
 Informatica 31 (2007) 105–119 105

Discriminatory Algorithmic Mechanism Design Based WWW
Content Replication
Samee Ullah Khan and Ishfaq Ahmad
Department of Computer Science and Engineering
University of Texas
Arlington, TX-76019, USA
E-mail: {sakhan, iahmad}@cse.uta.edu

Keywords: data replication, resource allocation, game theory, algorithmic mechanism design, static allocation

Received: November 8, 2005

Replicating data over geographically dispersed web servers reduces network traffic, server load, and
more importantly the user-perceived access delays. This paper proposes a unique replica placement
technique using the concepts of a supergame. The supergame allows the agents who represent the data
objects to continuously compete for the limited available server memory space, so as to acquire the
rights to place data objects at the servers. At any given instance in time, the supergame is represented
by a game which is a collection of subgames, played concurrently at each server in the system. We
derive a resource allocation mechanism which acts as a platform at the subgame level for the agents to
compete. This approach allows us to transparently monitor the actions of the agents, who in a non-
cooperative environment strategically place the data objects to reduce the user access time, latency,
which in turn adds reliability and fault-tolerance to the system. We show that this mechanism exhibits
Nash equilibrium at the subgame level which in turn conforms to games and supergame Nash
equilibrium, respectively, guaranteeing the entire system to be in a continuous self-evolving and self-
repairing mode. The mechanism is extensively evaluated against some well-known algorithms, such as:
greedy, branch and bound, game theoretical auctions and genetic algorithms. The experimental results
reveal that the mechanism provides excellent solution quality, while maintaining fast execution time.

Povzetek: Opisana je metoda za multipliciranje internetnih strani.

1 Introduction
Web replication aims to reduce network traffic,

server load, and user-perceived delay by replicating
popular content on geographically distributed web
servers (sites). Specifically, a replica placement
algorithm aims to strategically select replicas (or hosting
services) among a set of potential sites such that some
objective function is optimized under a given traffic
pattern.

One might argue that the ever decreasing price of
memory renders the optimization or fine tuning of replica
placement a “moot point”. Such a conclusion is ill-
guided for the following two reasons. First, studies ([4],
[8], etc.) have shown that users’ access hit ratio grows in
log-like fashion as a function of the server memory size.
Second, the growth rate of Web content is much higher
than the rate with which memory sizes for the servers are
likely to grow. The only way to bridge this widening gap
is through efficient replica placement and management
algorithms.

The decision where to place the replicated data must
trade off the cost of accessing the data, which is reduced
by additional copies, against the cost of storing and
updating the additional copies. Discussions in [20], [22],
[25], [26], [30], etc. reveal that client(s) experience
reduced access latencies provided that data is replicated

within their close proximity. However, this is applicable
in cases when only read accesses are considered. If
updates of the contents are also under focus, then the
locations of the replicas have to be: 1) in close proximity
to the client(s), and 2) in close proximity to the primary
(assuming a broadcast update model) copy. Therefore,
efficient and effective replication schemas strongly
depend on how many replicas to be placed in the system,
and more importantly where.

The Internet can be considered as a large-scale
distributed computing system. We abstract this
distributed computing system as an agent-based model,
where each agent is responsible for (or represents) a data
object. Each agent competes in a non-cooperative
environment for the limited available storage space at
each server so as to acquire the rights to place the data
object which they represent. Motivated by their self
interests and the fact that the agents do not have a global
view of the distributed system, they concentrate on local
optimization. In such systems there is no a-priori
motivation for cooperation and the agents may
manipulate the outcome of the replica placement
algorithm (resource allocation mechanism or simply a
mechanism) in their interests by misreporting critical data
such as objects’ popularity. To cope with these selfish

106 Informatica 31 (2007) 105–119 S.U. Khan et al.

Symbols Meaning
M Total number of sites in the network.
N Total number of objects to be replicated.
Ok k-th object.
ok Size of object k.
Si

 i-th site.
si Size of site i.
rk

i Number of reads for object k from site i.
Rk

i Aggregate read cost of rk
i.

wk
i Number of writes for object k from site i.

Wk
i Aggregate write cost of wk

i.
NNk

i Nearest neighbor of site i holding object k.
c(i,j) Communication cost between sites i and j.
Pk Primary site of the k-th object.
Rk Replication schema of object k.
Coverall Total overall data transfer cost.
LS A list of sites that can replicate an object.
Li A list of objects that can be replicated onto site Si.
Bk

i Benefit of replicating object k onto site Si.
Bk Temporary variable to store object valuations.
bi Available space at site Si.
v Valuation of an agent for an object.
SGRG Self Generate Random Graphs.
GT-ITM Georgia Tech Internetwork Topology Models.
GT-ITM PR GT-ITM Pure Random.
GT-ITM W GT-ITM Waxman.
SGFCG Self Generated Fully Connected Graphs.
SGFCGUD SGFCG Uniform Distribution.
SGFCGRD SGFCG Random Distribution.
SGRG Self Generated Random Graphs.
SGRGLND SGRG Lognormal Distribution.
DRP Data replication problem.
OTC Object transfer cost (network communication cost).

Table 1: Notations and their meanings.

agents, new mechanisms are to be conceived. The goal of
a mechanism should be to force the agents not to
misreport and always follow the rules.

This paper uses the concepts of game theory to
formally specify a mechanism with selfish agents. Game
theory assumes that the participating agents have rational
thoughts that enable them to express their preferences
over the set of the possible outcomes of the mechanism.
In a mechanism, each agent’s benefit or loss is quantified
by a function called valuation. This function is private
information for each agent and is very much possible that
if the agents act selfishly, they can misreport their
valuations. The mechanism asks the agents to report their
valuations, and then it chooses an outcome that
maximizes/minimizes a given objective function. Of
course the grand problem is to stop the agents from
misreporting.

