9 - 9 1
Biological Data 5 8 250 - 327 - 645 36 - 60 - 206 10

Table 1: Characteristics of the XML Schemas exploited for testing the performance of our approach

System Typology of Number of Minimum size Maximum size Average size
tested Schema Schemas of Schemas of Schemas of Schemas

Our system XML 35 12 645 70
Autoplex & Automatch Relational 15 - - -
COMA XML 5 40 145 77
Cupid XML 2 40 54 47
LSD XML 24 14 66 -
GLUE XML 3 34 333 143
SemInt Relational 10 6 260 57
SF XML 18 5 22 12

Table 2: Characteristics of the XML Schemas exploited by the other approaches for their evaluation activity

Property Typology Average Average Average Average
Precision Recall F-Measure Overall

Severity Level 0 0.86 0.97 0.91 0.81
Severity Level 1 0.96 0.81 0.88 0.78
Severity Level 2 0.97 0.77 0.86 0.75
Severity Level 3 0.97 0.72 0.83 0.70

Table 3: Accuracy measures associated with our approach
at various severity levels

value; as a consequence, our approach returns almost
all valid properties or, in other words, it returns a very
small number of false negatives.

– If the severity level is 1, (i) the set of properties re-
turned by our approach contains a smaller number of
false positives than the previous case; specifically, it
is possible to observe that Precision increases to 0.96;
(ii) Recall decreases of about 16% w.r.t. the previous
case; in other words, a certain increase of false nega-
tives can be observed.

– As for the severity level 2, (i) Precision slightly in-
creases to 0.97; (ii) Recall decreases of about 5% w.r.t.
the previous case.

– When the severity level is equal to 3, (i) Precision
saturates at its highest value, i.e., 0.97; (ii) Recall
presents the same trend as the previous case; specif-
ically, a further decrease is observed.

All these experiments confirm our original intuition
about the trend of Precision and Recall in presence of vari-
ations of the severity level.

From the examination of Table 3 we observe that passing
from low to high severity levels causes an increase of the
Precision and a corresponding decrease of the Recall. This
behaviour is explained by considering that, at low severity
levels, a user is willing to accept false positives if this al-
lows him to obtain a complete set of similarities. On the

contrary, at high severity levels, a user is willing to receive
an incomplete set of similarities by the system but he de-
sires that proposed properties are (almost surely) correct.

Table 3 shows also the great importance of the severity
level that provides our approach with a high flexibility. As
a matter of fact, in real cases, there are many application
contexts where having a high Recall is more important than
achieving a high Precision; in these cases our approach can
be applied with a severity level equal to 0. On the contrary,
there are other situations where obtaining a high Precision
is more relevant than having a high Recall; in these situa-
tions the user might: (i) obtain it automatically by setting
an adequate, presumably high, severity level; in this way
the automaticity of the approach is preserved but its Recall
decreases; (ii) obtain it semi-automatically by setting a low
severity level and by performing a further, deep, validation
of obtained results; in this way the Recall of the approach
is preserved but the time the user needs for validation sen-
sibly increases.

After this, we have compared the accuracy of our ap-
proach w.r.t. that of the other approaches evaluated in [6];
obtained results are reported in Table 4. We point out that
the accuracy measure of the other systems shown in that ta-
ble have been directly derived from [6]. The only missing
data regard Cupid; in fact, in [6], the Authors provide only
a qualitative analysis of this system without specifying any
quantitative value of its Precision, its Recall, its F-Measure
and its Overall. However, a quantitative analysis of Cupid
can be found in [13]; in that paper the Authors claim that,
for the schemas considered by them, Cupid showed a Pre-
cision equal to 0.60, a Recall equal to 0.55, an F-Measure
equal to 0.57 and an Overall equal to 0.18; in order to allow
a more precise comparison, we must say that the Authors
of [13] applied also COMA on the same sources considered
for Cupid and, for these sources, they obtained a Precision
equal to 0.82, a Recall equal to 0.75, an F-Measure equal
to 0.78 and an Overall equal to 0.59.
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From the analysis of Table 4 we can observe that: (i) at
the severity level 0 the Precision of our approach is satisfac-
tory, even if COMA presents a better value; at the severity
level 1 our approach has the highest Precision; (ii) at the
severity level 0 our approach shows the best Recall; on the
contrary, at the severity level 1, the Recall of our approach
significantly decreases; (iii) at the severity level 0 our ap-
proach presents, along with COMA, the highest values of
F-Measure and Overall; both these two accuracy measures
slightly decrease at the severity level 1.

