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Due to the growing size and complexity of the PLC (Programmable Logic Controller) programs used for 

controlling the industrial processes, there is an increasing need for an approach that can help the users 

to understand the control logics of the PLC programs easily, and can assist them to analyze the 

programming errors effectively. In this paper, we propose an approach that takes the source code file of 

PLC program as the input; and transforms it into a hierarchical-structured XML (extensible markup 

language) file. The XML file format is based on the PLC output instructions and their corresponding 

conditions. It helps the users to identify the actual cause of a programming error quickly. In addition, a 

novel technique is applied that decomposes the PLC program into several smaller and modular sub-logic 

blocks. This makes the control logic simpler and easier to follow. An additional software application has 

also been developed for state-based graphical visualization of the XML file. 

Povzetek: Prispevek opisuje metodo za poenostavitev PLC programov za industrijske procese.

1 Introduction 
The PLCs are a special type of computers that are used for 

automation of the industrial processes. A PLC controls an 

industrial process according to the control program 

embedded in its controller. In each execution of the PLC 

program, it takes the sensor signals as the inputs and 

produces a set of output control signals to the actuators. 

So, the program outputs and their corresponding 

conditions (which must be satisfied in order to receive that 

particular output) are the basis of a PLC program. The 

PLCs can be programmed by using several programming 

languages under the international standard IEC 61131-3, 

such as Ladder Logic Diagram (LLD), Function Block 

Diagram (FBD), Structured Text (ST), Instruction List 

(IL) etc. [1]. Among these languages, the LLD is the most 

popular PLC programming language in industries; and the 

IL is the most commonly used PLC programming 

language in Europe [1]–[3]. On various occasions, the 

programmers use a combination of these languages to 

write a PLC program. With the growing size and 

complexity of the PLC programs, it becomes more 

difficult to understand the program logics because of the 

low-level PLC programming languages. Moreover, if an 

error is detected in any PLC output, then the programmers 

have to analyze the complete program manually to find out 

the conditions that can cause such an error. It is very 

complicated and time-consuming job for a programmer to 

determine all the conditions that can affect a particular 

output. The situation becomes more critical when many 

programmers work together to develop the project. 

Moreover, if the routines of the PLC program are written 

in different languages, then understanding the control 

logics and/or determining the conditions associated with a 

program output become even harder. 

Our main aim is to transform the PLC program source 

code into a programming language and vendor 

independent XML file format that can help the users to 

understand the program logic easily; and can assist the 

programmers to analyze the programming errors quickly. 

In this paper, we present a PLC program source code 

reengineering approach, called Program Output based 

Source-code Transformation (POST) approach that takes 

the source code file of the PLC program saved in the IL 

language as the input, and produces a hierarchical-

structured XML file as the output. In that XML file, the 

program logic is interpreted in terms of the program output 

instructions and their corresponding conditions, thus the 

programmers can analyze the programming errors easily. 

In addition, POST applies a novel technique that 

subdivides the program logic blocks into several smaller 

and modular sub-logic blocks in order to make the 

program logic more simpler, clearer and well-organized. 

POST is applicable to all the programming languages and 

the PLC software vendors where the program source code 

can be saved in the IL language. For example, in case of 

Siemens PLC software [4], the programs written in the 

LLD, IL and FBD languages can automatically be saved 
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in the IL language format. We have implemented and 

tested POST for Siemens and Allen-Bradley PLC software 

[5]. It can easily be extended for other types of PLC 

software as well. 

2 Problem Description 
In Figure 1, an example rung of a LLD program (written 

using Siemens Simatic Step 7 software [4]) is given. Each 

rung of a LLD program characterizes a specific rule or a 

set of rules. As can be seen in Figure 1, the rung has two 

output instructions and those outputs are dependent on 

three input instructions (or conditions) i.e., two Normally 

Open (NO) contacts and one Normally Closed (NC) 

contact. The NO and NC contacts actually represent the 

AND and AND-NOT boolean logic operations, 

respectively. These conditions are evaluated at the time of 

program execution in order to determine the data values of 

the output addresses. In practice, a LLD program can have 

thousands of such rungs partitioned into several program 

blocks, such as the Organization Blocks (OBs), Functions 

(FCs), Function Blocks (FBs) etc. It is very time-

consuming and laborious task for the programmers to 

identify the real cause of a programming error. This is 

because, if an error is found in any PLC output signal, then 

the programmers have to examine the complete program 

(i.e., each rung of every program blocks) manually to find 

out the exact conditions that can affect the value of the 

corresponding output address. In that condition candidate 

set, if an erroneous data value is found in the address field 

of an input instruction which is not a direct sensor input, 

then the programmers have to search again for the 

conditions that can affect the value of that address. This 

process continues until the root causes of the error (in 

other words, the faulty sensor inputs and/or the flaws in 

the program logic) are identified. In order to overcome this 

kind of difficulties, an attempt is given to transform the 

source code file of the PLC program into a well-organized 

and well-structured XML file, thus all the conditions 

attached to an output address can be determined 

automatically. This can help the users to fix the 

programming errors very quickly. 

