
 Informatica 41 (2017) 259–274 259

Bipartivity Index based Link Selection Strategy to Determine Stable

and Energy-Efficient Data Gathering Trees for Mobile Sensor

Networks

Natarajan Meghanathan

Professor, Department of Computer Science, Jackson State University

Jackson, MS, USA

E-mail: natarajan.meghanathan@jsums.edu

Keywords: link stability, mobile sensor networks, bipartivity index, data gathering trees, simulations

Received: August 12, 2016

Bipartivity Index (BPI) has been used in complex network analysis to quantify the extent of partitioning

of the vertices of a network graph into two disjoint partitions; the edges between vertices within the

same partition are called frustrated edges. The BPI values for a network graph ranges from 0 to 1 (the

BPI of a network graph that is truly bipartite and has no frustrated edges is 1). Our hypothesis in this

research is that the end nodes of a short distance link (the distance between the end nodes is

significantly smaller than the transmission range per node) in a mobile sensor network (MSN) are more

likely to share a significant fraction of their neighbors and such links are more likely to be stable. We

introduce a notion called the egocentric network of an edge (adapted from egocentric network for a

node) comprising of the end nodes of the edge and their neighbors (as vertices) and the edges incident

on the end nodes (as edges). Our claim is that an edge whose egocentric network has a lower BPI score

is more likely to be a stable short distance link, with a relatively larger fraction of shared neighborhood,

and could be preferred for inclusion while determining stable data gathering trees for MSNs. Through

extensive simulations, we show that the BPI-based DG trees are significantly more stable and energy-

efficient compared to the DG trees determined using the predicted link expiration time (LET), currently

the best known strategy.

Povzetek: Prispevek s pomočjo BPI indeksa ugotavlja stabilna in energijsko učinkovita drevesa za

mobilne senzorske mreže.

1 Introduction
Mobile Sensor Networks (MSNs) are an emerging

category of wireless sensor networks in which the sensor

nodes are considered to move independent of each other.

MSNs could be used for applications in which an entire

region (that is being monitored) could be effectively

covered by letting the sensor nodes to move rather than

be static. For example [9], the pollutant concentration in

an area (like the downtown of a city) could be effectively

measured by fixing the sensor nodes in mobile vehicles

(like cars) that move through the area. For most of the

applications of wireless sensor networks (including those

of the MSNs), the data recorded by the sensor nodes is

forwarded to a control center (called the sink) through

one of several network-wide communication topologies

(like chains [11], clusters [7], trees [18], connected

dominating sets [16], etc). Among these communication

topologies, the data gathering trees (DG trees) have been

observed to be energy-efficient [18] as they comprise of

the minimum number of links needed to span all the

sensor nodes and there are no redundant transmissions. In

the case of DG trees, the leaf nodes merely sense the data

and transmit them to an upstream intermediate node that

would in turn aggregate its own data with data received

from all of its child nodes and forward the aggregated

data to an upstream node that is on the path to the root

node of the DG tree. For the rest of the paper, the terms

'node' and 'vertex', 'link' and 'edge', 'network' and 'graph',

'data gathering' and 'data aggregation', 'construction' and

'configuration' mean the same. These terms are used

interchangeably unless stated.

MSNs inherit all the constraints of their static

counterpart (like energy and memory-constrained sensor

nodes as well as limited network bandwidth); mobility of

the nodes is an additional constraint that needs to be

handled. Due to node mobility, the network topology

changes dynamically with time and any communication

topology (like DG trees) that is setup among the sensor

nodes needs to be frequently reconfigured. Significant

amount of energy might be lost if network-wide

broadcasts are frequently initiated for reconfiguring the

communication topology in use. This motivates the need

to determine stable communication topologies that could

exist for a longer time.

In [19], the authors took the first step towards using

DG trees for MSNs and proposed a distributed algorithm

for determining stable DG trees in MSNs using the

concept of predicted link expiration time (LET) [31] that

has been earlier successfully used for mobile ad hoc

260 Informatica 41 (2017) 259–274 N. Meghanathan

networks [20, 22]. In [24], the authors proposed a generic

algorithm to determine maximum bottleneck link weight

(MaxBLW)-based DG trees for static sensor networks:

the bottleneck link weight for a path from a node to the

root node of the DG tree is the minimum of the weights

of the constituent links on the path and the MaxBLW-DG

algorithm determines a DG tree in which the path from

any node to the root node of the tree is the path with

maximum value for the bottleneck link weight. In this

paper, we explain a distributed version of the MaxBLW-

DG algorithm to determine ALGC-based DG trees

wherein the link weight is the link stability score (LSS)

computed based on this strategy. For performance

comparison purposes, we use the distributed version of

the MaxBLW-DG tree algorithm to also determine the

LET-based DG trees [19] wherein the weight of a link is

its predicted LET.

The LET-based strategy is the only available link

selection strategy that has been successfully

demonstrated so far [19] for determining stable DG trees

in MSNs. However, the LET formulation [19, 31] does

not consider the distance between the constituent end

nodes of a link and is prone to choosing links that could

incur a larger transmission energy and ultimately

contributing towards larger energy consumption per

round. We opine that links whose constituent end nodes

are closer to each other (i.e., the distance between the end

nodes of the link is appreciably lower than the

transmission range per node) are more likely to be stable

(and vice-versa) as it would take a while for such end

nodes to move out of the transmission range of each

other. We refer to such links as "short distance" links.

Also, as the energy lost per transmission is directly

proportional to the square of the distance [28] over which

the transmission is made, we claim that the DG trees

comprising of short distance links are more likely to be

both stable (and vice-versa) as well as incur lower energy

consumption per round. Moreover, the LET approach

[31] requires a sensor node to be aware of its own

location and mobility as well as that of its neighbors.

This would require the sensor nodes to be equipped with

energy-draining hardware/software systems (like GPS

[8]) that would make them location and mobility aware.

All of the above observations form the motivation for the

research conducted in this paper.

The high-level contribution of this paper is that we

show the use of a spectral graph-theoretic metric called

Bipartivity Index (BPI) [6] to quantify the extent of

shared neighborhood between the end vertices of an edge

and thereby model the link stability score (LSS) for the

edge. The BPI has been widely used in complex network

analysis [6] to quantify the extent of partitioning of a

network graph into two disjoint partitions of vertices; the

edges between vertices within the same partition are

referred to as frustrated edges. BPI values range from 0

to 1 [6]. A network graph is said to be truly bipartite

(such a partitioning also has no frustrated edges) if its

BPI is 1 [6]. We propose to use a notion called the

"egocentric network of an edge" (adapted from the notion

of egocentric network of a node [13]) to quantitatively

evaluate the extent of shared neighborhood between the

end vertices of a link. The egocentric network of an edge

u-v (denoted EGu-v) comprises as vertices - the end nodes

of the edge and their neighbors, and edges - the links

incident on the end nodes of the edge. We claim that an

edge u-v is more likely to be a stable short distance link

with a larger fraction of shared neighborhood if the

egocentric network EGu-v of the edge has a lower BPI.

Accordingly, we model for an edge u-v: the LSS(u-v) as

1 - BPI(EGu-v).

We provide a high-level justification for the above

modeling as follows (more details are presented in

Section 4). If the end nodes of an edge u-v do not have

any shared neighbors, then the egocentric network of the

edge u-v would comprise of node u and the neighbors of

node v in one of the two partitions, and node v and the

neighbors of node u in the other partition; all the edges

would connect the vertices in one partition to the other

partition and there would be no frustrated edges within

either partition (a frustrated edge is an edge involving

vertices that are in the same partition [6]). Such an

egocentric network is truly bipartite and will have a BPI

of 1. Whereas, if the end nodes of an edge u-v have one

or more shared neighbors, the egocentric network of the

edge (when analyzed for bipartivity) would comprise of

one or more frustrated edges contributing to a BPI less

than 1. We anticipate the BPI for the egocentric network

of an edge u-v to reduce with increase in the number of

shared neighbors for the end nodes u and v.

The rest of the paper is organized as follows: Section

2 outlines the maximum bottleneck link weight-based

algorithm for determining data gathering trees in sensor

networks. Section 3 reviews related work, including the

strategy of using the predicted link expiration time (LET)

to determine stable data gathering trees for MSNs.

Section 4 introduces the notions of short distance links,

egocentric network for an edge and bipartivity index

(BPI) as well as illustrates their use to quantify the extent

of shared neighborhood and stability of links. Section 5

presents results of exhaustive simulations conducted to

showcase the effectiveness of the BPI-based strategy to

determine data gathering trees that are both stable as well

as energy-efficient compared to the LET-based DG trees.