As a conclusion, in our opinion, all these experiments
agree on determining that the accuracy of our approach is
extremely satisfactory and promising. In addition, our ap-
proach shows a great flexibility in that it can be adapted for
obtaining the best Precision or the best Recall, according
to the exigencies of the application context it is operating
in. These results are even more relevant if we take into ac-
count that both measures and most of the test sources we
have considered had been already uniformly exploited for
evaluating a large variety of existing approaches.

We have also verified if the accuracy of our approach
depends on the application domain which the test Schemas
belong to. The results we have obtained are shown in Fig-
ure 1. From the analysis of this figure, it is possible to
conclude that the accuracy of our approach is substantially
independent of the application domain. As far as our exper-
iments are concerned, we have obtained the best accuracy
for the Property Register domain; here, Precision reaches
its best value at the severity level 3 and is 0.99; Recall, F-
Measure and Overall are maximum at the severity level 0
and are 0.99, 0.94 and 0.87, respectively. We have obtained
the worst accuracy in the Biological domain; here, Preci-
sion is maximum at the severity level 3 and is 0.87; Recall,
F-Measure and Overall reach their best values at the sever-
ity level 0 and are 0.87, 0.82 and 0.62, respectively.

5.5 Robustness analysis
5.5.1 Robustness against structural dissimilarities

XML is inherently hierarchical; it allows nested, possibly
complex, structures to be exploited for representing a do-
main. As a consequence, two human experts might model
the same reality by means of two XML Schemas character-
ized by deep structural dissimilarities. We have performed
a robustness analysis of our approach, devoted to verify if
it is resilient to structural dissimilarities. Before describing
our experimental tests about this issue, we point out that
the specific features of our approach make it intrinsically
robust for the following two cases, that are very common
in practice:

– If the typology of an x-component x1j of an XML
Schema S1 changes from “simple element” to “at-
tribute”, or vice versa, no modifications of the inter-
schema properties involving x-components of S1 oc-
cur. This result directly derives from the definition of
the function veryclose (see Section 3).

– If x1j and x′1j
are two complex elements of the same

XML Schema S1 such that x′1j
is a sub-element of

x1j
and if S1 is modified in such a way that x′1j

is no
longer a sub-element of x1j but there exists a keyref
relating x1j

to x′1j
, then no modifications of the inter-

schema properties involving x-components of S1 oc-
cur. An analogous reasoning holds for the opposite
change. This result directly derives from the defini-
tion of the function close (see Section 3).

There are further structural modifications that could in-
fluence the results of our approach and for which it is not
intrinsically robust; for these cases an experimental mea-
sure of its robustness appears necessary. Two of the most
common structural modifications are analyzed in the fol-
lowing.

Flattening of x-components. Consider Figure 2 illus-
trating two portions of XML Schemas representing per-
sons. Specifically, in the first XML Schema, the concept
“Person” is represented by means of a nested hierarchical
structure; on the contrary, in the second XML Schema, the
same concept is represented by means of a flat structure.

In order to determine the robustness of our approach
against errors occurring owing to the flattening of x-
components, for each pair of XML Schemas into consid-
eration, we have progressively altered the structure of one
of the XML Schemas by transforming a certain percentage
of its x-components from a nested structure to a flat one.
For each of these transformations, we have derived the in-
terschema properties associated with the “modified” ver-
sions of the XML Schemas and we have computed the cor-
responding values of the accuracy measures. Specifically,
we have considered five cases, corresponding to a percent-
age of flattened x-components (hereafter FXP - Flattened
X-component Percentage) equal to: (a) 0%; (b) 7%; (c)
14%; (d) 21%; (e) 28%. The results we have obtained are
shown in Figure 3.

From the analysis of this figure it is possible to ob-
serve that our approach shows a good robustness against
increases of FXP . As a matter of fact, even if structural
dissimilarities occur, the changes in the accuracy measures
are generally quite small. In fact, the maximum decrement
of the Average Precision (resp., Average Recall, Average F-
Measure, Average Overall) w.r.t. case (a) is equal to 0.11
(resp., 0.16, 0.13, 0.24) and can be found at the severity
level 1 (resp., 0, 2, 0). However, we stress that if the in-
creases of FXP would be significantly greater than those
considered above, the changes in the accuracy measures
could be significant; this behaviour is correct since it guar-
antees that our approach shows the right degree of sensitiv-
ity to changes to the structure of involved XML Schemas.