The PLC programs are often written in a combination 

of different languages. The input-output instructions of a 

particular programming language also vary depending on 

the PLC software vendors. So, it is necessary to transform 

the PLC code into a vendor and language independent 

format, thus the users can understand the program 

instructions quickly and easily. An automated approach 

for program logic simplification is another important 

requirement for industries. Often PLC programs are 

written in a very low-level, non-graphical language such 

as the IL language. An IL language code equivalent to the 

LLD rung of Figure 1 is given in Figure 2. As can be seen, 

it is very hard to understand the rung logic from this kind 

of non-graphical PLC programs. Even for the programs 

written in graphical languages such as the LLD, FBD etc., 

it becomes difficult to understand the program logic with 

the growing size and complexity of the rung diagram 

(especially if the rung has several outputs, parallel 

branches and sub-branches). An example of such complex 

LLD rung is presented in Figure 3. It is easy to perceive, 

identifying the conditions or understanding the program 

logic behind a particular output is very difficult from this 

kind of ladder rungs. Therefore, an automated, systematic 

approach is required that can simplify the program logic 

of this kind of complex ladder rungs in an efficient way, 

thus the users can understand the program logic behind a 

 

Figure 1: A rung of a LLD program. 

 

Figure 2: The IL language representation of the LLD rung of Figure 1. 
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particular output easily. In this work, we have successfully 

addressed those needs. The rest of this paper is organized 

as follows: an overview about the existing works in this 

field is presented in Section 3. In Section 4, we have 

discussed POST approach in details. Section 5 contains 

our conclusive remarks of the work followed by a list of 

relevant references. 

3 Background Study 
Several approaches have been proposed in literatures for 

reengineering the PLC programs. They can broadly be 

classified into the following three categories: 

 Approaches focused on source-to-source translation: 

this type of approaches transform the PLC programs 

written in a particular programming language into 

another programming language. For example, the 

approaches proposed in [6]–[9] transform the LLD 

program into the IL language code. The main 

objective of these research works is to convert the 

PLC program into the IL language code thus it can be 

executed directly by the PLCs. In [10], a different 

type of approach was proposed that converts the LLD 

program into the ST language code. The main aim of 

this research work is to promote a particular type of 

technology and hardware.  

 Approaches focused on vendor interoperability: these 

research works propose an approach that can 

accomplish transferring the program source code 

among different vendors of PLC programming tools. 

In these works, the interoperability between the PLC 

programming tools is achieved by means of a 

middleware. In most of the cases, the XML 

technologies have been used for developing the 

interoperability middleware. Examples of such works 

include: [11]–[15]. 

 Approaches focused on alternative visualization: this 

type of approaches transforms the PLC program 

source code file into another file format for more 

efficient graphical visualization. For example, in 

earlier works [3] and [16], an approach was proposed 

that transforms the PLC program into a vendor and 

platform independent XML file format. In [17] and 

[18], an approach was proposed that transforms the 

PLC programs into the Finite State Machines (FSMs). 

In another article [19], the UML (Unified Modelling 

Language) state diagrams are used in place of FSMs 

for more efficient graphical visualization of the rung 

logic. 

 

Figure 3: An example complex ladder rung. 
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Unfortunately, all the mentioned approaches are focused 

on an efficient graphical representation of the PLC 

program and/or the vendor and platform interoperability. 

None of these approaches fulfils all the requirements 

stated in Section 1 and Section 2, and hence, a completely 

different type of approach is needed. Our proposed 

approach POST can solve all those needs effectively. 

4 POST approach 
This section is divided into five subsections. In Subsection 

4.1, the overall structure of the output XML file (produced 

by POST approach) is given and in Subsection 4.2, the 

program logic simplification procedure of POST is 

discussed. The program error analysis procedure is 

presented in Subsection 4.3. In Subsection 4.4, the 

implementation details of POST approach is discussed and 

in Subsection 4.5, the output XML file format for a special 

instruction i.e., the block call instruction is given. In this 

paper, we discuss POST approach using the ladder rung 

diagrams of Siemens PLC programs (just for 

exemplification purpose). 