Section 6 concludes the paper.

2 Distributed algorithm to construct

a maximum bottleneck link

weight-based data gathering tree
In this section, we describe a distributed version of the

algorithm to construct maximum bottleneck link weight-

based data gathering (MaxBLW-DG) trees for mobile

sensor networks. A centralized version of the MaxBLW-

DG algorithm has been earlier proposed in [24] and a

distributed implementation of the algorithm to determine

LET-based stable data gathering trees has been discussed

in [19]. The distributed version of the MaxBLW-DG

algorithm discussed here could be applied for any

measure of link weight. For this section, we assume the

link weights are randomly generated in the range [0...1].

Bipartivity Index based Link Selection… Informatica 41 (2017)259–274 261

In sections 4 and 5, the weight of a link depends on the

link selection strategy (BPI or LET) employed.

2.1 Assumptions and definitions

We assume the sensor nodes to operate in a fixed

transmission range, R. We assume the underlying

network is modeled as a unit-disk graph wherein there

exists a link between any two nodes if the Euclidean

distance between them is within the transmission range,

R. We assume the network to be homogeneous (i.e., all

the nodes have an equal transmission range). We define

the fraction of link distance (fld) as the ratio of the

Euclidean distance between the end nodes of the link and

the transmission range per node. In the case of

heterogeneous networks (each node operating with a

different transmission range), the fraction of link distance

could be measured as the ratio of the Euclidean distance

between the end nodes of the link and the maximum of

the transmission ranges of the two end nodes. The data

gathering algorithms (discussed in Sections 2 and 3) and

the BPI strategy discussed in Section 4 could be used for

both homogeneous and heterogeneous networks. For a

directed edge u → v, we refer to node u as the upstream

node and node v as the downstream node. In the context

of link weights, we assume the links/edges are undirected

(bidirectional): i.e., the weight of a directed edge u → v

is the same as the weight of the directed edge v → u.

We define a round of data gathering to comprise of

steps in which the sensor nodes individually sense the

data within their sensing range (typically the sensing

range of a sensor node is at most half its transmission

range [36]), aggregate and forward only a representative

version of the data (like the average temperature in a

region) to the sink through a network-wide

communication topology (like a data gathering tree)

spanning all the sensor nodes. The size of the aggregated

data is assumed to be the same as the size of the data

collected at the individual sensor nodes. The root node of

a DG tree is called the LEADER node and is chosen by

the sink at the time of tree construction.

We assume the sensor nodes to be both TDMA

(Time Division Multiple Access) and CDMA (Code

Division Multiple Access)-enabled [35]. An upstream

node communicates with its own immediate downstream

child nodes using a TDMA schedule (one time slot per

downstream node); such communication between every

upstream node with their own downstream nodes can

occur in parallel (using unique CDMA codes). The above

assumptions and definitions hold good for both the BPI

and LET-based MaxBLW-DG trees studied in this paper.

When used for constructing the LET-based DG trees,

we assume a sensor node to be aware of its current

location, velocity and direction of movement at any time

instant and mentions the same in a location update vector

(LUV) [19] included in the control messages broadcast

as part of tree discovery. Such an assumption is not

required for the MaxBLW-DG algorithm that makes use

of BPI (discussed in Section 4) as the BPI scores could

be computed without a priori knowledge about the

location and mobility of the nodes. Each node maintains

a Link Weight Table comprising of the estimates of the

bottleneck link weights to the neighbor nodes that sent it

the TREE-CONSTRUCT message (see Section 2.3 for

more details about the message).

2.2 Initialization of state information at

the sensor nodes

Each sensor node locally maintains state information

about the data gathering tree that is currently being used

or newly configured. The state information comprises of

the following fields (with their initial values indicated in

parenthesis): estimated bottleneck link weight (-∞),

upstream node id (NULL), tree level (0), LEADER node

id and sequence number (the latest sequence number in

the TREE-INITIATE message broadcast by the sink).

The estimated bottleneck link weight is the value for the

currently known maximum weight for a link on the path

to the LEADER node of the DG tree. The upstream node

id corresponds to the neighbor node that lies on the

currently estimated maximum bottleneck link weight

path to the LEADER node. The tree level corresponds to

the number of hops on the maximum bottleneck link

weight path to the LEADER node. The sequence number

corresponds to the latest sequence number for a TREE-

CONSTRUCT message received by the node.

2.3 Initiation of the Tree-construct

message

Whenever the sink fails to receive the aggregated data

from the LEADER node of the DG tree used in the

previous round of data aggregation, the sink queries all

the sensor nodes to send it their estimates of the weight

of the links from their neighbor nodes. The sink

calculates the estimated weight of a node as the sum of

the estimated weights of the directed edges originating

from the node (as reported by its neighbors); the sink

selects the node with the largest estimated weight to be

the LEADER node (root node) of the new DG tree that is

to be setup and sends a TREE-INITIATE message

(including a sequence number) to the chosen root node to

begin the construction of the new DG tree. The sequence

number for the tree construction process is a

monotonically increasing value maintained at the sink

and the sink sends the latest value of the sequence

number to the LEADER node to facilitate the sensor

nodes to uniquely identify the control messages that are

exchanged with regards to the new DG tree being

constructed.

The LEADER node broadcasts a TREE-

CONSTRUCT message to its neighbors; the message has

a 5-element tuple: <sequence number, LEADER node id,

upstream node id, sender's estimated bottleneck link

weight, tree level>. The sequence number is the one that

is sent by the sink to the LEADER node. For the TREE-

CONSTRUCT message broadcast by the LEADER node,

the values for the upstream node id, sender's estimated

bottleneck link weight and tree level are respectively the

LEADER node id, +∞ and 0. For the TREE-CONSTRCT

message broadcast by the other nodes: the upstream node

262 Informatica 41 (2017) 259–274 N. Meghanathan

id is the id of the node that the sender of the message

considers to be the best node that would connect it to the

LEADER node through a path estimated to be the one

with the maximum bottleneck link weight (the value of

which is also indicated in the message). The tree level

field indicates the number of hops on the estimated

maximum bottleneck link weight path from the sender

node to the LEADER node of the DG tree.

2.4 Propagation of the Tree-construct

message

When a node receives the TREE-CONSTRCT message

(from a neighbor node) with a higher sequence number,

it assumes that the DG tree that had been used until then

no longer exists and resets its state information to the

values listed in Section 2.2. The receiving node (say,

node v) decides to further process the TREE-

CONSTRUCT message from a neighbor node (say, node

u) if all the following conditions are met: (i) The

upstream node id in the message is different from the id

of the receiving node itself. (ii) The tree level value in

the message is less than or equal to the tree level value

maintained as part of the state information at the

receiving node. (3) The value for the sender's estimated

bottleneck link weight in the message is larger than the

value for the receiver's estimated bottleneck link weight.

(4) The weight of the directed edge from the sender node

to the receiver node is larger than the latter's estimated

bottleneck link weight for the path to the LEADER node.

If all the above four conditions are met, the receiver node

(node v) makes the following updates to its state

information: (i) The receiver node updates its estimated

bottleneck link weight for the path to the LEADER node

to the minimum of the sender's (node u's) estimated

bottleneck link weight value in the TREE-CONSTRUCT

message and the weight of the directed edge u → v. (ii)

The receiver node updates its upstream node id to that of

the sender's node id. (iii) The value for the tree level is

set to one more than the value for the tree level in the

TREE-CONSTRUCT message. After making the above

updates, the receiver node also rebroadcasts the TREE-

CONSTRUCT message in its neighborhood by changing

the values for the upstream node id, sender's estimated

bottleneck link weight and tree level fields in the message

to the most recently updated values for these fields in its

state information.

Overall, a node receiving the TREE-CONSTRUCT

message decides to further rebroadcast the message only

if it can increase (through the sender node that sent it the

message) its estimate for the bottleneck link weight path

to the LEADER node (thus minimizing unnecessary

retransmissions). Each node (other than the LEADER

node) will be able to do so at least once because its initial

value for the estimated bottleneck link weight is -∞ and

all edge weights are positive as well as the value for the

sender's estimated bottleneck link weight in the TREE-

CONSTRUCT message broadcast by the LEADER node

is +∞. At the end of the tree construction process, each

node (other than the LEADER node) would have joined

the DG tree through an upstream node that is on the

maximum bottleneck link weight path to the LEADER

node.