Exchange of nesting levels. Consider Figure 4 illustrat-
ing two portions of XML Schemas representing catalogues.
In the first XML Schema, a catalogue is organized by
grouping involved models by brands and, then, by product
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System Precision Recall F-Measure Overall

Our system (severity level 0) 0.86 0.97 0.91 0.81
Our system (severity level 1) 0.96 0.81 0.88 0.78
Autoplex & Automatch 0.84 0.82 0.82 & 0.72 0.66
COMA 0.93 0.89 0.90 0.82
Cupid − − − −
LSD ∼ 0.80 0.80 ∼ 0.80 ∼ 0.60
GLUE ∼ 0.80 0.80 ∼ 0.80 ∼ 0.60
SemInt 0.78 0.86 0.81 0.48
SF − − − ∼ 0.60

Table 4: Comparison of the accuracy of our approach w.r.t. that of the other approaches evaluated in [6]

Figure 1: Average Precision, Average Recall, Average F-Measure, Average Overall of our approach in different domains

categories; on the contrary, in the second XML Schema,
the same catalogue is organized by grouping involved mod-
els by product categories and, then, by brands. In this
case we have that two x-components, namely “brand” and
“product_category” exchanged their nesting levels within
the corresponding XML Schemas. Clearly, an exchange of
nesting levels may occur only between complex elements.

Note that the exchange of nesting levels between two
complex elements is not always “safe” from a semanti-
cal point of view. In fact, consider, again, the first XML
Schema of Figure 4, and assume the nesting level of “cat-
alogue” and “brand” to be exchanged; in this case, the se-
mantics of the resulting XML Schema would be quite dif-
ferent w.r.t. that of the original XML Schema; in fact, the
new XML Schema would represent a list of brands each
of which associated with a separate catalogue of products.
Therefore, as for the robustness of our approach in the man-
agement of this kind of structural modification, we could
expect a decrease of performance w.r.t. the previous case
because the semantic modifications produced by the ex-

change of nesting levels are deeper than those caused by
the flattening of x-components.

Our approach is partially intrinsically robust against this
kind of structural modification. In fact, our definition of
neighborhood, which is the core of our interschema prop-
erty extraction technique, puts in the same set all the x-
components laying at a “distance” less than or equal to
j from the component under consideration (see Definition
3.4). Now, consider an x-component xS and assume that an
exchange of nesting levels occurs between two of its sub-
elements, say x′S and x′′S , laying at distance j and j+1 from
xS , respectively; this structural modification will imply
some differences in nbh(xS , j) but not in nbh(xS , j + 1).
Specifically, nbh(xS , j) contains x′S before the exchange
of nesting levels whereas it contains x′′S after the exchange;
by contrast, nbh(xS , j+1) contains x′S and x′′S both before
and after the exchange. This implies that a possible error
in the evaluation of the interschema properties involving
xS may occur only when the jth neighborhood of xS is
considered; however, this error is not propagated through
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<xs:element name="person">
<xs:complexType>

<xs:sequence>
<xs:element ref="address"/>

</xs:sequence>
<xs:attribute name="first_name" type="xs:string"/>
<xs:attribute name="last_name" type="xs:string"/>
<xs:attribute name="gender" type="xs:string"/>
<xs:attribute name="birthdate" type="xs:date"/>

</xs:complexType>
</xs:element>
<xs:element name="address">

<xs:complexType>
<xs:attribute name="city" type="xs:string"/>
<xs:attribute name="state" type="xs:string"/>
<xs:attribute name="country" type="xs:string"/>
<xs:attribute name="zip" type="xs:string"/>

</xs:complexType>
</xs:element>

<xs:element name="person">
<xs:complexType>

<xs:attribute name="first_name" type="xs:string"/>
<xs:attribute name="last_name" type="xs:string"/>
<xs:attribute name="gender" type="xs:string"/>
<xs:attribute name="birthdate" type="xs:date"/>
<xs:attribute name="city" type="xs:string"/>
<xs:attribute name="state" type="xs:string"/>
<xs:attribute name="country" type="xs:string"/>
<xs:attribute name="zip" type="xs:string"/>

</xs:complexType>
</xs:element>

Figure 2: Example of “nested” and “flat” structures

Figure 3: Average Precision, Average Recall, Average F-Measure, Average Overall for various values of FXP

the next neighborhoods. This important feature of our ap-
proach mitigates the possible problems arising from the
structural modifications caused by the exchange of nesting
levels.