4.1 The Overall XML file structure 

POST takes the source code file of a PLC program saved 

in the IL language as the input and produces a well-

structured and well-organized XML file. It gives an 

efficient tree-based representation of the program logic to 

the users. The XML file structure outputted by POST is 

based on the output instructions and their corresponding 

conditions of each rung of the PLC program. The overall 

structure of the output XML file is given in Figure 4 (some 

XML nodes are not expanded in order to maintain the 

clarity of the image). As we can see, under the root node 

i.e. Program node, the Routine nodes are defined. A 

routine actually refers to a block of the PLC program. The 

Type attribute of the Routine nodes specifies the type of 

that routine i.e., OB or FB or FC etc. In a LLD program, 

the ladder rungs are always declared inside a routine and 

hence, under the Routine node, the Rung nodes are 

defined. The Number attribute represents the 

corresponding rung number in the routine. As can be seen 

in Figure 4, under the Rung node, the Output nodes are 

characterized. Each Output node basically represents a 

separate output of the corresponding rung. The Type 

attribute of the Output nodes refers to the type of that 

output instruction such as the Output Coil, Convert BCD 

to Integer (CBI), Move, Set or Reset Coil instruction etc. 

(see for instance: [20] and [21]). The Move and the CBI 

type instructions have the following two additional 

attributes: i) Source_Address or Source_Value attribute: 

represents the address or the value specified at the IN 

input; and ii) Target_Address attribute: represents the 

address specified at the OUT output (see Figure 3 and 

Figure 4). Similarly, the Output Coil type instructions 

have one additional attribute i.e., the Address attribute 

which characterizes the output address of the 

corresponding instruction (the same is also true for the Set 

and Reset Coil instructions). The additional attributes 

associated with an instruction (or an Output node) actually 

represent the addresses and the data values associated with 

that instruction. As can be seen in Figure 4, POST 

determines the number of additional attributes and their 

names (or formats) based on that particular type of 

instruction (also see [20] and [21]). 

In our original PLC program, the ladder rung of 

Figure 3 is actually the second rung of the function block 

FB 421. In Figure 4, we can find the Output nodes 

corresponding to the ladder rung of Figure 3 under the 

rung number 2 node. As can be seen in Figure 3, the rung 

consists of ten output instructions and hence, ten Output 

nodes are created under the rung number 2 node in the 

XML file of Figure 4. Actually, in the output XML file, a 

rung diagram is characterized on the basis of its output 

instructions and hence, under each Output node, we can 

find its corresponding conditions. For example, as can be 

 

Figure 4: The output XML file format. 
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seen in Figure 3, the first Move type output instruction 

(see the first branch) has only one corresponding condition 

(the condition type AND with address argument M1.5). 

As can be seen from Figure 4, this condition is correctly 

placed right below the corresponding Output node in the 

XML file. It is easy to perceive from the format of the 

output XML file, it follows exactly the same logic 

structure as in the original PLC program. However, if any 

rung has more than one output instruction, then the rung 

logic is split based on the corresponding output 

instructions. This is the first logic simplification measure 

taken by POST (this also simplifies the programming error 

analysis task – we will discuss on it later). In addition, as 

can be seen in Figure 4, the instructions and their 

corresponding properties are described by using simple 

descriptive language. This makes the program logic easy 

understandable, and programming language and platform 

independent. Please note that POST can also produce the 

output XML file based on the symbolic names (see Figure 

1). 

4.2 Program Logic Simplification by 

utilizing the Local Memory Definition 

The program output based source code transformation 

method simplifies the rung structure to a great extent. 