2.5 Propagation of the Tree-link-failure

message

Whenever an upstream node fails to receive an

aggregated data packet from one of its downstream child

nodes, the upstream node decides that the link to the

child node has broken and initiates a TREE-LINK-

FAILURE message (included with a sequence number

corresponding to the value sent by the LEADER node in

the TREE-CONSTRUCT message) with the number of

hops the message can get propagated equal to the tree

level value for the initiating upstream node. The TREE-

LINK-FAILURE message is essentially reverse

broadcast higher up the currently used DG tree so that

the LEADER node can receive the failure message and

initiate the construction of a new DG tree. Nodes that lie

downstream of the failed link get to learn about the tree

failure when a TREE-CONSTRUCT message with a

higher sequence number (larger than the current value for

the sequence number known) is received.

3 Related work
In this section, we first discuss related work data

gathering in mobile sensor networks and then focus our

discussion specifically on related work on determining

stable data gathering trees in mobile sensor networks.

3.1 Related work on data gathering in

mobile sensor networks

To the best of our knowledge, other than the work

presented in Section 3.2 and the related works discussed

below, the existing works (e.g., [10, 14, 32, 33]) in the

literature on mobile sensor networks take the following

hybrid approach: The regular data sensing nodes are

considered static and there exists one or more mobile

data collecting nodes that move around the static sensor

nodes; a data gathering topology involving the data

collecting nodes is constructed and maintained, if

needed. Since all the sensor nodes are not considered

mobile (the type of mobile sensor networks considered in

our research) and the data gathering topology constructed

is not network-wide (i.e., spanning all the sensor nodes),

we do not delve further on related works based on the

above approach.

Among the very few network-wide spanning

topology-based data gathering algorithms available in the

literature for mobile sensor networks, most of the work

focused on extending the classical LEACH (Low Energy

Adaptive Clustering Hierarchy) [7] algorithm for static

sensor networks to adapt to mobile environments.

Variants of LEACH that have been proposed for MSNs

focus on choosing the cluster heads by taking into

account the residual energy available at the sensor nodes

[2], mobility of the sensor nodes [29], stability of the

links incident on a node [5] or proximity of the sensor

nodes to certain landmarks [12]. Another work [30]

related to cluster head selection proposed to set up a

Bipartivity Index based Link Selection… Informatica 41 (2017)259–274 263

panel of cluster heads (some of which serve as backup)

to facilitate cluster reconfiguration due to node mobility.

In [34], the authors proposed a cluster independent

data collection tree (CIDT) protocol for mobile sensor

networks that first partitions the entire network into

clusters with a cluster head plus member nodes for each

cluster and then chooses certain sensor nodes as data

collection nodes (DCNs) that have better connection with

the cluster heads. A data gathering tree of the DCNs is

constructed and reconfigured over time when broken due

to node mobility. The DCNs are selected in such a way

that the links to the cluster heads and the links to the

adjacent DCNs in the data gathering tree are stable. We

opine that the CIDT protocol would incur a lot of control

overhead (with respect to bandwidth and energy

consumption) as two topologies (a cluster topology

comprising of cluster heads plus their links to the

member nodes and a tree topology of DCNs) have to be

maintained in the network at any time. Though the two

topologies have been formulated to be independent of

each other, (due to node mobility) the identification of

cluster heads and the DCNs has to be often initiated to

maintain connectivity of the cluster heads to one or more

near by DCNs.

In [15], the authors propose a directed acyclic graph

(DAG)-based topology for determining data gathering

trees in mobile sensor networks. Whenever a data

gathering tree is required, the sink constructs a DAG of

the underlying network and runs a maximum bottleneck

node weight-based data gathering (MaxBNW-DG)

algorithm on the DAG. In this pursuit, the sink initiates

data collection from all the nodes in the network on one

or more multi-hop paths; the paths traversed by the data

in cycle-free manner constitute a DAG of the network.

The weight of a sensor node is determined based on the

theory of thermal fields applied on the utility of the data

sensed by the node as well as that of its neighbors. The

sink then initiates a distributed version of the MaxBNW-

DG algorithm on the DAG such that each sensor node is

located on a maximum bottleneck node weight path to

the sink node. The bottleneck node weight for a path in

[15] is calculated as the minimum of the weights of the

intermediate node on the path; ties are broken in favor of

paths of lower hop count. Due to node mobility, there

may not be paths from one or more nodes to the sink

node on the DAG. Similar to [34], we opine that a

significant control overhead (in a mobile sensor network)

would be encountered to first construct a DAG and then

run a distributed version of the MaxBNW-DG algorithm

on the DAG.

3.2 Related work on stable data gathering

trees in mobile sensor networks

In [21], the authors had proposed a benchmarking

algorithm to determine a sequence of stable data

gathering trees that would exist for the longest time such

that the number of tree transitions is the bare minimum.

When a DG tree is required at a time instant t, the idea is

to determine an intersection of the network graphs

existing at time instants t, t+1, t+2, ... t+k such that the

intersection graph is connected from time instants t ... t+k

and not connected from time instants t ... t+k+1. That is,

the inclusion of the graph at time instant t+k+1 to the

intersection graph of time instants t ... t+k would

disconnect the intersection graph from time instants t ...

t+k+1. However, the algorithm is centralized in nature

and would require the topology changes to be known a

priori from the beginning to the end of the simulation

session. On the other hand, the focus of research in this

paper is to employ a distributed algorithm for

determining stable data gathering trees using the BPI

approach from complex network analysis - this approach

does not require any a priori knowledge about the

network topology changes as well as about the location

and mobility of the nodes; we would just need the one-

hop neighborhood information at every node.

In [19], the authors proposed distributed algorithms

to determine the predicted link expiration time (LET)-

based data gathering trees for longer tree lifetime and the

minimum distance spanning tree (MST)-based data

gathering trees for longer node lifetime (time of first

node failure due to exhaustion of energy) and longer

network lifetime (time at which the network gets

disconnected due to the failure of one or more nodes).

The predicted link expiration time (LET) of a link i – j

between two nodes i and j, currently at (Xi, Yi) and (Xj,

Yj), and moving with velocities vi and vj in directions θi

and θj (with respect to the positive X-axis) is computed

using the formula proposed in [31]:

22

2222)()()(
),(

ca

bcadRcacdab
jiLET

 (1)

where a = vi*cosθi – vj*cosθj; b = Xi – Xj;

 c = vi*sinθi – vj*sinθj; d = Yi – Yj

The MST-based DG trees aim to minimize the

largest Euclidean distance between the end nodes of a

link in the DG tree, but are not as stable as the LET-DG

trees [19]. Due to repeated tree reconfigurations, the gain

obtained in the node lifetime (85-150% more than that of

the LET-DG trees) does not equally get transferred to the

gain obtained in network lifetime (only 15-130% more

than that of the LET-DG trees) [19]. The LET-DG trees

fit within the criteria of finding maximum bottleneck link

weight-based DG trees (i.e., the objective is to maximize

the minimum LET for a link on the path from any node

to the LEADER node); whereas, the MST-DG trees fit

within the criteria of finding minimum bottleneck link

weight-based DG trees (i.e., the objective is to minimize

the maximum value for the distance between the end

nodes of the link on the path from any node to the

LEADER node). In this paper, we model the short

distance links as links with larger BPI/link stability score

(measure of link weight; for further details, see Section

4) and run the maximum bottleneck link weight-based

algorithm to maximize the minimum link weight on the

path from any node to the LEADER node of the DG tree;

we show that by doing so, we can simultaneously incur a

larger tree lifetime as well as a lower energy

264 Informatica 41 (2017) 259–274 N. Meghanathan

consumption per round (see Section 5 for the simulation

results).

In [24], the authors proposed a generic algorithm to

determine maximum bottleneck node weight

(MaxBNW)-based data gathering trees wherein the root

node is the node with the largest weight. In [24], the

weight of a node has been modeled as the sum of the

weights of the links incident on it. The bottleneck node

weight for a path from a node to the root node of the DG

tree is the minimum of the weights of the nodes on the

path. The MaxBNW-DG algorithm aims to determine a

DG tree in which the path from any node to the root node

is the path with the maximum bottleneck node weight. In

[24], it has been observed that the MaxBNW-DG trees

have different characteristics compared to the MaxBLW-

DG trees. The focus of research in this paper is to

determine MaxBLW-DG trees by modeling the link

weight as a measure of the stability of the link using the

algebraic connectivity approach from complex network

analysis that does not need the location and mobility

information of the nodes.