In order to quantitatively evaluate the robustness of our
approach against errors caused by the exchange of nest-
ing levels, for each pair of XML Schemas into considera-
tion, we have progressively altered the structure of one of
the XML Schemas of the pair by exchanging the nesting
level of a certain percentage of its x-components. For each
of these transformations, we have derived the interschema
properties associated with the “modified” versions of the
XML Schemas and we have computed the corresponding
values of the accuracy measures. Specifically, we have
considered five cases, corresponding to a percentage of ex-
changed nesting levels (hereafter ENP - Exchanged Nest-
ing level Percentage) equal to: (a) 0%; (b) 7%; (c) 14%;

(d) 21%; (e) 28%. The results that we have obtained are
shown in Figure 5.

From the analysis of this figure it is possible to observe
that the robustness of our approach against increases of
ENP is satisfactory, even if, as expected, its overall per-
formance is slightly worse than that obtained for the same
percentage of FXP . In any case, the changes of the accu-
racy measures caused by an increase of ENP are generally
acceptable. In fact, the maximum decrement of the Aver-
age Precision (resp., Average Recall, Average F-Measure,
Average Overall) w.r.t. case (a) is equal to 0.17 (resp., 0.21,
0.18, 0.33) and can be found at the severity level 2 (resp.,
0, 2, 0). However, analogously to the previous case, if the
increases of ENP would be quite high, the variations of
the semantics of the corresponding XML Schemas would
be also significant and, consequently, the accuracy mea-
sures might significantly decrease; however, we point out



AN APPROACH TO EXTRACTING INTERSCHEMA . . . Informatica 31 (2007) 217–232 229

<xs:element name="catalogue">
<xs:complexType>

<xs:sequence>
<xs:element ref="brand"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="brand">

<xs:complexType>
<xs:sequence>

<xs:element ref="product_category"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="product_category">

<xs:complexType>
<xs:sequence>

<xs:element ref="model"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="model">

<xs:complexType>
<xs:attribute name="detail" type="xs:string"/>
<xs:attribute name="price" type="xs:string"/>

</xs:complexType>
</xs:element>

<xs:element name="catalogue">
<xs:complexType>

<xs:sequence>
<xs:element ref="product_category"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="product_category">

<xs:complexType>
<xs:sequence>

<xs:element ref="brand"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="brand">

<xs:complexType>
<xs:sequence>

<xs:element ref="model"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="model">

<xs:complexType>
<xs:attribute name="detail" type="xs:string"/>
<xs:attribute name="price" type="xs:string"/>

</xs:complexType>
</xs:element>

Figure 4: Example of exchange of nesting levels

that this behaviour is desirable since it proves, again, that
our approach shows a good degree of sensitivity against
changes of the structure of involved XML Schemas.

5.5.2 Robustness against thesaurus errors

In this experiment we have tested the effects of errors and
inaccuracies in the thesaurus received in input by our ap-
proach. Specifically, we have asked experts to validate
the similarities contained in the input thesauruses and in-
volving elements and attributes of the considered XML
Schemas in such a way to remove any possible error.

After this, we have performed some variations on the
corrected thesauruses and, for each of them, we have
computed Average Precision, Average Recall, Average F-
Measure and Average Overall of our system. Variations we
have carried out on the correct thesauruses are: (a) 10% of
correct similarities have been filtered out; (b) 20% of cor-
rect similarities have been filtered out; (c) 30% of correct
similarities have been filtered out; (d) 50% of correct simi-
larities have been filtered out; (e) 10% of wrong similarities
have been added; (f) 20% of wrong similarities have been
added; (g) 30% of wrong similarities have been added; (h)
50% of wrong similarities have been added.

Table 5 presents the values of the Average Precision, the
Average Recall, the Average F-Measure and the Average
Overall we have obtained for the extraction of the inter-
schema properties at various severity levels. These results
show that our system is quite robust w.r.t. errors and inac-
curacies in the thesauruses provided in input. At the same
time it shows a good sensitivity against errors because, if
the correct similarities that are filtered out or the wrong
similarities that are added are excessive, the system accu-
racy significantly decreases.

6 Comparison between our
approach and the related ones
illustrated in Section 2

In this section we compare our approach with the related
ones already illustrated in Section 2.