However, further logic simplification measures are needed 

to be taken particularly for the rungs with a large number 

of parallel and high depth sub-branches. The parallel 

branches and sub-branches of a LLD rung represent the 

OR boolean logic operations. This means that the Result 

of Logic Operation (RLO) of the parallel branches 

(respectively, sub-branches) is true, if RLO of any of those 

branch (respectively, sub-branch) is true [20, 21]. POST 

simplifies the logic of a rung diagram with parallel 

branches and sub-branches by using a bottom-up 

hierarchical decomposition procedure. More specifically, 

it characterizes a certain portion of the complete rung 

diagram (a sub-logic block) by utilizing the Local 

Memory Definition (LMD) [a local memory can be 

thought of as a virtual memory location where the RLO of 

its corresponding sub-logic block is stored]. The LMDs 

are then used successively (reused in a modular fashion) 

to define the complete rung logic. In Figure 5, the relevant 

part of the rung diagram of Figure 3 that depicts only the 

conditions associated with the first Output Coil instruction 

(address Q215.0) is given. As can be seen from Figure 5, 

even after the above mentioned logic simplification step 

(as stated in Subsection 4.1), the rung diagram has several 

parallel branches and sub-branches. For this reason, the 

program logic behind the output is difficult to follow and 

hence, is needed to be simplified further. 

 

Figure 5: The rung diagram (or rung logic) associated with the first Output Coil instruction (address Q215.0). 
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From our practical experience, we have seen that the 

conventional procedure to understand this kind of 

complicated rung structure (as in Figure 5) is to analyze 

the rung diagram starting from its highest depth sub-

branches, and then consecutively proceeding towards the 

main branch and its parallel branches (in a bottom-up 

fashion). The LMD based logic simplification procedure 

of POST exactly follows this natural bottom-up modular 

decomposition approach. As we can see from Figure 5, the 

(relatively straightforward) rung logic corresponding to 

the highest depth sub-branches (branches inside the red 

colour box) will be defined by using the local memory 

LM0. Similarly, the rung logic corresponding to the next 

highest depth sub-branches (branches inside the green 

colour box) will be characterized by using the local 

memory LM1. It is easy to perceive, the definition of local 

memory LM0 can successively be utilized in the definition 

of local memory LM1. As can be seen from Figure 5, this 

LMD formulation procedure will be repeated in a bottom-

up fashion until all the parallel branches and sub-branches 

are characterized by using the LMDs. In Figure 5, the 

boxes and its associated local memory names represent 

how the rung structure can further be simplified by using 

the LMDs [The LMDs are restricted to maximum three 

parallel branches. As an example, see the branches inside 

the blue colour box. We will discuss more on it later.]. For 

simplicity, we can suppose that the RLO of the parallel 

sub-branches of a branch (respectively, the parallel 

branches of the main branch) is stored in a virtual memory 

location of the type local memory, and is used 

successively to evaluate the RLO of that branch 

(respectively, the main branch) by applying an AND 

boolean logic operation. 

The output XML file shown in Figure 6 depicts the 

condition set (or the rung logic) corresponding to the first 

Output Coil instruction of Figure 3 (also see the simplified 

rung diagram of Figure 5). As can be seen in Figure 6 (a), 

the rung logic or the rung diagram associated with the first 

Output Coil instruction is characterized based on the 

definition of local memory LM4. The definition of local 

memory LM0, LM1, LM2, LM3 and LM4 are shown 

 

Figure 6: XML file format for the rung diagrams with parallel branches and sub-branches. (a) The condition set 

corresponding to the first Output Coil instruction. (b) Local memory LM0 definition. (c) Local memory LM1 

definition. (d) Local memory LM2 definition. (e) Local memory LM3 definition. (f) Local memory LM4 definition. 
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separately in Figure 6 (b), Figure 6 (c), Figure 6 (d), Figure 

6 (e) and Figure 6 (f), respectively. As can be seen in those 

figures, under the Local-Memory node, the definition (or 

the rung logic) of the corresponding local memory is 

given. The Address attribute of the Local-Memory node 

represents the virtual address (or name) of the local 

memory. It is easy to see from Figure 6, the definitions of 

the local memories characterize the rung logic of exactly 

the same branches (or the sub-logic blocks) as depicted in 

Figure 5. For example, the definition of local memory 

LM0 (presented in Figure 6 (b)) covers the rung logic of 

the highest depth parallel sub-branches of the rung 

diagram of Figure 5 (see the red colour box). As can be 

seen in Figure 6 (b), the condition set of each parallel 

branches are presented under a separate Option node. The 

Option nodes basically represent the OR boolean logic 

operations. So, if the condition set under any Option nodes 

associated with a particular local memory is true, then the 

RLO value stored in that local memory is also true. In the 

same way, the local memory LM1 is defined (shown in 

Figure 6 (c)). Please note that the definition of local 

memory LM1 is characterized by using the definition of 

 