4 Bipartivity index (BPI)-based link

selection strategy
In this section, we describe the Bipartivity Index (BPI)

[6]-based link selection strategy adapted from complex

network analysis to quantify the stability of links (i.e.,

the link weights) in a mobile sensor network. We

compute the link stability score (LSS) for an edge by

analyzing the bipartivity of the "egocentric network for

the edge" that is adapted from the notion of egocentric

network of a node [13]. The egocentric network of a

node [13] in a graph is a sub graph comprising of:

vertices - the nodes and its neighbors and edges - the

links involving the node and/or its neighbors. We define

the egocentric network of an edge in a graph to be a sub

graph comprising of: vertices - the end nodes of the edge

and their neighbors and edges - the links incident on the

end nodes of the edge.

Our hypothesis for this research is based on the

observation that links (we refer to as short distance links)

whose end nodes are close enough to each other (vis-a-

vis the transmission range per node) are more likely to be

stable (and vice-versa) compared to links for which the

distance between the end nodes is closer to the

transmission range per node. We define the fraction of

link distance (fld) for an edge as the ratio of the

Euclidean distance between the end nodes of the edge

and the transmission range per node. For a short distance

link, fld is expected to be appreciably less than 1. Our

hypothesis is that the end nodes of a short distance link

are more likely to share a significant fraction of their

neighbors (and vice-versa) and we could compute the

BPI for the egocentric network of the link to quantify the

extent of this shared neighborhood that can be in turn

used as the link stability score (LSS). Note that the

egocentric network of an edge could be independently

(and identically) constructed by each of the two end

nodes of the edge based on the one-hop neighborhood

information received from the other node (as part of

periodic beacon exchange).

A graph is said to be truly bipartite [4, 6] if we could

partition the vertices of the graph into two disjoint sets

such that all the edges in the graph are those that connect

the vertices in one partition to vertices in the other

partition and that there are no edges (called frustrated

edges [6]) between vertices within the same partition.

However, all network graphs cannot be expected to be

truly bipartite. Hence, Estrada and Rodriguez-Velazquez

[6] proposed the notion of bipartivity index (BPI) to

measure the extent of bipartivity in a graph. The

bipartivity index of a graph ranges from 0 to 1. If a graph

is truly bipartite, then the bipartivity index is 1 and there

are no frustrated edges between vertices within the same

partition [6]. If a graph is not truly bipartite, then the

bipartivity index will be less than 1. Estrada and

Rodriguez-Velazquez [6] proposed a mechanism that

will allow us to identify a partitioning of the vertices into

two disjoint partitions as well as identify the frustrated

edges (if the graph is not truly bipartite) involving

vertices within the same partition. The mechanism

proposed by Estrada Rodriguez-Velazquez [6] is to

determine the eigenvalues of the adjacency matrix of the

graph (to determine the bipartivity index, as shown in

formulation 2) and use the signs (positive or negative) of

the entries in the eigenvector corresponding to the

smallest eigenvalue of the adjacency matrix to determine

the partitioning of the vertices. If λ1, λ2, λ3, ..., λn are the

eigenvalues of the adjacency matrix of a graph G of n

vertices, then the bipartivity index (BPI) of G is given by

the formulation below [6]:

n

j

n

j

jj

n

j

j

GBPI

1 1

1

)sinh()cosh(

)cosh(

)(

 (2)

To measure the extent of shared neighborhood of the

end vertices of an edge in a graph, we propose to

compute the bipartivity index on the egocentric network

of the edge and use the complement of the bipartivity

index (1 - BPI) as the link stability score (LSS) for the

edge. That is: LSS(u-v) = 1 - BPI(EGu-v), where EGu-v is

the egocentric network graph of the edge u-v. We justify

the above proposal as follows (also illustrated in Figures

1-3: for an edge u-v where u1-u4 are four neighbors,

other than vertex v, for a vertex u; and v1-v4 are four

neighbors, other than vertex u, for a vertex v):

If the end vertices of an edge u-v do not have any

shared neighbors (i.e., u1-u4 and v1-v4 are all distinct

vertices: as shown in Figure 1), then we could partition

the vertices in the egocentric network of the edge to two

disjoint partitions such that vertex u and the neighbors of

vertex v are in one partition (referred to as partition-u)

and vertex v and the neighbors of vertex u are in the

other partition (referred to as partition-v). The egocentric

network of the edge u-v with no common neighbors for

the end vertices would be a truly bipartite graph (as in

Bipartivity Index based Link Selection… Informatica 41 (2017)259–274 265

Figure 1) as the only edges in the graph would be edges

connecting vertices in partition-u to vertices in partition-

v. The bipartivity index of such an egocentric network

graph would be 1.0 and as per our hypothesis, the link

stability score for the edge would be 0.0.

Figure 1: Example for a Truly Bipartite Egocentric

Network of an Edge u-v.

 2-a: BPI(EGu-v) = 0.75 2-b: BPI(EGu-v) = 0.85

 LSS(u-v) = 0.25 LSS(u-v) = 0.15

2-c: BPI(EGu-v) = 0.92

LSS(u-v) = 0.08

Figure 2: Bipartivity Index of the Egocentric Network

Graph of an Edge and its Link Stability Score (Varying

the Number of Shared Neighbors for a Fixed Number of

Edges in the Egocentric Network).

 3-a: BPI(EGu-v) = 0.83 2-b: BPI(EGu-v) = 0.85

 LSS(u-v) = 0.17 LSS(u-v) = 0.15

3-c: BPI(EGu-v) = 0.87

LSS(u-v) = 0.13

Figure 3: Bipartivity Index of the Egocentric Network

Graph of an Edge and its Link Stability Score (Varying

the Number of Edges in the Egocentric Network for a

Fixed Number of Shared Neighbors).

On the other hand, if the end vertices of an edge u-v

share one or more of their neighbors: then, the

eigenvector-based decomposition for bipartivity [6]

applied on the egocentric network of the edge would

group the two end vertices u and v together in one

partition (referred to as partition u-v) and the neighbors

of u and v together in the other partition (referred to as

partition: neighbors of u and v). The BPI of such

egocentric network graphs would be less than 1 (due to

the presence of the frustrated edge u-v in the same

partition) and the actual magnitude of the BPI would

depend on the actual number of neighbors for the two

end vertices (i.e., on the number of vertices in the other

266 Informatica 41 (2017) 259–274 N. Meghanathan

Figure 4: Illustration of the Eigenvector-based Partitioning of the Egocentric Networks of the Edges and the

Bipartivity Index and Link Stability Scores of the Edges in an Example Graph.

partition: neighbors of u and v) as well as on the

number of shared neighbors (i.e., on the number of edges

connecting the vertices in partition u-v to the vertices in

the partition: neighbors of u and v). For a given

egocentric network graph EGu-v with a certain number of

edges and is not truly bipartite (as shown in Figures 2-a,

2-b and 2-c): the larger the number of shared neighbors

(i.e., fewer the number of vertices in the partition:

neighbors of u and v), the lower the BPI (and larger will

be the LSS score for the edge u-v). Likewise, for a given

egocentric network graph EGu-v with a certain number of

shared neighbors and is not truly bipartite (as shown in

Figures 3-a, 3-b and 3-c): the larger the number of

vertices in the partition: neighbors of u and v (i.e., the

larger the number of edges connecting the vertices in

partition u-v to the vertices in the partition: neighbors of

u and v), the larger the BPI (and lower will be the LSS

score for the edge u-v).

In Figure 4, we illustrate the computation of the

bipartivity index of the egocentric networks of the edges

(with coordinates of the vertices as indicated in a grid) in

an example graph. The egocentric networks for none of

the edges have been observed to be truly bipartite. We

illustrate the eigenvector-based partitioning of the

egocentric networks of three edges: 6-7, 3-4 and 1-5 that

have different values for the fraction of link distance

(fld). We observe the bipartivity-based LSS values (1 -

bipartivity index) for these three edges to increase with

decrease in the fraction of link distance (fld) values.

Overall, we see the expected trend between fld and the

bipartivity-based LSS values for the edges: the LSS

values are more likely to be higher for edges with lower

fld values and vice-versa.

5 Simulations
In this section, we first present the simulation

environment and the notion of normalized

comprehensive relative performance (NCRP) score to

identify the link selection strategy that effectively

balances the tradeoffs with respect to the performance

metrics, and then discuss in detail the results of the

Bipartivity Index based Link Selection… Informatica 41 (2017)259–274 267

simulations obtained by running the distributed version

of the MaxBLW-DG algorithm incorporated with BPI as

well as the LET-based link selection strategies. The

simulations were conducted in a discrete-event simulator

implemented in Java for mobile sensor networks. The

simulator was earlier successfully used for other related

studies (e.g., [19][21][23]) for mobile sensor networks.

The medium access control (MAC) layer is assumed to

be ideal to extract the best possible performance from the

data gathering algorithm and the link selection strategies.