In this paper, we will apply the derived mechanism
to the fine grained data replication problem (DRP) over
the Internet. In essence we sculpt the DRP as a
supergame that is played infinitely during the entire
lifespan of the system. In a discrete time instance t, the
supergame is represented by a game, which is the
collection of independent subgames that are played
concurrently at each site of the distributed system. It is in
these subgames that the actual mechanism can be seen to
operate.

The major results of this paper are as follows:
1. We derive a general-purpose distributed

mechanism that allows selfish agents to compete
at each site in the distributed computing system
for the rights to replicate objects in a non-
cooperative environment.

2. We show that the concurrently played subgames
exhibit Nash equilibrium which in turn
guarantees Nash equilibrium for the games and
the supergame.

3. The mechanism is compared against some well-
known techniques, such as: greedy, branch and
bound, genetic and game theoretical auctions,
employing various internet topology generators
and real user access data. The experimental
results reveal that the mechanism provides
excellent solution quality, while maintaining fast
execution time.

This paper is organized as follows. Section 2
formulates the DRP. Section 3 describes the mechanism.
The experimental results, related work and concluding
remarks are provided in Sections 4, 5 and 6, respectively.

2 Formal Description of the Data
Replication Problem

The most frequently used acronyms are recorded in
Table 1.

Consider a distributed system comprising M sites,
with each site having its own processing power, memory
(primary storage) and media (secondary storage). Let Si
and si be the name and the total storage capacity (in
simple data units e.g. blocks), respectively, of site i
where 1 ≤ i ≤ M. The M sites of the system are connected

by a communication network. A link between two sites Si

and Sj (if it exists) has a positive integer c(i,j) associated
with it, giving the communication cost for transferring a
data unit between sites Si and Sj. If the two sites are not
directly connected by a communication link then the
above cost is given by the sum of the costs of all the links
in a chosen path from site Si to the site Sj. Without the
loss of generality we assume that c(i,j) = c(j,i). This is a
common assumption (e.g. see [20], [22], [26], [30], etc.).
Let there be N objects, each identifiable by a unique
name Ok and size in simple data unites ok where 1 ≤ k ≤
N. Let rk

i and wk
i be the total number of reads and writes,

respectively, initiated from Si for Ok during a certain time
period t. This time period t determines when to initiate a
replica placement algorithm (in our case the mechanism).
Note that this time period t is the only parameter that
requires human intervention. However, in this paper we
use analytical data that enables us to effectively predict
the time interval t (see Section 3.4. for details).

Our replication policy assumes the existence of one
primary copy for each object in the network. Let Pk, be
the site which holds the primary copy of Ok, i.e., the only
copy in the network that cannot be de-allocated, hence
referred to as primary site of the k-th object. Each
primary site Pk, contains information about the whole
replication scheme Rk of Ok. This can be done by
maintaining a list of the sites where the k-th object is
replicated at, called from now on the replicators of Ok.
Moreover, every site Si stores a two-field record for each
object. The first field is its primary site Pk and the second

DISCRIMINATORY ALGORITHMIC MECHANISM... Informatica 31 (2007) 105–119 107

the nearest neighborhood site NNk
i of site Si which holds

a replica of object k. In other words, NNk
i is the site for

which the reads from Si for Ok, if served there, would
incur the minimum possible communication cost, i.e.,
NNk

i = {Site j | j∈Rk ^ min c(i,j)}. It is possible that NNk
i =

Si, if Si is a replicator or the primary site of Ok. Another
possibility is that NNk

i = Pk, if the primary site is the
closest one holding a replica of Ok. When a site Si reads
an object, it does so by addressing the request to the
corresponding NNk

i. For the updates we assume that
every site can update every object. Updates of an object
Ok are performed by sending the updated version to its
primary site Pk, which afterwards broadcasts it to every
site in its replication scheme Rk.

For the DRP under consideration, we are interested
in minimizing the total network transfer cost due to
object movement, i.e. the Object Transfer Cost (OTC).
The communication cost of the control messages has
minor impact to the overall performance of the system,
therefore, we do not consider it in the transfer cost
model, but it is to be noted that incorporation of such a
cost would be a trivial exercise. There are two
components affecting OTC. The first component of OTC
is due to the read requests. Let Rk

i denote the total OTC,
due to Sis’ reading requests for object Ok, addressed to
the nearest site NNk

i. This cost is given by the following
equation:

(),i i i
k k k kR r o c i NN= . (1)

The second component of OTC is the cost arising
due to the writes. Let Wk

i be the total OTC, due to Sis’
writing requests for object Ok, addressed to the primary
site Pk. This cost is given by the following equation:

 () ()
,

, ,i i i
k k k k k

j R j ik
W w o c i P c NN j

∀ ∈ ≠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= + ∑ . (2)

Here, we made the indirect assumption that in order
to perform a write we need to ship the whole updated
version of the object. This of course is not always the
case, as we can move only the updated parts of it
(modeling such policies can also be done using our
framework). The cumulative OTC, denoted as Coverall,
due to reads and writes is given by:

 ()1 1
M N i i

overall k ki kC R W= == +∑ ∑ . (3)

Let Xik=1 if Si holds a replica of object Ok, and 0
otherwise. Xiks define an M×N replication matrix, named
X, with boolean elements. Equation 3 is now refined to:

() (){ }
()

() ()1

1 1

min , | 1
1

,

,

i
k k jk

ik i
k k k

M x
ik k k kx

M N
i k

r o c i j X
X

w o c i P

X w o c i P

X

=

= =

⎡ ⎤⎡ ⎤=⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥+⎣ ⎦⎢ ⎥
⎢ ⎥
+⎢ ⎥⎣ ⎦

=

∑
∑ ∑ . (4)

Sites which are not the replicators of object Ok
create OTC equal to the communication cost of their
reads from the nearest replicator, plus that of sending
their writes to the primary site of Ok . Sites belonging to
the replication scheme of Ok, are associated with the cost
of sending/receiving all the updated versions of it. Using
the above formulation, the DRP can be defined as:

Find the assignment of 0, 1 values in the X matrix
that minimizes Coverall, subject to the storage capacity
constraint:

()1 1N i
ik kk X o s i M= ≤ ∀ ≤ ≤∑ ,

and subject to the primary copies policy:
()1 1p kk

X k N= ∀ ≤ ≤ .

The minimization of Coverall will have two impacts on
the distributed system under consideration: First, it
ensures that the object replication is done in such a way
that it minimizes the maximum distance between the
replicas and their respective primary objects. Second, it
ensures that the maximum distance between an object k
and the user(s) accessing that object is also minimized.
Thus, the solution aims for reducing the overall OTC of
the system. In the generalized case, the DRP has been
proven to be NP-complete [26].

3 The Mechanism
In game theory, usually mechanisms refer to

auctions. Mechanisms are used to make allocation and
pricing decisions in a competitive environment where all
involved parties act strategically in their own best
interests. In recent years, many areas of mathematical
sciences research started to focus on strategic behavior
and, consequently, we are witnessing the use of
mechanisms in areas where pure optimization techniques
were dominant in the past. For example, in the context of
distributed systems, such mechanisms have been applied
to the scheduling problems [18], [29], etc.

One has to be careful when incorporating a “one-
size-fits-all” mechanism model as a piece of solution to a
problem. Most of the mechanisms were developed and
analyzed in microeconomic theory abstraction. Thus,
assumptions underlying desirable properties of some
mechanisms could be oversimplifying or even
contradictory to the assumptions underlying a problem
that plans to incorporate such mechanisms in its solution.

3.1 Discriminatory Mechanism
In this paper we limit our analysis to one-shot (single

round) mechanisms in which every agent demands a
specific entity. Under our DRP formulation we aim to
identify a replica schema that effectively minimizes the
OTC. We propose a one-shot discriminatory mechanism,
where the agents compete for memory space at sites so
that they can acquire the rights to place replicas. The
mechanism described in this paper is called
discriminatory because not all winning agents pay the
same amount. In essence it works as follows: In a
discriminatory mechanism, sealed-bids are sorted from
high to low, and rights to the available memory space are
awarded at the current highest bid price until the
(memory) supply is exhausted. The most important point
to remember is that the winning agents can (and usually
do) pay different prices.

It is to be noted that in a discriminatory mechanism,
an agent always bids below its valuation for the entity
[16]. If the agent bids at or above its value, then its

108 Informatica 31 (2007) 105–119 S.U. Khan et al.

payment equals or exceeds its value if it wins, and
therefore its expected profit will be zero or negative.
Since bids are below the agents’ value, the
discriminatory mechanism is not a demand reveling
mechanism [27].

In a discriminatory mechanism, there is no sequential
interaction among agents [27]. Therefore, the mechanism
environment is non-cooperative in nature. Agents submit
the bids only once. Agents are trading between bidding
high and winning for certain and bidding low and
benefiting more if the bid wins. In [12] the authors have
shown that the discriminatory mechanism is a
generalization of the first price sealed-bid auction which
is strategically equivalent to the Dutch auction. Unlike in
the second price sealed-bid and the English auctions, it is
not a dominant strategy for a bidder in the first price
sealed-bid auction to bid its valuation for the entity.
However, the theoretically optimal bidding strategy in
both the first price sealed-bid and the Dutch auctions is
the same for any given bidder. Since discriminatory
auctions are generalization of the first price sealed-bid
auctions, the same argument (about the dominating
strategies) holds [17]. Therefore, we are confined to a
probabilistic analysis of the discriminatory mechanism.

3.2 Preliminaries

Definition 1 (Supergame): Generally a game in which
some simple game is played more than once (often
infinitely many times); the simple game is called the
“stage” game or the “constituent” game __ a game
repeated infinitely is called a supergame. If Γ represents
a game then Γ(∞) represents a supergame.

Definition 2 (Stage game (subgame)): Frequently it is
the case that a game naturally decomposes into smaller
games. This is formalized by the notion of stage game
(more popularly known as subgames).

Remarks __ We explain this concept using decision trees
[27]. Let x be a node which belongs to the set of all the
nodes, X, in a tree, K, and let Kx be the subtree of K rising
at x. If it is the case that ever information set of Γ either
is completely contained in Kx or is disjoint from Kx, then
the restriction of Γ to Kx constitutes a game of its own, to
be called subgame Γx starting at x. This decomposition
also affects strategies. Let b represent the strategy set for
any player i, then the strategy combination b decomposes
into a pair (b-x, bx) where bx is a strategy combination in
Γx and b-x is a strategy combination for the remaining part
of the game (the truncated game). If it is known that bx
will be played in Γx, then, in order to analyze Γ it suffices
to analyze the truncated game Γ-x(bx) which results from
Γ.

Interestingly, the concept connecting supergame,
games, and subgames is the Nash equilibrium.