CGLUE. The only similarity between our approach and
CGLUE concerns the exploitation of auxiliary informa-
tion; in particular, CGLUE uses the training matches (i.e.,
semantic matches provided by the users for training its
learners) whereas our approach exploits a thesaurus. As for
differences existing between them, we may observe that:
(i) CGLUE exploits machine learning techniques, whereas
our approach is based on graph matching algorithms; (ii)
CGLUE is generic whereas our approach is specialized
for XML sources; (iii) CGLUE is both schema-based and
instance-based; as a consequence, it requires a deep analy-
sis of data instances; by contrast, our approach is schema-
based; (iv) CGLUE is composite in that it combines vari-
ous algorithms for detecting semantic matches; by contrast,
our approach is hybrid; (v) CGLUE was conceived for de-
tecting 1:1, 1:n and n:m matchings, whereas our approach
aims to derive 1:1 matchings.

Approach of [11]. The approach of [11] and ours share
some similarities; specifically, (i) both of them are hybrid;
(ii) both of them were conceived for detecting 1:1 match-
ings. As for differences, we may observe that: (i) in order
to carry out its tasks, the approach of [11] exploits fuzzy
tools whereas our approach uses graph-based techniques;
(ii) the approach of [11] is generic, i.e., it is not specialized
for XML sources; (iii) the approach of [11] is instance-
based whereas our approach is schema-based; (iv) the ap-
proach of [11] does not require auxiliary information.

Cupid. As for similarities between our approach and Cu-
pid, we may notice that: (i) in both of them schema el-
ements are matched in a pair-wise manner by means of
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Figure 5: Average Precision, Average Recall, Average F-Measure and Average Overall for various values of ENP

Case Average Precision Average Recall Average F-Measure Average Overall
Severity Levels 0-1-2-3 Severity Levels 0-1-2-3 Severity Levels 0-1-2-3 Severity Levels 0-1-2-3

No errors 0.86 - 0.96 - 0.97 - 0.97 0.97 - 0.81 - 0.77 - 0.72 0.91 - 0.88 - 0.86 - 0.83 0.81 - 0.78 - 0.75 - 0.70
(a) 0.86 - 0.96 - 0.97 - 0.97 0.92 - 0.77 - 0.73 - 0.68 0.89 - 0.86 - 0.83 - 0.80 0.77 - 0.74 - 0.71 - 0.66
(b) 0.86 - 0.96 - 0.97 - 0.97 0.86 - 0.72 - 0.68 - 0.64 0.86 - 0.82 - 0.80 - 0.77 0.72 - 0.69 - 0.66 - 0.62
(c) 0.87 - 0.97 - 0.98 - 0.98 0.77 - 0.64 - 0.61 - 0.57 0.82 - 0.77 - 0.75 - 0.72 0.65 - 0.62 - 0.60 - 0.56
(d) 0.87 - 0.97 - 0.98 - 0.98 0.68 - 0.57 - 0.54 - 0.50 0.76 - 0.71 - 0.69 - 0.66 0.57 - 0.55 - 0.53 - 0.49
(e) 0.82 - 0.91 - 0.92 - 0.92 0.97 - 0.81 - 0.77 - 0.72 0.89 - 0.86 - 0.84 - 0.81 0.75 - 0.73 - 0.71 - 0.66
(f) 0.76 - 0.85 - 0.86 - 0.86 0.97 - 0.81 - 0.77 - 0.72 0.85 - 0.83 - 0.81 - 0.78 0.67 - 0.67 - 0.64 - 0.60
(g) 0.68 - 0.76 - 0.77 - 0.77 0.98 - 0.81 - 0.77 - 0.72 0.80 - 0.79 - 0.77 - 0.75 0.52 - 0.56 - 0.54 - 0.51
(h) 0.60 - 0.67 - 0.68 - 0.68 0.98 - 0.82 - 0.78 - 0.73 0.75 - 0.74 - 0.72 - 0.70 0.33 - 0.42 - 0.41 - 0.38

Table 5: Variation of Precision, Recall, F-Measure and Overall w.r.t. possible errors in the input thesauruses

suitable similarity functions; (ii) both of them are schema-
based; (iii) both of them are hybrid; (iv) both of them ex-
ploit a thesaurus as auxiliary information. As for differ-
ences, we may observe that: (i) Cupid is based on tree
matching whereas our approach is based on graph match-
ing; (ii) Cupid is capable of managing generic data sources
whereas our approach has been developed for operating
only on XML sources; (iii) Cupid is capable of extracting
also 1:n matchings whereas our approach has been con-
ceived for deriving only 1:1 matchings.