5.1 Simulation environment

In this sub section, we present the simulation parameters

(network density, maximum node velocity, data size and

the number of rounds as well as the frequency of LSS

updates), the mobility model, the energy consumption

model, DG tree update policy and channel access policies

as well as define the structural metrics and performance

metrics.

Simulation Parameters: The network dimensions is

100m x 100m (Area A = 10,000 m2) and the sink is

assumed to be outside the network: at (50, 300). The

number of nodes (N) in the network is set to be 50 and

100, and the transmission range (R) per node values used

are 25m and 35m. The average number of neighbors per

node is computed using the formula: πR2N/A.

Accordingly, we have the following scenarios of network

density: low density (N = 50, R = 25m, Avg. # neighbors

per node = 9.8), low-moderate density (N = 50, R = 35m,

Avg. # neighbors per node = 19.2), moderate-high

density (N = 100, R = 25m, Avg. # neighbors per node =

19.6) and high density (N = 100, R = 35m, Avg. #

neighbors per node = 38.5). The maximum velocity of a

node (vmax) is set to be: 1 m/s (low mobility), 3 m/s

(low-moderate mobility), 5 m/s (moderate-high mobility)

and 10 m/s (high mobility). Thus, we have a total of

sixteen scenarios of various combinations of network

density and node mobility. We generated 100 instances

of node mobility profiles for each of the above sixteen

scenarios of network density and node mobility and

averaged the results (with respect to the performance

metrics and structural metrics discussed below) obtained

for the MaxBLW-DG algorithm incorporated with the

BPI and LET-based link selection strategies run on these

100 instances.

Mobility Model: To start with, the nodes are

uniform-randomly distributed throughout the network.

Mobility of the nodes is modeled according to the

Random Waypoint model [3] with the nodes moving

continuously (zero pause time) and independent of each

other. A node decides to move from its current location

to a randomly chosen location within the network with a

velocity uniform-randomly chosen from [0...vmax]; after

reaching the chosen location, the node continues its

movement by randomly choosing another location with a

different randomly chosen velocity from the above range.

A node continues its movement like this throughout the

simulation. We record the instances of direction change

and the corresponding location and velocity to construct

(offline) a mobility profile for each node and feed in this

mobility profile to the MaxBLW-DG tree algorithm.

Energy Consumption Model: Nodes are assumed to

be of sufficient energy so that there are no node failures

due to exhaustion of energy. The energy consumed at a

node for data aggregation is the sum of the energy lost in

receiving the aggregated data from each of its child

nodes, fusing its own data with that of the aggregated

data and transmitting the final aggregated data to its

upstream node in the DG tree. The energy consumed at a

node for broadcast tree discovery is the sum of the

energy lost to receive the broadcast control message from

each of its neighbors and to the transmit the control

message in its neighborhood, if the conditions for

rebroadcast are met. The energy consumption model

used is a first-order radio model [28] that has been used

in several of the previous work [7, 11] in the literature.

According to this model: (i) the energy consumed at a

sensor node to transmit a k-bit message over a distance d

is given by: ETX(k, d) = Eelec*k + amp
*k*d2, where

Eelec = 50 nJ/bit is the energy lost to run the radio

transmitter or receiver circuitry and amp
= 100

pJ/bit/m2 is the energy lost to run the transmitter

amplifier; (ii) the energy lost at a sensor node to

broadcast a k-bit message to all its neighbors within the

transmission range R is simply given by ETX(k, R); the

energy consumed at a sensor node to receive a k-bit

message is ERX(k) = Eelec *k. The total energy

consumed at a sensor node to receive k-bit broadcast

messages transmitted by all of its n-neighbors is simply

given by n * ERX(k). We do not take into consideration

the energy lost due to periodic beacon exchange as both

the LET and BPI-based link selection strategies

considered in this research use it to determine the link

weights.

Data Size and Frequency of LSS Updates: We

conduct the simulations for 2000 rounds (one round for

every 0.25 seconds: a total of 500 seconds). The LSS

scores of the links are estimated in the neighborhood of

the nodes for every second. For each round: data gets

aggregated across the network, starting from the leaf

nodes and proceeding all the way to the LEADER node

of the DG tree; the LEADER node forwards the final

aggregated data to the sink. The data size is assumed to

remain the same during network-wide aggregation. That

is, the size of the aggregated data is assumed to be the

same as the size of the data collected at the individual

sensor nodes. The data size is 2000 bits and the size of

the control messages used for tree configuration and

maintenance is assumed to be 400 bits (sufficiently large

enough to accommodate the various fields in the control

messages).

DG Tree Update Policy: Every time a DG tree is

needed, the sink collects the weights of the links of the

sensor nodes using a network-wide broadcast. The node

with the largest sum of the link weights is considered as

the root node (a.k.a. LEADER node) and the sink node

sends a control message to the LEADER node to initiate

tree discovery (a process also called tree

268 Informatica 41 (2017) 259–274 N. Meghanathan

reconfiguration). A DG tree is used as long as it exists:

this is referred to as the Least Overhead Routing

Approach (LORA) [1] in the literature of mobile ad hoc

networks.

Channel Access Policy: Note that in a particular

timeslot, an intermediate node could collect data from

only one of its child nodes (using Time Division Multiple

Access, TDMA [35]) if the latter has its aggregated data

available, and an intermediate node could transmit

upstream its aggregated data only after receiving the

same from each of its child nodes and aggregating with

its own. An intermediate node could collect data from

one of its child nodes at the same time (using Code

Division Multiple Access, CDMA [35]) as any other

intermediate node collects data from any of its child

nodes. We assume that sufficient number of CDMA and

TDMA codes are available at the sensor nodes (as

needed) to facilitate data aggregation in the minimum

number of time slots.

Structural Metrics: We evaluated the following three

structural metrics: (S-i) Tree Height, TH: The tree height

is the maximum of the level numbers of the vertices (i.e.,

the number of hops) from the root node of the DG tree

(with the root node considered to be at level 0). (S-ii)

Fraction of Leaf Nodes, FLN: The fraction of leaf nodes

is the ratio of the number of leaf nodes to the total

number of nodes in the network graph. (S-iii) Average

Number of Child Nodes per Intermediate Node, CNI:

The average number of child nodes per intermediate

node is the weighted average of the number of child

nodes per intermediate node considered across all

intermediate nodes.

Performance Metrics: We evaluated the following

three performance metrics: (P-i) Tree Lifetime, TL: The

tree lifetime is the number of rounds a DG tree exists

before one or more of its links fail due to node mobility,

averaged over the duration of a simulation session. (P-ii)

Aggregation Delay per Round, ADR: The aggregation

delay per round is the minimum number of timeslots

(computed as per algorithm [25]) it takes for data to get

aggregated along the edges of the DG tree and reach the

root node, averaged across all the rounds. (P-iii) Energy

Consumption per Round, ECR: The energy consumed

per round is the sum of the energy consumed at each of

the nodes for data aggregation in the network plus the

energy lost due to broadcast tree discoveries if the DG

tree was reconfigured at the beginning of the round. We

average the energy consumed across all the rounds of a

simulation session.

5.2 Normalized comprehensive relative

performance (NCRP) score

As described in Section 5.4, we observe a complex

tradeoff between the three performance metrics: tree

lifetime, energy consumption per round and aggregation

delay per round. Since the performance metrics incur

different levels of magnitude, we propose to bring the

values incurred for these metrics on a common scale of 0

to 1 using the method of normalization and propose to

prefer the link selection strategy that incurs the largest

value for the normalized score (or the complement of the

normalized score, as appropriate) with respect to the

individual metrics and/or with respect to the normalized

comprehensive relative performance (NCRP) score

(introduced below). In other words, the idea is to

normalize the values incurred for each of the

performance metrics incurred for the BPI and LET link

selection strategies for a particular simulation scenario

and compute a normalized comprehensive relative

performance (NCRP) score with respect to the

performance metrics (as shown below).

As we seek for a larger tree lifetime (see Section

5.4), lower energy consumption per round (see Section

5.5) and lower aggregation delay per round (see Section

5.6), we use the normalized values for the tree lifetime

(TL), but complement of the normalized values for the

energy consumption per round (ECR) and aggregation

delay per round (ADR) to compute the NCRP score as a

weighted average (weight = 1/3 for each metric) of these

three values.

Complement of Norm. ECR = 1 - Normalized ECR

Complement of Norm. ADR = 1 - Normalized ADR

NCRP = {Normalized TL + Complement of Norm.