Definition 3 (Nash equilibrium): If there is a set of
strategies with the property that no player can benefit by

changing her strategy while the other players keep their
strategies unchanged, then that set of strategies and the
corresponding payoffs constitute the Nash equilibrium.

Definition 4 (Equilibrium path): For a given (Nash)
equilibrium an information set is on the equilibrium path
if it will be reached with positive probability when the
game is played according to the equilibrium strategies.

Lemma 1 ([17]): Nash equilibrium only depends upon
subgame strategy profiles played along the equilibrium
path. ■

Theorem 1 ([16]): In Nash equilibrium each player’s
repeated game (supergame) strategy need only be
optimal along the equilibrium path. ■

Remarks __ In essence Definitions 3 and 4 and Lemma 1
propose that if a game Γ is in Nash equilibrium, it is only
so because all subgames Γx are in Nash equilibrium.
Extending the same concept, Theorem 1 asserts that Nash
equilibrium can be reached in a supergame via the
equilibrium path followed by games. Recall that a
supergame is an infinite play of games. In summary, if
all the subgames are in Nash equilibrium, the
corresponding game that encapsulates the subgames is
also in Nash equilibrium and so is the supergame which
is the collection of infinite number of games played over
time.

3.3 Mechanism Applied to the DRP
Form the discussion above, we choose the following

line of action.
[1] Define the DRP as a supergame.
[2] Define an instance of the supergame as a game.
[3] Split the game into concurrently played subgames.

Each identical to each other in terms of:
a. Form: A discriminatory mechanism.
b. Valuation: Obtainable via the system

parameters.
c. Information: Independent of any other

subgame.
2. Establish the fact that subgames conform to

Nash equilibrium provided agents play
optimally.

3. Use Lemma 1 to establish that the entire game
at instance t is in Nash equilibrium.

4. Use Theorem 1 to establish that the entire
supergame is in Nash equilibrium.

1. Supergame: A supergame Γ(∞) is defined as a
mechanism that is played infinitely during the lifespan of
the distributed system under consideration. The
supergame allows the agents to compete for memory
spaces of the sites. The purpose of a supergame is to
keep the system in a self evolving and self repairing
mode.

DISCRIMINATORY ALGORITHMIC MECHANISM... Informatica 31 (2007) 105–119 109

Site 1Site 2

Site 3 Site 4

Site 5
Figure 1(a): The network architecture.

Site 1Site 2

Site 3 Site 4

Site 5

Reads
Writes

Figure 1(b): Read and write patterns.

Site 1Site 2

Site 3 Site 4

Site 5
 Figure 1(c): Benefits of replication (reads).

Site 1Site 2

Site 3 Site 4

Site 5
Figure 1(d): Benefits of replication (writes).

2. Game: At any given instance t (t is the instance when
a game is invoked, in Section 3.4. we explain what t
really means), a game Γ is played. It is to be noted that
the sole purpose of defining a game is to observe the
solution quality of the replica placements at a given
instance t [26].

3. Subgames: A game is split into M concurrently played
subgames. Each of these subgames take place at a
particular site i. Each agent k competes through bidding
for memory at a site i.

3.a. Form: Each site i has a finite amount of space si, and
available space bi. It is for this available space bi that the
agents compete. In one-shot all the participating agents
submit their bids for the available space. All the bids are
sorted in descending order and the first n agents are
awarded the rights to place their objects onto site i.
Recall that each agent represents an object of size ok.
Therefore, the decision of the first n agents solely
depends upon 1 ,n i

kk o b n N= ≤ ≤∑ . After the decision is
made, the first n agents pay their respective bids. This is
discriminatory for the following two reasons. First, all
the successful agents pay a different amount for their
rights to place an object. Second, the payment is in no
relation to the size of the object or the available space at
site i. The only connection that the payments have is the
benefit that the object brings if replicated to that site.
This benefit is the valuation of an agent for its object k if
replicated at site i. We describe this valuation below.

3.b. Valuation: Each agent k’s policy is to place a
replica at a site i, so that it maximizes its (object’s)
benefit function. This benefit is equivalent to the savings
that the object k brings in the total OTC if the object k is
replicated at site i. This benefit is given as:

 ()1 ,Mi i x i
k k k k k kxB R w o c i P W=

⎛ ⎞
⎜ ⎟
⎝ ⎠

= − −∑ . (5)

We illustrate the notion of benefit associated with an
object k if it is replicated at site i. Figure 1(a) depicts the
network with four sites. Site 1 has the primary object
represented by �, while Site 4 has the replica of the same
object represented by �. If these are the only copies of
object k available in the network, then the read and write
requests are always sent to the nearest neighbors, where
Site 4 is the nearest neighbor of itself (Figure 1(b)). Now
what would be the benefit of replicating object k at Site
3? In Figure 1(c), we see that the reads and writes of Site
3 are entertained locally. Moreover, Site 5 can now
redirect its request to its newest nearest neighbor, i.e.,
Site 3. Therefore, the replication of object k at Site 3
clearly reduces the OTC by RCk

i = Rk
i+Wk

i. However
(Figure 1(d)), this will cause the Site 1 (location of
primary object) to repeatedly send updates of object k to
Site 3. Since the local update is already captured by RCk

i,
the increased aggregate updates are given by:

1 (,)M x
k k kx w o c i P=∑ .

From here onwards, for simplicity, we will denote
the benefit Bk

i as v (valuation). It is to be understood that
to differentiate the valuations between agents k and j we
may denote the valuations as vk and vj, respectively.