Figure 7: The state-based graphical representation of the rung logic corresponding to the first Output Coil instruction. 
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local memory LM0 (in a modular fashion). The RLO value 

saved in the local memory LM1 can easily be determined 

by performing an AND boolean logic operation between 

the RLO value saved in the local memory LM0 and the 

RLO value of the other conditions (for simplicity, we can 

assume that the Local-Memory type attribute represents 

the AND boolean logic operation). It is easy to realize, this 

bottom-up hierarchical logic decomposition procedure 

provides an easy, systematic, step-by-step interpretation 

of the rung logic to the users. As can be seen in Figure 6 

(a), the overall rung logic corresponding to the first Output 

Coil instruction is characterized by using only a very few 

conditions (the same is also true for the LMDs – see Figure 

5 and Figure 6). This indeed makes the program logic 

behind an output easier to follow. 

The rung diagram connected with a particular output 

can have many same-depth parallel branches and sub-

branches. It is easy to perceive, if a large number of 

parallel branches or sub-branches are characterized by 

using a single local memory, then it can generate a very 

complex local memory definition. In order to avoid such 

issues, POST allows the users to explicitly bind the 

complexity of the LMDs through restricting (or setting) 

the number of parallel branches that the definition can 

cover. For example, as can be seen from Figure 5 and 

Figure 6, the LMDs are always restricted to maximum 

three parallel branches. We have also developed a 

software interface module (with the help of Graphviz 

Software [22]) that can provide an efficient graphical 

representation of the rung logic. As an example, in Figure 

7, the graphical representation of the rung logic associated 

with the first Output Coil instruction is shown. It is 

actually the state-based graphical representation of the 

XML file presented in Figure 6. A state or a node in the 

graph of Figure 7 actually represents a particular condition 

(in other words, indicates a program instruction and the 

associated addresses or data values). Please note that the 

RLO values corresponding to the state nodes of a 

particular path are needed to be ANDed in order to get the 

resultant RLO value of that path; and the RLO values of 

the different paths are needed to be ORed in order to 

determine the resultant RLO value of the corresponding 

sub-logic block (see Figure 5 and Figure 7). 

4.3 Program Error Analysis Procedure 

The program output instructions and their corresponding 

conditions based output XML file format not only 

provides an efficient program logic interpretation, but also 

makes it possible for a software module to accumulate all 

the conditions corresponding to an output automatically. 

If an incorrect data value is found in any output address, 

then the user has to pass that address (or any other output 

address) as the query input value to the condition search 

engine of POST. The condition search engine of POST 

analyzes the output address attribute values of all the 

Output nodes of the above stated XML file (as shown in 

Figure 4 and Figure 6), and generates a query output XML 

file that contains all the conditions (i.e., the program 

instructions and the associated addresses or data values) 

that can directly affect the value stored at that particular 

input address. Recall that the output address attribute of 

the Output nodes refers to the attribute that denotes the 

output address of the corresponding program instruction. 

For example, the Target_Address attribute is the output 

address attribute of the Move type instructions (see Figure 

3 and Figure 4). 

For the convenience of the readers, an example query 

output XML file is presented in Figure 8. The condition 

search engine of POST produced that XML file for the 

query input address MD3650 (see Figure 3 and Figure 4). 

As we can see, under the root node i.e. Query-Output 

node, the Routine and the Rung nodes are defined. It helps 

the users to identify the routine and the rung in which the 

output instruction is declared. The Output nodes and their 

corresponding Local-Memory and Condition nodes help 

the users to explicitly determine the output instructions 

and the conditions that can affect the value stored in that 

output address. As can be seen in Figure 8, two Move type 

output instructions (and their corresponding condition 

sets) can directly alter the value stored in the query input 

address MD3650. The first Move instruction is located in 

the second rung of the function block FB421 (shown in 

Figure 3 – see the second branch of the rung diagram), and 

the second Move instruction is located in the tenth rung of 

the function block FB423 (not illustrated for the space 

 

Figure 8: The format of the query output XML file (retrieved as a result of the query input: address MD3650). 
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reasons). The users then have to thoroughly inspect these 

condition sets to find out: i) if any sensor has failed or is 

transmitting an inaccurate reading; and ii) if there is any 

logical or conceptual flaw in the rung diagram (i.e., the 

output instructions and their corresponding conditions). If 

not then the users have to search again for the conditions 

corresponding to the output address (or addresses) from 

where an erroneous value is obtained as the input (please 

note that this address must have to the output address of 

an instruction that belongs to the above stated condition 

sets). This process continues until the actual cause of the 

error is detected (as mentioned in Section 2). It is easy to 

realize, POST makes this entire condition search process 

automatic and oversight easy; and hence, the program 

error analysis process becomes simple and fast. Please 

note that this becomes possible only because of the 

program output instructions and their corresponding 

conditions based source code transformation approach of 

POST. 