ECR + Complement of Norm. ADR}/3 (3)

5.3 Structural metrics

In this section, we illustrate the results obtained with

respect to the structural metrics for the DG trees

determined based on the BPI and LET strategies. For

lower energy consumption and lower aggregation delay

per round, we would desire to have DG trees with a

lower number of child nodes per intermediate node (so

that an intermediate node can spend less energy in

receiving data from each of its child nodes as well as

aggregate data from its child nodes in fewer time slots)

and at the same time a larger fraction of leaf nodes (so

that the energy lost due to receptions could be lower and

the number of nodes that readily have the data to transmit

could be larger). However, we observe that it would not

be possible to simultaneously maximize the fraction of

leaf nodes as well as minimize the number of child nodes

per intermediate node. As the fraction of leaf nodes in a

DG tree increases, the fraction of intermediate nodes in

the DG tree is bound to decrease and hence the number

of child nodes per intermediate node is bound to only

increase. We also observe a similar trend in the results

(see Figures 5-6) for the structural metrics obtained for

the DG trees based the LET and BPI strategies.

The LET-based DG trees incur a larger fraction of

leaf nodes (desirable for lower energy consumption and

lower aggregation delay per round) and lower height

(desirable for lower aggregation delay per round), but

also simultaneously incur a larger number of child nodes

per intermediate node. The BPI-based DG trees incur a

relatively lower number of child nodes per intermediate

node (desirable for lower energy consumption and lower

aggregation delay per round), but also incur a lower

fraction of leaf nodes. Thus, as envisioned previously, we

observe a tradeoff between the fraction of leaf nodes and

the number of child nodes per intermediate node.

Bipartivity Index based Link Selection… Informatica 41 (2017)259–274 269

(a) vmax = 1 m/s (b) vmax = 3 m/s (c) vmax = 5 m/s (d) vmax = 10 m/s

Figure 5: Average Fraction of Leaf Nodes.

(a) vmax = 1 m/s (b) vmax = 3 m/s (c) vmax = 5 m/s (d) vmax = 10 m/s

Figure 6: Average Number of Child Nodes per Intermediate Node.

(a) vmax = 1 m/s (b) vmax = 3 m/s (c) vmax = 5 m/s (d) vmax = 10 m/s

Figure 7: Average Tree Height.

Since the structural metrics are not dependent on

node mobility, for a given network density: we observe

the values incurred for the structural metrics to be

independent of node mobility. For a given level of node

mobility, we observe the fraction of leaf nodes as well as

the average number of child nodes per intermediate node

(incurred for both the LET and BPI-based DG trees) to

decrease with increase in network density. On the other

hand, for a given level of node mobility, we observe the

tree height to increase with increase in network density

(especially, as we increase from 50 to 100 nodes).

5.4 Tree lifetime

The BPI-DG trees incur significantly larger values for

the tree lifetime (see Figure 8) compared to that of the

LET-DG trees. The lifetime of the BPI-DG trees could

be as large as 12 times the lifetime of the LET-DG trees

(especially in scenarios of high network density and low

node mobility). Even in the worst case (scenarios of low

network density and high node mobility), the lifetime of

the BPI-DG trees is at least 60% larger than the lifetime

of the LET-DG trees. When considered across all the 16

scenarios of network density and node mobility (refer

Figure 9), the normalized values (with respect to tree

lifetime) for the BPI-DG trees is at least 0.85; whereas,

the normalized values for the LET-DG trees is at most

0.52.

(a) vmax = 1 m/s (b) vmax = 3 m/s

(c) vmax = 5 m/s (d) vmax = 10 m/s

Figure 8: Absolute Value of Average Tree Lifetime.

From Figure 8, we could observe that for a fixed

level of node mobility: the average lifetimes for the BPI-

DG trees relatively increase with increase in network

density, whereas the average lifetimes for the LET-DG

trees relatively decrease with increase in network

density. From Figure 9, for a given level of network

density: we could observe that the relative performance

270 Informatica 41 (2017) 259–274 N. Meghanathan

of the LET-DG trees with respect to tree lifetime

improves with increase in node mobility. On the other

hand, the relative performance of the BPI-DG trees with

respect to tree lifetime remains almost the same or only

marginally degrades with increase in node mobility.

Thus, with respect to tree lifetime, the BPI-DG trees are

relatively more scalable (i.e., are robust to increase in

network density for a given level of node mobility) and

remains relatively about the same (with increase in node

mobility for a given network density). Such observations

on the relative performance of the link selection

strategies cannot be easily assessed by simply looking at

the actual values incurred for tree lifetime in Figure 8 (or

for that matter any other performance metric).

(a) LET (b) BPI

Figure 9: Normalized Value of Average Tree Lifetime.

5.5 Aggregation delay per round

From Figures 10-11, we observe the LET-DG trees to

incur lower ADR values for all conditions of network

density and node mobility. For a given level of node

mobility, the difference in the magnitude of the ADR

values between the BPI-DG trees and the LET-DG trees

increases with increase in network density. For a given

network density, the ADR values incurred for the DG

trees based on a particular link selection strategy remain

about the same (there is no particular or a significant

trend of variation) at different levels of node mobility.

As we prefer a link selection strategy to yield lower

aggregation delay per round for the DG trees, we plot the

complement of the normalized ADR values (instead of

just the normalized ADR values) of Figure 10 in Figure

11. The ADR values (shown in Figure 10) incurred for

both the LET-DG and BPI-DG trees appear to be directly

proportional and positively correlated with the height of

the DG trees (shown in Figure 7). Though the absolute

ADR values (Figure 10) are observed to increase with

increase in network density for a given level of node

mobility, there is no change in the trend of the

normalized ADR values (a measure of the relative

performance) incurred for the DG trees based on both

LET and BPI (for a given level of node mobility, the

complement of the normalized ADR values for either

LET or BPI almost remains the same with increase in

network density).

Unlike the exceptionally high values for the tree

lifetime incurred with the BPI-DG trees and relatively

very poor tree lifetime (see Figures 8-9) observed for the

LET-DG trees, (the complement of) the normalized ADR

values incurred for the DG trees determined based on

LET and BPI are not far different. In the case of tree

lifetime, the difference in the normalized values for the

lifetime of the LET and BPI- based DG trees is at least

0.33 and is as large as 0.92 (with a high median of 0.69).

On the other hand, in the case of aggregation delay per

round, the difference in the complement of the

normalized ADR values of the LET and BPI-based DG

trees is at most 0.27 (with a low median of 0.11).

(a) vmax = 1 m/s (b) vmax = 3 m/s

(c) vmax = 5 m/s (d) vmax = 10 m/s

Figure 10: Absolute Value of Average Aggregation

Delay per Round (in time units).

(a) LET (b) BPI

Figure 11: Complement of the Normalized Value of

Average Aggregation Delay per Round.

5.6 Energy consumption per round

The BPI-DG trees incur lower values for energy

consumption per round (ECR) for all scenarios of

network density and node mobility (see Figures 12-13),

and the LET-DG trees incur larger ECR values for all

scenarios. The relatively better performance of the BPI-

based DG trees with respect to ECR could be primarily

attributed to the less frequent network-wide broadcasts

(due to a larger tree lifetime) and the short distance

nature of the links that are part of the transmissions

during data aggregation. For a given level of node

mobility: the difference in the ECR values between the

BPI and LET-based DG trees increases with increase in

network density (attributed to the relatively unstable

LET-based DG trees with increase in network density).

Of course, for a fixed network density, the difference in

the ECR values increase with increase in node mobility.

Though both LET and BPI incur an increase in the

magnitude for the ECR values with increase in network

Bipartivity Index based Link Selection… Informatica 41 (2017)259–274 271

density and/or node mobility, the ECR values for the

LET-DG trees are significantly larger than those incurred

for the BPI-DG trees.

(a) vmax = 1 m/s (b) vmax = 3 m/s

(c) vmax = 5 m/s (d) vmax = 10 m/s

Figure 12: Absolute Value of Average Energy

Consumption per Round (in Joules).

For a given level of node mobility (see Figure 13):

the complement of the normalized ECR values for the

BPI-DG trees increases with increase in network density;

whereas, the complement of the normalized ECR values

for the LET-DG trees decreases with increase in network

density. Thus, for a given level of node mobility: the

relative performance (with respect to ECR) of the BPI-

DG trees vis-a-vis the LET-DG trees improves with

increase in network density. On the other hand, (see

Figure 13), for a given network density: the complement

of the normalized ECR values for the LET-DG trees

slightly increase with increase in node mobility; whereas,

the complement of the normalized ECR values for the

BPI-DG trees slightly decrease with increase in node

mobility, more visibly in networks of high density.

(a) LET (b) BPI

Figure 13: Complement of the Normalized Value of

Average Energy Consumption per Round.