3.c. Information: It is clear that the subgames can
operate independently of each other. There is no critical
information that is required and is withheld from a
subgame. For instance, 1) the frequency of reads and

110 Informatica 31 (2007) 105–119 S.U. Khan et al.

writes are obtained locally through the site which hosts
the subgame, 2) the information about network
architecture is globally available since domains can
easily pull such information from the routers using the
border gate protocol (BGP) [32], and 3) the locations of
the primary sites are also available locally since the
agents represent the objects, (i.e., they have to know
where they originated from,) etc.

4. Subgame Nash equilibrium: To understand the
bidding behavior in a discriminatory mechanism, we
shall, for simplicity, assume that the agents are ex-ante
symmetric. That is, we shall suppose that for all bidders k
= 1,…, N, fk(v) = f(v) for all v ∈ [0,1], where v is the
valuation of an agent k for an object, whereas f translates
this valuation into something useful, for instance, when
bids are required for an object, f can take the form of a
bidding function for a valuation v. Note that we only
assume that v ∈ [0,1] for underlying the groundwork for
the probabilistic analysis. In reality the valuations are of
the form of v ≥ 0. Clearly, the main difficulty is in
determining how the agents, will bid. But note that a
rational agent k would prefer to win the right to replicate
at a lower price rather than a higher one, agent k would
bid low when the others are bidding low and would want
to bid higher when the others bid higher. Of course,
agent k does not know the bids that the others submit
because of the sealed-bid rule. Yet, agent k’s optimal bid
will depend on how the others bid. Thus, the agents are
in a strategic setting in which the optimal action (bid) of
each agent depends on the actions of others.

Let us consider the problem of how to bid from the
point of view of agent k. Suppose that agent k’s value is
vk. Given this value; agent k must submit a sealed-bid, bk.
Because bk will in general depend on k’s value, let’s
write bk(vk) to denote bidder k’s bid when his value is vk.
Now, because agent k must be prepared to submit a bid
bk(vk) for each of his potential values v ∈ [0,1], we may
view agent k’s strategy as a bidding function
bk:[0,1]→ℜ+, mapping each of his values into a (possibly
different nonnegative) bid.
Before we discuss payoffs, it will be helpful to focus our
attention on a natural class of bidding strategies. It seems
very natural to expect that agents with higher values will
place higher bids. So, let’s restrict attention to strictly
increasing bidding functions. Next, because the agents
are ex-ante symmetric, it is also natural to suppose that
agents with the same value will submit the same bid.
With this in mind, we shall focus on finding a strictly
increasing β function, b^k:[0,1]→ℜ+, that is optimal for
each agent to employ, given that all other agents employ
his bidding function as well. That is, we wish to find
Nash equilibrium in strictly increasing bidding functions.

Now, let us suppose that we find Nash equilibrium
given by the strictly increasing bidding function b^(·). By
definition it must be payoff-maximizing for an agent, say
k, with value v to bid b^(v) given that the other agents
employ the same bidding function b^(·).

Remarks __ We explain why we assume that all other
agents employ the same bidding function b^(·). Imagine
that agent k cannot attend the auction and that he sends a
friend to bid for him. The friend knows the equilibrium
bidding function b^(·) (since it is a public knowledge), but
does not know agent k’s value. Now, if agent k’s value is
v, agent k would like his friend to submit the bid b^ (v) on
his behalf. His friend can do this for him once agent k
calls him and tells his value. Clearly, agent k has no
incentive to lie to his friend about his value. That is,
among all the values r ∈ [0,1] that agent k with value v
can report to his friend, his payoff is maximized by
reporting his true value, v, to his friend. This is because
reporting the value r results in his friend submitting the
bid b^(r) on his behalf. But if agent k were there himself
he would submit the bid b^(v).

Let us calculate agent k’s expected payoff from
reporting an arbitrary value, r, to his friend when his
value is v, given that all other agents employ the bidding
function b^(·). To calculate this expected payoff, it is
necessary to notice just two things. First, agent k will win
only when the bid submitted for him is highest. That is,
when b^(r) > b^(vj) for all agents j ≠ k. Because b^ (·) is
strictly increasing this occurs precisely when r exceeds
the values of all N-1 other agents. Let F denote the
distribution function associated with f, the probability
that this occurs is (F(r))N-1 which we will denote FN-1(r).
Second, agent k pays only when it wins the right to
replicate, and pays its bid, b^(r). Consequently, agent k’s
expected payoff from reporting the value r to his friend
when his value is v, given that all other bidders employ
the bidding function b^(·), can be written as:

1 ˆ(,) () ()Nu r v F r v b r− ⎛ ⎞
⎜ ⎟
⎝ ⎠

= − . (6)

Now, as we have already remarked, because b^(·) is
an equilibrium, agent k’s expected payoff-maximizing
bid when his value is v must be b^(v). Consequently,
Equation 6 must be maximized when r = v, i.e., when
agent k reports his true value, v, to his friend. So, we may
differentiate the right-hand side with respect to r and set
the derivative equal to zero when r = v. Differentiating
yields:

1

2 1

ˆ() ()

ˆ ˆ1 () () () () '()

N

N N

F r v b r

N F r f r v b r F r b r

d dr
⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−

− −

− =

− − −

. (7)

Setting this equal to zero when r = v and rearranging
yields:

 ()
()

2 1

2

ˆ ˆ1 () () () () '()

1 () ()

N N

N

N F v f v b v F v b v

N vf v F v

− −

−

− + =

−
. (8)

Looking closely at the left-hand side of Equation 8,
we see that is just the derivative of the product FN-1(v)
times b^(v) with respect to v. With this observation, we
can rewrite Equation 8 as:

DISCRIMINATORY ALGORITHMIC MECHANISM... Informatica 31 (2007) 105–119 111

Discriminatory Mechanism
Initialize:
01 LS, Li.
02 WHILE LS ≠ NULL DO
03 PARFOR each Si∈LS DO /*M subgames*/
04 FOR each k∈O DO
05 Bk = compute (Bk

i×(N-1)/N); /*compute benefit*/
06 Report Bk to Si which is stored in array B;
07 END FOR
08 Sort array B in descending order.
09 WHILE bi ≥ 0
10 Bk = argmaxk(B); /*Choose the best offer*/
11 Extract the info from Bk such as Ok and ok;
12 bi = bi-ok; /*Calculate space and termination condition*/
13 Replicate Ok;
14 Payment = Bk; /* Calculate payment*/
15 Delete Bk from B; /*Update the list for highest bid*/
16 SEND Pi to Si; RECEIVE at Si /*Agent pays the bid*/
17 Li = Li - Ok; /*Update the list*/
18 Update NNi

OMAX /*Update the nearest neighbor list*/
19 IF Li = NULL THEN SEND info to M to update LS = LS - Si;
/*update the player list */
20 END WHILE
21 ENDPARFOR

22 END WHILE
Figure 2: Mechanism game at instance t.

 ()1 2ˆ() () 1 () ()N NF v b v N vf v F vd dv − −⎛ ⎞
⎜ ⎟
⎝ ⎠

= − . (9)

Now, because Equation 9 must hold for every v, it must
be the case that:

 ()
1

2
0

() ()

1 () ()

N

v N

F v b v

N xf x F x dx constant

−

−

=

− +∫
. (10)

Noting that an agent with value zero must bid zero,
we conclude that the constant above must be zero.

Hence, it must be the case that:
2

1 0
1ˆ() () ()
()

v N
N
Nb v xf x F x dx

F v
−

−
−= ∫ , (11)

which can be written as:
2

1 0
1ˆ() () ()

()
v N

Nb v xf x F x dx
F v

−
−= ∫ . (12)

There are two things to notice about the bidding
function in Equation 12. First, as we has assumed, it is
strictly increasing in v. Second, it has been uniquely
determined. Now since we assumed that each agent is ex-
ante in nature, then F(v) = v and f(v) = 1. Consequently,
if there are N bidders then each employs the bidding
function:

1
1 0

1ˆ() v N
Nb v xdx

v
−

−= ∫ (13)

() 2
1 0

1 1v N
N x N x dx

v
−

−= −∫

1
1 0
1 v N

N
N x dx
v

−
−
−= ∫

1
1 1 N

N
N vNv

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

−=

1N vN
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−= (14)

Hence, in conclusion, we have proven the following:

Theorem 2: If N agents have independent private values
drawn from the common distribution, F, then bidding b^

(v) = (N-1/N)v whenever one’s value is v constitutes
Nash equilibrium of the discriminatory mechanism,
where the nature of the bids are sealed-bids. ■

So, each agent shades its bid, by bidding less than its

valuation. Note that as the number of agents increases,
the agents bid more aggressively. Because FN-1(·) is the
distribution function of the highest value among an
agent’s N-1 competitors, the bidding strategy displayed
in Theorem 2 says that each agent bids the expectation of
the second highest agent’s value conditional on his value
being highest. But, because the agents use the same
strictly increasing bidding function, having the highest
value is equivalent to having the highest bid and so
equivalent to winning the right to replicate.

Theorem 3: If N agents play their bids according to the
bidding strategy as: b^(v) = (N-1/N)v, the corresponding
game at instance t and eventually the supergame are in
Nash equilibrium.
Proof: It follows from Lemma 1 and Theorem 1. ■

We are now ready to present the pseudo-code

(Figure 2) for a game at instance t.
Briefly, we maintain a list Li at each server. The list

contains all the objects that can be replicated at Si (i.e.,
the remaining storage capacity bi is sufficient and the
benefit value is positive). We also maintain a list LS
containing all servers that can replicate an object. In
other words, Si ∈ LS if and only if Li ≠ NULL. Each
player k ∈ O calculates the benefit function of object
(Line 05). The set O represents the collection of players
that are legible for participation. A player k is legible if
and only if the benefit function value obtained for site Si
is positive. This is done in order to suppress mediocre
bids, which, in turn improves computational complexity.
After receiving (Line 06) all the bids, the bid vector is
sorted in descending order (Line 08). Now, recursively
the rights are assigned to the current highest agent (Line
10) as long as there is available memory (Line 09 and
12). It is to be noted that in each step Li together with the
corresponding nearest server value NNk

i, are updated
accordingly.

The above discussion allows us to deduce the
following result about the mechanism.

Theorem 4: In the worst case the mechanism takes
O(N2logN) time.
Proof: The worst case scenario is when each site has
sufficient capacity to store all objects. In that case, the
PARFOR loop (Line 03) performs N iterations. The most
consuming time is to sort the bids in descending order
(Line 10). This will take at least of the order of
O(NlogN). Hence, we conclude that the worst case
running time of the mechanism is O(N2logN). ■

112 Informatica 31 (2007) 105–119 S.U. Khan et al.

Hours

A
ve

ra
ge

 H
its

World Cup 98 Access Log
Days w hen no schedualed matches w ere played

12:00:00.00 AM 6:00:00.00 AM 12:00:00.00 PM 6:00:00.00 PM 12:00:00.00
0

100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000
1100000
1200000
1300000
1400000
1500000
1600000
1700000
1800000
1900000
2000000

Figure 3(a): Access on days with no matches.