MOMIS. Some similarities exist between our approach
and MOMIS; in fact: (i) both of them are schema-based;
(ii) both of them are hybrid; (iii) both of them derive 1:1
matchings; (iv) both of them exploit a thesaurus as aux-
iliary information. As for differences, we may observe
that: (i) MOMIS is based on description logics whereas
our approach is graph-based; (ii) MOMIS is generic; (iii)
MOMIS has been conceived mainly for integration and

querying whereas our approach is specialized for inter-
schema property extraction.

Approach of [14]. There exist some similarities between
the approach of [14] and ours; specifically, (i) both of them
are schema-based; (ii) both of them are hybrid; (iii) both of
them derive 1:1 matchings. There are also important differ-
ences between the two approaches; specifically: (i) in order
to perform matching activities, the approach of [14] adopts
statistical-based techniques whereas our approach operates
on graphs; (ii) the approach of [14] operates on databases
that can be accessed through Web query interfaces; (iii) the
approach of [14] does not exploit auxiliary information;
(iii) the approach of [14] creates a hidden schema which
is both capable of fully describing a domain and useful as a
mediated schema; such a characteristic is not present in our
approach; however, as claimed by the authors, this makes
the approach of [14] to be exponential; as a consequence,
the approach of [14] can be applied only if schema match-
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ing is carried out off-line; on the contrary, our approach is
much more light and can be applied both on-line and off-
line.

Approach of [4]. The main goal of the approach pro-
posed in [4] is clearly different from that of our approach;
in fact, the approach of [4] has been conceived to deter-
mine if data stored in an XML document approximatively
conform to a DTD; by contrast, our approach aims to de-
tect semantic similarities between two XML Schemas. De-
spite this substantial difference, we can observe that the
approach of [4] and ours share some similarities. Specifi-
cally: (i) in both of them the analysis of structural proper-
ties of input data sources plays a key role; (ii) both of them
clearly distinguish the roles played by simple and com-
plex elements; (iii) both of them consider the constraints
related to the occurrences of an element (e.g., if an element
is optional or mandatory); (iv) both of them are specific for
XML sources; (v) both of them are hybrid. As for the main
differences between the two approaches, we observe that:
(i) the approach of [4] is based on tree matching whereas
our approach is based on graph matching; (ii) the approach
of [4] is both schema-based and instance-based; (iii) the
approach of [4] can extract 1:1, 1:m and m:n matchings;
(iv) the approach of [4] does not exploit any auxiliary in-
formation.

DIKE. There are some similarities between our approach
and DIKE; specifically, both of them: (i) are graph-based;
(ii) are schema-based; (iii) are hybrid; (iv) exploit a the-
saurus as auxiliary information.

However, there are also important differences between
them; specifically: (i) DIKE operates on E/R schemas
whereas our approach is graph-based. (ii) DIKE derives
1:1, 1:n and m:n matchings. (iii) The algorithms under-
lying DIKE rely on various thresholds and weights. (iv)
DIKE does not consider a “severity” level that, on the con-
trary, plays a key role in our approach. (v) As far as the
property derivation technique is concerned, DIKE and our
system follow very different philosophies. As a matter of
fact, DIKE exploits a sophisticated fixpoint computation
strategy to derive interschema properties, whereas the ap-
proach we are presenting in this paper is simpler. (vi) Fi-
nally, the user intervention required by DIKE is heavier
than that required by our approach since the former re-
quires a tuning activity to be carried out for all thresholds
and weights before the extraction process can start.

7 Conclusions
In this paper we have proposed an approach for the ex-
traction of synonymies, hyponymies, overlappings and
homonymies from a set of XML Schemas. We have shown
that our approach is specialized for XML sources, is al-
most automatic, semantic and “light”; it derives all these
properties in a uniform way and allows the choice of the

“severity” level against which the extraction task must be
performed.

We have illustrated some experiments that we have car-
ried out to test its performance and to compare its results
with those achieved by other approaches. We have also ex-
amined various related approaches previously proposed in
the literature and we have compared them with ours from
various points of views.

In the future we plan to investigate various research is-
sues related to those presented here. First, we plan to de-
velop approaches for deriving other typologies of inter-
schema properties. Specifically, we would like to derive
complex knowledge patterns involving a large variety of
concepts belonging to different XML Schemas; in this ap-
plication context we plan to exploit data mining techniques.
After this, we would like to define new approaches for ex-
ploiting the properties considered in this paper, as well as
those we shall study in the future, in the various application
contexts where interschema properties can generally play a
key role.

Finally, we would like to put the system described here
as a part of a more complex system whose purpose is the
extraction of intensional knowledge from semantically het-
erogeneous XML sources and its exploitation for handling
their interoperability.
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