5.7 Analysis of the relative performance

tradeoff based on the NCRP scores

We observe the lifetime incurred for the BPI-DG trees to

be significantly larger than that of the LET-DG trees.

Likewise, the average energy consumption per round

incurred for the BPI-DG trees is lower than that incurred

for the LET-DG trees. On the other hand, the aggregation

delay per round incurred for the LET-DG trees is lower

than the aggregation delay per round values incurred for

the BPI-DG trees. This illustrates a complex {tree

lifetime, energy consumption per round} vs.

{aggregation delay per round} tradeoff. We use the

normalization approach (introduced in Section 5.2) to

analyze this tradeoff with respect to the above three

performance metrics between LET and BPI. We observe

(from Figure 14) the BPI-based link selection strategy to

effectively balance this tradeoff and incur larger values

for the NCRP score under all the 16 different scenarios

of network density and node mobility. A closer look at

the actual values (from Figures 8, 10 and 12) and

normalized values (from Figures 9, 11 and 13) for the

three individual performance metrics illustrates the same.

(a) vmax = 1 m/s (b) vmax = 3 m/s

(c) vmax = 5 m/s (d) vmax = 10 m/s

Figure 14: Normalized Comprehensive Relative

Performance Score for the Link Selection Strategies.

With respect to the impact of network density and

node mobility: the NCRP scores for the LET-DG trees

decrease with increase in network density (for a fixed

level of node mobility) and increase with increase in

node mobility (for a fixed network density). On the other

hand, the NCRP scores for the BPI-DG trees increase

with increase in network density (for a fixed level of

node mobility) and remain about the same with increase

in node mobility (for a fixed network density). Thus, we

observe the overall relative performance of the BPI-DG

trees to only improve (or remain the same) with increase

in network density and/or node mobility.

Table 1 provides a comprehensive overview of the

simulation results, identifying the link selection strategy

that yields the most desirable values for the structural

metrics and performance metrics. With respect to the

structural metrics, we desire to have larger values for the

fraction of leaf nodes and lower values for the number of

child nodes per intermediate node and tree height. With

respect to the performance metrics, we desire to have

larger values for tree lifetime and lower values for the

energy consumption per round and aggregation delay per

round. With respect to the NCRP score (see equation 3

for the formulation), we desire to have values closer to 1.

On these lines, the LET strategy returns the most

desirable values for two of the three structural metrics as

272 Informatica 41 (2017) 259–274 N. Meghanathan

Table 1: Link Selection Strategies (LET vs. BPI) that Incur the most Desirable Values for the Structural Metrics and

Performance Metrics as well as the NCRP Score.

well as the aggregation delay per round (all of which

are not dependent on node mobility); however, the BPI

strategy is useful to discover stable DG trees (larger tree

lifetime) that also incur a lower energy consumption per

round (attributed to the less frequent network-wide

broadcasts and short distance nature of the links). The

relatively better performance of the BPI-DG trees with

respect to the tree lifetime and energy consumption per

round and competitive values for the aggregation delay

per round lift the normalized comprehensive relative

performance (NCRP) scores to be above that of the LET

strategy. The minimum and maximum difference in the

NCRP scores incurred for the BPI-DG trees vis-a-vis the

LET-DG trees are respectively 0.15 (observed in

scenario of low network density and high node mobility)

and 0.55 (observed in scenario of high network density

and low node mobility). The median difference in the

NCRP scores is 0.38.

6 Conclusions
The high-level contribution of this paper is a

proposal to use the Bipartivity Index (BPI) metric (a

spectral graph-theoretic metric used in complex network

analysis) to determine stable data gathering (DG) trees

for mobile sensor networks (MSNs). Our hypothesis in

this research is that the end nodes of short distance links

(the Euclidean distance between the end nodes of the link

is far less than the transmission range of the nodes) are

more likely to share a significant fraction of their

neighborhood (and vice-versa). As short distance links

are more likely to be stable too (and vice-versa), we

propose to use the BPI strategy to evaluate and quantify

the extent of shared neighborhood of the end vertices of

the edges for determining stable DG trees in mobile

sensor networks.

We model the neighborhood of the end vertices of an

edge u-v as an egocentric network EGu-v comprising of

the end vertices and their neighbors as nodes and the

edges incident on the end vertices as links. We have

shown (through detailed theoretical analysis and

illustrative examples) that edges whose egocentric

networks have smaller values for the BPI are more likely

to be short distance links. The egocentric network for an

edge and its BPI score could be independently

determined by the two end vertices of the edge based on

just the one-hop neighborhood information and without

knowledge about the location and mobility of the nodes.

We quantify the link stability score (LSS) for an edge u-v

as 1 - BPI(EGu-v). We define the bottleneck link weight

of a path as the minimum of the weights of the

constituent links on the path. Whenever a DG tree is

required, we determine the maximum bottleneck link

weight-based DG tree for which the bottleneck link

weight of the path from any node to the root node is the

maximum (the root node is the node with the largest sum

of the LSS scores of its incident links).

We have compared the performance of the BPI-

based DG trees with that of the DG trees determined

based on the predicted link expiration time (LET) - the

only well-known strategy so far [19] to determine stable

DG trees for MSNs. We observe the BPI-DG trees to be

significantly more stable as well as incur a lower energy

consumption per round compared to that of the LET-DG

trees. On the other hand, we observe the aggregation

delay per round incurred for the LET-DG trees to be

lower than the aggregation delay per round incurred for

the BPI-DG trees. We thus observe a complex {tree

lifetime, energy consumption per round} vs.

{aggregation delay per round} tradeoff. We attribute this

tradeoff to the unstable nature of the LET-DG trees

(leading to more energy-intensive network-wide

broadcast tree discoveries) and lower height as well as a

larger fraction of leaf nodes (contributing to a lower

aggregation delay per round).

Finally, we propose the use of a normalization-based

approach to evaluate the relative performance of the link

selection strategies in a scale of 0...1 and thereby

nodes Tr. range vmax FLN CNI TH TL ECR ADR NCRP

50 25m

1 m/s LET BPI LET BPI BPI LET BPI

3 m/s LET BPI LET BPI BPI LET BPI

5 m/s LET BPI LET BPI BPI LET BPI

10 m/s LET BPI LET BPI BPI LET BPI

50 35m

1 m/s LET BPI LET BPI BPI LET BPI

3 m/s LET BPI LET BPI BPI LET BPI

5 m/s LET BPI LET BPI BPI LET BPI

10 m/s LET BPI LET BPI BPI LET BPI

100 25m

1 m/s LET BPI LET BPI BPI LET BPI

3 m/s LET BPI LET BPI BPI LET BPI

5 m/s LET BPI LET BPI BPI LET BPI

10 m/s LET BPI LET BPI BPI LET BPI

100 35m

1 m/s LET BPI LET BPI BPI LET BPI

3 m/s LET BPI LET BPI BPI LET BPI

5 m/s LET BPI LET BPI BPI LET BPI

10 m/s LET BPI LET BPI BPI LET BPI

Bipartivity Index based Link Selection… Informatica 41 (2017)259–274 273

overcome the difficulty arising in analyzing the tradeoffs

among the performance metrics whose values fall under

different levels of magnitude (as is the case for the three

performance metrics studied in this paper). We illustrate

the use of the normalization-based approach to identify

the link selection strategy that best balances the

performance tradeoff as well as whose relative

performance is more scalable (with increase in network

density and/or node mobility). We observe the BPI-based

link selection strategy to yield DG trees that incur the

largest values for the normalized comprehensive relative

performance (NCRP) scores under all the 16 scenarios of

network density and node mobility. To vindicate the

larger NCRP scores, we observe the BPI-based DG trees

to simultaneously incur larger values for tree lifetime and

lower values for energy consumption per round and not

so relatively high values for aggregation delay per round.

We observe the comprehensive relative performance of

the BPI-DG trees to be more scalable with increase in

network density and not much affected with increase in

node mobility.

7 Acknowledgment
The work leading to this paper is funded through the

Minority Leaders Program, “A Stable Trustworthy

Neighborhood Scheme for Secure Mobile Sensor

Networks,” funded by the Clarkson Aerospace/US Air

Force Research Lab. Subcontract Number: JACK 15-

S7700-02-C2. The AFRL public clearance approval

number for this article is 88ABW-2017-0475. The views

and conclusions contained in this document are those of

the author and should not be interpreted as necessarily

representing the official policies, either expressed or

implied, of the funding agency.

8 References
[1] M. Abolhasan, T. Wysocki, E. Dutkiewicz, "A

Review of Routing Protocols for Mobile Ad hoc

Networks," Ad hoc Networks, vol. 2, no. 1, pp. 1-

22, 2004.