Hours

A
ve

ra
ge

 H
its

World Cup 98 Access Log
Days w hen schedualed matches w ere played

12:00:00.00 AM 6:00:00.00 AM 12:00:00.00 PM 6:00:00.00 PM 12:00:00.00
0

2500000

5000000

7500000

1E+7

1.25E+7

1.5E+7

1.75E+7

Figure 3(b): Access on days with matches.

3.4 When to invoke the game?
As noted previously (in Sections 2 and 3.3.), the time

(interval t) when to initiate the mechanism, i.e., when to
play a game at instance t requires high-level human
intervention. Here, we will show that this parameter if
not totally can at least partially be automated. The
decision when to initiate the mechanism depends on the
past trends of the user access patterns. The experiments
performed to test the mechanism used real user access
patterns collected at the 1998 Soccer World Cup website
[6]. This access log file has become a default standard
over the number of years to benchmark various replica
placement techniques. Works reported in [20], [21], [22],
[23], [25], and [30] all have used this access log for
analysis.

Figures 3(a) and 3(b) show the user access patterns.
The two figures represent different traffic patterns, i.e.,
Figure 3(a) shows the traffic recorded on the days when
there was no scheduled match, while Figure 3(b) shows
the traffic on the days when there were scheduled
matches. We can clearly see that the website incurred
soaring and stumpy traffic at various intervals during a
24-hour time period (it is to be noted that the access logs

have a time stamp of GMT+1). For example, on days
when there was no scheduled match, the traffic was
mediocre before 0900 hrs. The traffic increased after
0900 hrs till 2200 hrs. The two vertical dashed lines
indicate this phenomenon. These traffic patterns were
recorded over a period of 86 days (April 30th 1998 to
July 26th 1998). Therefore, on the days when there was
no scheduled match, a replica placement algorithm (in
our case the mechanism) could be initiated twice daily:
1) at 0900 hrs and 2) at 2200 hrs. The time interval t for
0900 hrs would be t = (2200-0900) = 11 hours and for
2200 hrs would be t = (0900-2200) = 13 hours. On the
other hand the days when there were scheduled matches,
the mechanism could be initiated at 1900 hrs and 0100
hrs. It is to be noted that the autonomous agents can
easily obtain all the other required parameters (for the
DRP) via the user access logs and the underlying
network architecture.

4 Experimental Setup and the
Discussion of Results

We performed experiments on a 440MHz Ultra 10
machine with 512MB memory. The experimental
evaluations were targeted to benchmark the placement
policies. The mechanism was implemented using IBM
Pthreads.

To establish diversity in our experimental setups, the
network connectively was changed considerably. In this
paper, we only present the results that were obtained
using a maximum of 500 sites (nodes). We used existing
topology generator toolkits and also self generated
networks. In all the topologies the distance of the link
between nodes was equivalent to the communication
cost. Table 2 summarizes the various techniques used to
gather forty-five various topologies for networks with
100 nodes. It is to be noted that the parameters vary for
networks with lesser/larger number of nodes.

To evaluate the chosen replication placement
techniques on realistic traffic patterns, we used the access
logs collected at the Soccer World Cup 1998 website [6].
Each experimental setup was evaluated thirteen times,
i.e., the Friday (24 hours) logs from May 1, 1998 to July
24, 1998. Thus, each experimental setup in fact
represents an average of the 585 (13×45) data set points.
To process the logs, we wrote a script that returned: only
those objects which were present in all the logs (2000 in
our case), the total number of requests from a particular
client for an object, the average and the variance of the
object size. From this log we chose the top five hundred
clients (maximum experimental setup). A random
mapping was then performed of the clients to the nodes
of the topologies. Note that this mapping is not 1-1,
rather 1-M. This gave us enough skewed workload to
mimic real world scenarios. It is also worthwhile to
mention that the total amount of requests entertained for
each problem instance was in the range of 1-2 million.
The primary replicas’ original site was mimicked by
choosing random locations. The capacities of the sites
C% were generated randomly with range from Total
Primary Object Sizes/2 to 1.5×Total Primary Object

DISCRIMINATORY ALGORITHMIC MECHANISM... Informatica 31 (2007) 105–119 113

Topology Mathematical Representation Parameter Interval Variance
SGRG
(12 topologies)

Randomized layout with node degree (d*) and Euclidian distance (d) between
nodes as parameters.

d={5,10,15,20},
d*={10,15,20}.

GT-ITM PR [9]
(5 topologies)

Randomized layout with edges added between the randomly located vertices
with a probability (p).

p={0.4,0.5,0.6,0.7,0.8}.

GT-ITM W [9]
(9 topologies)

P(u,v)=αe-d/(βL) α={0.1,0.15,0.2,0.25}, β={0.2,0.3,0.4}.

SGFCGUD
(5 topologies)

Fully connected graph with uniform link distances (d). d1=[1,10],d2=[1,20],d3=[1,50], d4=[10,20],
d5=[20,50].

SGFCGRD
(5 topologies)

Fully connected graph with random link distances (d). d1=[1,10],d2=[1,20],d3=[1,50], d4=[10,20],
d5=[20,50].

SGRGLND
(9 topologies)

Random layout with link distance having a lognormal distribution [15]. µ={8.455,9.345,9.564},
σ={1.278,1.305,1.378}.

Table 2: Parameter interval variance characterization for topologies with 100 nodes.