4.4 Implementation Details of POST 

Approach 

We have implemented POST approach in C++ language 

and tested it on the program source codes of Siemens and 

Allen-Bradley PLC software. POST takes the PLC 

program source code file saved in the IL language format 

as the input, and converts it into the above stated XML file 

format (as discussed in Subsection 4.1 and Subsection 

4.2). Whenever the starting tag of a routine (respectively, 

rung) is encountered in the program source code file, 

POST enters the name and type (respectively, number) 

information of that routine (respectively, rung) into the 

output XML file, following the same format as shown in 

Figure 4. Similarly, when the ending tag is detected, it 

 

Figure 9: A simple example ladder rung diagram. 

 

Figure 10: Step 1 – Identifying the program output instructions and their corresponding condition sets. 
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closes the corresponding XML file node. The rung logic 

defined inside the starting and ending tag of a rung is 

copied into the computer memory for further processing. 

The rung logic (or IL code) to XML file conversion is a 

three-phase procedure. We discuss this three-phase 

procedure with the help of a simple ladder rung given in 

Figure 9. 

The first phase of the above stated three-phase source 

code transformation process is illustrated in Figure 10. As 

we can see, a string array, named Instruction Set array is 

used to store the source code of the ladder rung presented 

in Figure 9. In the first phase, as can be seen in Figure 10, 

the output instructions and their corresponding condition 

sets are determined. In order to accomplish this, at first, 

the program instructions stored in the Instruction Set array 

are converted into the specific instruction name format of 

POST (as discussed in Subsection 4.1 and Subsection 4.2). 

As can be seen in Figure 10, the IL language instructions 

are converted into the descriptive language instructions 

and are stored in a string array, called the Modified 

 

Figure 11: Step 2 – Formulating the local memory definitions. 

 

Figure 12: Step 3 – Transforming the results into the output XML file format. 
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Instruction Set array. In case of the source code of 

Siemens PLC software, the complex (or compound) 

instructions are decomposed into the core or basic 

instructions. For example, a Move type instruction is 

decomposed into the L, T, (optional) JNB instructions etc. 

[20, 21] (also see Figure 2). For this reason, POST has to 

inspect whether a set of core instructions in the Instruction 

Set array is actually equivalent to any such complex 

program instruction or not. If so, then POST replaces that 

instruction set with its corresponding descriptive language 

instruction and stores it in the Modified Instruction Set 

array (see Figure 10). The same measure is also taken for 

the instructions that have multiple inputs and outputs 

(such as the block call instructions – we will discuss more 

on it later). This sub-phase is skipped for the source code 

of Allen-Bradley PLC software. This is because, in that 

case, the complex instructions are not broken down into 

the core or basic instructions. 

In the next sub-phase of the first phase, the outputs 

and their corresponding condition sets are formulated 

from the Modified Instruction Set array. As we can see in 

Figure 10, POST first identifies all the output instructions 

in the Modified Instruction Set array, and then copies them 

into another array, named the Output Array. The condition 

set corresponding to each output is stored in a separate 

array (by using a pointer), named the Condition Array. As 

can be seen in Figure 10, all the instructions (except the 

output instructions) prior to an output instruction form the 

condition set corresponding to that output instruction, and 

are stored in the corresponding Condition Array. 

However, this axiom is not correct for the output 

instructions that are declared in a parallel branch or a sub-

branch. For example, as can be seen in Figure 9, the Move 

output instruction is declared in a parallel branch of the 

main branch. For this reason, the conditions declared in its 

previous branches that appear prior to it in the Modified 

Instruction Set array, cannot be considered as its 

corresponding conditions. As can be seen from Figure 10, 

in this case, we get an inequality in the number of open 

and close parentheses (three open and one close 

parentheses). So, all the conditions up to the second open 

parenthesis are needed to be eliminated in order to get the 

equality in the number of open and close parentheses (in 

other words, in order to obtain the actual condition set). 

As can be seen in Figure 10, after performing this 

elimination operation, the condition set corresponding to 

an output is stored in its corresponding Condition Array 

for further processing. 