[2] T. Banerjee, B. Xie, J. H. Jun and D. P. Agarwal,

"LIMOC: Enhancing the Lifetime of a Sensor

Network with Mobile Clusterheads," Proceedings

of the Vehicular Technology Conference Fall, pp.

133-137, Baltimore, MD, USA, September 30 -

October 3, 2007.

[3] C. Bettstetter, H. Hartenstein and X. Perez-Costa,

“Stochastic Properties of the Random-Way Point

Mobility Model,” Wireless Networks, vol. 10, no. 5,

pp. 555-567, September 2004.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C.

Stein, Introduction to Algorithms, 3rd Edition, MIT

Press, July 2009.

[5] S. Deng, J. Li and L. Shen, "Mobility-based

Clustering Protocol for Wireless Sensor Networks

with Mobile Nodes," IET Wireless Sensor Systems,

vol. 1, no. 1, pp. 39-47, March 2011.

[6] E. Estrada and J. A. Rodriguez-Velazquez,

"Spectral Measures of Bipartivity in Complex

Networks," Physical Review E 72, 046105, pp. 1-6,

2005.

[7] W. Heinzelman, A. Chandrakasan and H.

Balakarishnan, “Energy-Efficient Communication

Protocols for Wireless Microsensor Networks,”

Proceedings of the Hawaaian International

Conference on Systems Science, Maui, HI, USA,

January 2000.

[8] B. Hofmann-Wellenhof, H. Lichtenegger and J.

Collins, Global Positioning System: Theory and

Practice, 5th Edition, Springer, October 2013.

[9] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M.

Goraczko, A. Miu, E. Shih, H. Balakrishnan and S.

Madden, “CarTel: A Distributed Mobile Sensor

Computing System,” Proceedings of the 4th

International Conference on Embedded Networked

Sensor Systems, pp. 125-138, Boulder, CO, USA,

November 2006.

[10] Y. Lai, J. Xie, Z. Lin, T. Wang and M. Liao,

"Adaptive Data Gathering in Mobile Sensor

Networks using Speedy Mobile Elements," Sensors,

vol. 15, no. 9, pp. 23218-23248, 2015.

[11] S. Lindsey, C. Raghavendra and K. M. Sivalingam,

"Data Gathering Algorithms in Sensor Networks

using Energy Metrics," IEEE Transactions on

Parallel and Distributed Systems, vol. 13, no. 9, pp.

924-935, September 2002.

[12] C-M. Liu, C-H. Lee and L-C. Wang, "Distributed

Clustering Algorithms for Data Gathering in

Wireless Mobile Sensor Networks," Journal of

Parallel and Distributed Computing, vol. 67, no.

11, pp. 1187-1200, November 2007.

[13] P. V. Marsden, "Egocentric and Sociocentric

Measures of Network Centrality," vol. 24, no. 4, pp.

407-422, October 2002.

[14] M. Ma and Y. Yang, "SenCar: An Energy-Efficient

Data Gathering Mechanism for Large-Scale

Multihop Sensor Networks," IEEE Transactions on

Parallel and Distributed Systems, vol. 18, no. 10,

pp. 1476-1488, October 2007.

[15] M. Macuha, M. Tariq and T. Sato, "Data Collection

Method for Mobile Sensor Networks Based on the

Theory of Thermal Fields," Sensors, vol. 11, no. 7,

pp. 7188-7203, July 2011.

[16] N. Meghanathan, “A Data Gathering Algorithm

based on Energy-aware Connected Dominating Sets

to Minimize Energy Consumption and Maximize

Node Lifetime in Wireless Sensor Networks,”

International Journal of Interdisciplinary

Telecommunications and Networking, vol. 2, no. 3,

pp. 1-17, July-September 2010.

[17] N. Meghanathan, "Exploring the Performance

Tradeoffs among Stability-Oriented Routing

Protocols for Mobile Ad hoc Networks," Network

Protocols and Algorithms – Special Issue on Data

Dissemination for Large scale Complex Critical

Infrastructures, vol. 2, no. 3, pp. 18-36, November

2010.

[18] N. Meghanathan, "A Comprehensive Review and

Performance Analysis of Data Gathering

Algorithms for Wireless Sensor Networks,"

274 Informatica 41 (2017) 259–274 N. Meghanathan

International Journal of Interdisciplinary

Telecommunications and Networking, vol. 4, no. 2,

pp. 1-29, April-June 2012.

[19] N. Meghanathan, "Link Expiration Time and

Minimum Distance Spanning Trees based

Distributed Data Gathering Algorithms for Wireless

Mobile Sensor Networks," International Journal of

Communication Networks and Information

Security, vol. 4, no. 3, pp. 196-206, December

2012.

[20] N. Meghanathan, "Routing Protocols to Determine

Stable Paths and Trees using the Inverse of

Predicted Link Expiration times for Mobile Ad hoc

Networks," International Journal of Mobile

Network Design and Innovation, vol. 4, no. 4, pp.

214-234, June 2012.

[21] N. Meghanathan and P. Mumford, "A

Benchmarking Algorithm to Determine the

Sequence of Stable Data Gathering Trees for

Wireless Mobile Sensor Networks," Informatica –

An International Journal of Computing and

Informatics, vol. 37, no. 3, pp. 315-338, October

2013.

[22] N. Meghanathan, Recent Advances in Ad Hoc

Networks Research, Nova Science Publishers,

August 2014.

[23] N. Meghanathan, "Stability-based and Energy-

Efficient Distributed Data Gathering Algorithms for

Mobile Sensor Networks," Ad hoc Networks, vol.

19, pp. 111-131, August 2014.

[24] N. Meghanathan, "A Generic Algorithm to

Determine Maximum Bottleneck Node Weight-

based Data Gathering Trees for Wireless Sensor

Networks," Network Protocols and Algorithms, vol.

7, no. 3, pp. 18-51, November 2015.

[25] N. Meghanathan, "A Benchmarking Algorithm to

Determine Minimum Aggregation Delay for Data

Gathering Trees and an Analysis of the Diameter-

Aggregation Delay Tradeoff," Algorithms, vol. 8,

no. 3, pp. 435-458, July 2015.

[26] N. Meghanathan, "A Greedy Algorithm for

Neighborhood Overlap-based Community

Detection," Algorithms, vol. 9, no. 1, p. 8: 1-26,

2016.

[27] P. De Meo, E. Ferrara, G. Fiumara and A. Provetti,

"On Facebook, Most Ties are Weak,"

Communications of the ACM, vol. 57, no. 11, pp.

78-84, November 2014.

[28] T. S. Rappaport, Wireless Communications:

Principles and Practice, 2nd edition, Prentice Hall,

January 2002.

[29] G. Santhosh Kumar, M. V. Vinu Paul and K. Jacob

Poulose, "Mobility Metric based LEACH-Mobile

Protocol," Proceedings of the 16th International

Conference on Advanced Computing and

Communications, pp. 248-253, Chennai, India,

December 2008.

[30] H. K. D. Sarma, R. Mall and A. Kar, "E2R2:

Energy-Efficient and Reliable Routing for Mobile

Wireless Sensor Networks," IEEE Systems Journal,

vol. 10, no. 2, pp. 604-616, April 2015.

[31] W. Su and M. Gerla, “IPv6 Flow Handoff in Ad

hoc Wireless Networks using Mobility Prediction,”

Proceedings of the IEEE Global

Telecommunications Conference, pp. 271-275,

December 1999.

[32] D. Tao, S. Tang and H. Ma, "Low Cost Data

Gathering using Mobile Hybrid Sensor Networks,"

Lecture Notes in Computer Science, vol. 7363, pp.

193-206, July 2012.

[33] Y-C. Tseng, F-J. Wu and W-T. Lai, "Opportunistic

Data Collection for Disconnected Wireless Sensor

Networks by Mobile Mules," Ad Hoc Networks,

vol. 11, no. 3, pp. 1150-1164, May 2013.

[34] R. Velmani and B. Kaarthick, "An Energy Efficient

Data Gathering in Dense Mobile Wireless Sensor

Networks," International Scholarly Research

Notices Sensor Networks, vol. 2014, Article ID:

518268, 10 pages, 2014.

[35] A. J. Viterbi, CDMA: Principles of Spread

Spectrum Communication, 1st Edition, Prentice

Hall, April 1995.

[36] H. Zhang and J. C. Hou, "Maintaining Sensing

Coverage and Connectivity in Large Sensor

Networks," Wireless Ad hoc and Sensor Networks:

An International Journal, vol. 1, no. 1-2, pp. 89-

123, January 2005.