In the second phase, POST further simplifies the 

program logic stored in each Condition Array by 

formulating the LMDs following the same procedure as 

discussed in Subsection 4.2. This phase in details is 

illustrated in Figure 11 (for the interest of space, the LMD 

formulation procedure is shown only for the Output Coil 

instruction). If the Condition Array does not hold any OR 

instruction, then this phase is skipped. As can be seen in 

Figure 11, POST first identifies the condition set 

associated with the highest depth parallel branches present 

in the Condition Array (the branch depth can easily be 

calculated from the number of open and close 

parentheses); and then replaces it with a new local 

memory definition. Recall from Subsection 4.2 that the 

RLO value stored in the local memory address associated 

with a LMD is needed to be ANDed with the RLO value 

of the other conditions present in the Condition Array in 

order to get the resultant RLO value of the Condition 

Array. It is easy to see, the exact same principle is 

followed in Figure 11. As can be seen in Figure 11, the 

local memory addresses are saved in a separate array, 

called the Local Memory Array and in the second 

dimension of that array, a pointer to another array, called 

the LMD Array is stored. In the LMD Array, the definition 

(or the condition set) of its corresponding local memory is 

stored. This process is repeated until all the parallel 

branches of the main branch are defined by using the local 

memories (in other words, until all the OR instructions are 

eliminated from the Condition Array – see Subsection 

4.2). Recall that in POST, the LMDs can be restricted to a 

limited number of parallel branches. If we set that number 

to two (implies that at most one OR instruction can be 

present in a particular LMD Array), then only the 

conditions inside the red colour arrows (see Figure 11) are 

characterized by using the local memory LM0 (and so on). 

In the third phase of the source code transformation 

process, the outputs and their corresponding condition sets 

are mapped into the output XML file. This phase is 

depicted in Figure 12. As can be seen, the condition sets 

associated with the local memories and the outputs are 

respectively written into the XML file following the same 

format as discussed throughout Subsection 4.1 and 

Subsection 4.2. In the output XML file, the OR 

instructions in the LMD Arrays are represented by using 

the Option nodes (as stated earlier). However, as can be 

seen in Figure 12, an OR (respectively, OR-NOT) 

instruction with an address argument is characterized by 

using the Condition node that has the Type attribute value 

AND (respectively, AND-NOT) and is defined under a 

separate Option node (this type of mapping is shown by 

using the red colour arrows). This is because, in the 

program source code of Siemens PLC software, an OR 

(respectively, OR-NOT) instruction with an address 

argument actually represents a parallel branch where only 

one AND (respectively, AND-NOT) instruction is 

declared (see Figure 9 and Figure 12). In the output XML 

file, POST always keeps the exact same logic structure as 

in the original PLC program (as stated earlier). Also note 

that in the output XML file, a Local-Memory type 

condition basically indicates an AND boolean logic 

operation and hence, the corresponding RLO value is 

needed to be ANDed with the RLO value of the other 

conditions in order to determine the resultant RLO value 

of the corresponding sub-logic block. 

In the above, we have discussed the implementation 

details of POST based on Siemens and Allen-Bradley PLC 

software. However, the proposed three-phase procedure is 

logically applicable to the source code of other PLC 

software as well (a little modification may be needed 

based on that particular software). 
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4.5 Dealing with the Block Call 

Instructions 

In this subsection, we discuss the output XML file format 

for a special instruction i.e., the block call instruction. The 

block call instructions are used to call (or invoke) the 

program blocks, such as the FCs, FBs, System FCs 

(SFCs), System FBs (SFBs) etc. [20, 21, 23]. Unlike other 

instructions, the block call instructions have two types of 

parameters, namely the formal and the actual parameter. 

In addition, a program block can have multiple inputs and 

outputs. An example of such program block call is 

presented in Figure 13 (a) [the SFC20 block is used to 

copy the contents of a memory area given at input 

SRCBLK to another memory area given at output 

DSTBLK. If an error occurs, the returned error code is 

stored at the address given at output RET_VAL.]. As can 

be seen in Figure 13 (a), the SFC20 block has only one 

input and two outputs. However, some program blocks 

can have dozens of inputs and outputs. If POST 

characterizes all the inputs and outputs associated with a 

program block inside the Output node, it may generate a 

very complex XML node structure. In addition, POST has 

to define both the formal and actual parameters inside the 

Output node. In order to overcome this type of issues, 

under the Output node, an additional XML file node, 

called the Parameters node is created, inside which all the 

information related to the parameters of a program block 

is put together. In Figure 13 (b), the output XML file 

 

Figure 13: The output XML file format for the block call instructions. (a) The calling or invocation of the System 

Function SFC20. (b) The output XML file format for SFC20 block. 

 

Figure 14: An example of a block call instruction with an input parameter that is defined based on a set of conditions. 

(a) The calling or invocation of the System Function Block SFB4. (b) The output XML file format for SFB4 block. 
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format for SFC20 block is shown. As we can see, only the 

name and type information of the block call instruction is 

specified inside the Output node. The corresponding 

condition set is defined under the Output node following 

the same way as done before. As can be seen in Figure 13 

(b), under Parameters node, all the parameters of SFC20 

block are characterized. The Block_Input and the 

Block_Output nodes are created to define the inputs and 

the outputs of the program block. The Formal and the 

Actual attributes represent the formal and the actual 

parameters, respectively (the Actual attribute of the 

Block_Output node is the output address attribute of the 

block call instruction – also see Subsection 4.3). Please 

note that inside the Block_Input and the Block_Output 

nodes, an additional attribute i.e., the Comment attribute 

is incorporated in order to define the objectives of the 

parameters. However, the Comment attribute is an 

optional attribute and is generated only for the system 

library blocks (since the objectives of the parameters are 

known in advance). 

Another example of a program block call (a SFB4 

block call) and its corresponding XML file format are 

shown in Figure 14 (a) and Figure 14 (b), respectively. As 

can be seen in Figure 14 (b), the output XML file follows 

exactly the same structure as discussed above. In the 

Output node, an additional attribute i.e., the 

Instance_Data_Block_Address attribute is included thus 

the address of the corresponding instance data block can 

be incorporated (for more information, see [21] and [23]). 

However, this change is instruction specific (recall that 

POST determines the format of the XML node according 

to the functional specification of the corresponding 

instruction). A distinctive feature of this SFB4 block is 

that it has an input i.e., the input IN which is defined on 

the basis of a set of conditions (see Figure 14 (a)). 

Actually, at the time of program execution, the RLO value 

of the condition set is passed as the input IN value to the 

SFB4 block. If we define all these conditions inside the 

corresponding Block_Input node, then it generates a very 

complex XML node structure. In order to avoid this sort 

of problems, POST utilizes the concept of the local 

memory definitions. The local memory definitions are 

used to characterize the inputs that are defined on the basis 

of multiple conditions (following the same way as 

discussed in Subsection 4.2). As can be seen from Figure 

14 (a) and Figure 14 (b), the complete condition set 

corresponding to the actual parameter of input IN is 

defined by using the local memory LM1. Please note that 

the parallel branches of the main branch are characterized 

by using the local memory LM0 following exactly the 

same procedure as described in Subsection 4.2. 

It is easy to perceive from the above discussions: 

 the output XML file format is designed very 

carefully in such a way that the condition search 

engine of POST can accumulate all the conditions 

associated with a program output automatically 

and in a straightforward way 

 the rung logic associated with a program output 

is simplified further whenever it gets complicated 

(in other words, whenever the number of parallel 

branches and sub-branches exceeds a certain 

limit) 

 each type of node in the output XML file is 

designed keeping in mind the objective and the 

functional specification of the corresponding 

instruction 

These features of the output XML file indeed make the 

programming error analysis task simple, fast and oversight 

easy (because, there is no need to inspect each rung of 

every program blocks manually). In addition, the above 

discussed XML file format provides an easy, systematic 

and step-by-step interpretation of the program logic to the 

users which makes the error analysis task even more 

simpler. 

5 Conclusion 
This work is motivated by the need of an approach that 

can help the users to understand the PLC programs easily, 

and can assist them to analyze the programming errors in 

an efficient manner. In this paper, we have proposed a new 

approach, called POST that can satisfy all the mentioned 

needs effectively. POST takes the PLC program source 

code file as the input, and converts it into a program output 

instruction and its corresponding conditions based well-

structured XML file. In the XML file, the rung logic 

corresponding to an output is further simplified by using a 

novel local memory based technique, and is presented in a 

programming language and platform independent format. 

The proposed XML file format provides a systematic and 

step-by-step interpretation (in a bottom-up fashion) of the 

program logic to the users. In addition, the XML file 

format is designed in such a way that the condition search 

engine of POST can accumulate all the conditions that can 

affect the value stored at a given output address 

automatically. These features of POST indeed help the 

users to identify the actual cause of a programming error 

quickly and reliably. A software interface module has also 

been developed in order to provide an efficient state-based 

graphical representation of the rung logic to the users. 
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