Sizes. The variance in the object size collected from the
access logs helped to install enough diversity to
benchmark object updates. The updates were randomly
pushed onto different sites, and the total system update
load was measured in terms of the percentage update
requests U% compared that to the initial network with no
updates.

4.1 Comparative Algorithms
For comparisons, we selected five various types of

replica placement techniques. To provide a fair
comparison, the assumptions and system parameters
were kept the same in all the approaches. The techniques
studied include efficient branch-and-bound based
technique (Aε-Star [22]). For fine-grained replication, the
algorithms proposed in [23], [25], [26], and [30] are the
only ones that address the problem domain similar to
ours. We select from [30] the greedy approach (Greedy)
for comparison because it is shown to be the best
compared with four other approaches (including the
proposed technique in [25]); thus, we indirectly compare
with four additional approaches as well. Algorithms
reported in [23] (Dutch (DA) and English auctions (EA))
and [26] (Genetic based algorithm (GRA)) are also
among the chosen techniques for comparisons. Due to
space limitations we will only give a brief overview of
the comparative techniques. Details for a specific
technique can be obtained from the referenced papers.

Performance metric: The solution quality is measured
in terms of network communication cost (OTC
percentage) that is saved under the replication scheme
found by the algorithms, compared to the initial one, i.e.,
when only primary copies exists.

Aε-Star: In [22] the authors proposed a 1+ε admissible
A-Star based technique called Aε-Star. This technique
uses two lists: OPEN and FOCAL. The FOCAL list is
the sub-list of OPEN, and only contains those nodes that
do not deviate from the lowest f node by a factor greater
than 1+ε. The technique works similar to A-Star, with the
exception that the node selection (lowest h) is done not
from the OPEN but from the FOCAL list. It is easy to see
that this approach will never run into the problem of
memory overflow, moreover, the FOCAL list always
ensures that only the candidate solutions within a bound
of 1+ε of the A-Star are expanded.

Greedy based technique: We modify the greedy
approach reported in [30], to fit our problem formulation.
The greedy algorithm works in an iterative fashion. In
the first iteration, all the M sites are investigated to find
the replica location(s) of the first among a total of N
objects. Consider that we choose an object i for
replication. The algorithm recursively makes calculations
based on the assumption that all the users in the system
request for object i. Thus, we have to pick a site that
yields the lowest cost of replication for the object i. In
the second iteration, the location for the second site is
considered. Based on the choice of object i, the algorithm
now would identify the second site for replication,
which, in conjunction with the site already picked, yields
the lowest replication cost. The readers will immediately
realize that the bidding mechanism reported in this paper
works similar to the Greedy algorithm. This is true;
however, the Greedy approach does not guarantee
optimality even if the algorithm is run on the very same
problem instance. Recall that Greedy relies on making
combinations of object assignments and therefore, suffers
from the initial choice of object selection (which is done
randomly).

Dutch auction: The auctioneer begins with a high asking
price which is lowered until some agent is willing to
accept the auctioneer's price. That agent pays the last
announced price. This type of auction is convenient when
it is important to auction objects quickly, since a sale
never requires more than one bid. In no case does the
auctioneer reveal any of the bids submitted to him, and
no information is shared between the agents. It is shown
that for an agent to have a probabilistically superior bid
than n-1 other bids; agent should have the valuation
divided by n [23].

English auction: In this type of auction, the agents bid
openly against one another, with each bid being higher
than the previous bid. The auction ends when no agent is
willing to bid further. During the auction when an
auctioneer receives a bid higher than the currently
submitted bids, he announces the bid value so that other
agents (if needed) can revise their currently submitted
bids. In [23], the discussion on EA reveals that the
optimal strategy for a bidder i is to bid a value which is
directly derived from his valuation.

114 Informatica 31 (2007) 105–119 S.U. Khan et al.

GRA: In [26], the authors proposed a genetic algorithm
based heuristic called GRA. GRA provides good solution
quality, but suffers from slow termination time. This
algorithm was selected since it realistically addressed the
fine-grained data replication using the same problem
formulation as undertaken in this article.

4.2 Comparative Game Analysis
First, we concentrate on observing the improvement

brought by the discriminatory mechanism (for short we
will refer to it as MECH). To this end we observe the
solution quality at the game level. In the post-ceding text
(Section 4.3.) we shall discuss the results obtained in the
supergame setup.

We study the behavior of the placement techniques
when the number of sites increases (Figure 4), by setting
the number of objects to 2000, while in Figure 5, we
study the behavior when the number of objects increase,
by setting the number of sites to 500. We should note
here that the space limitations restricted us to include
various other scenarios with varying capacity and update
ratio. The plot trends were similar to the ones reported in
this article. For the first experiment we fixed C = 30%
and U = 65%. We intentionally chose a high workload so
as to see if the techniques studied successfully handled
the extreme cases. The first observation is that MECH
and EA outperformed other techniques by considerable
amounts. Second, DA converged to a better solution
quality under certain problem instances than EA. This is
inline with the general trends of DA. It outperforms EA
when the agents are bidding aggressively. Some
interesting observations were also recorded, such as, all
but GRA and Greedy showed initial loss in OTC savings
with the initial number of site increase in the system, as
much as 5% loss was recorded in case of MECH with
only a 40 site increase. GRA and Greedy showed an
initial gain since with the increase in the number of sites,
the population permutations increase exponentially, but
with the further increase in the number of sites this
phenomenon is not so observable as all the essential
objects are already replicated. The top performing
techniques (DA, EA, Aε-Star and MECH) showed an
almost constant performance increase (after the initial
loss in OTC savings). This is because by adding a site
(server) in the network, we introduce additional traffic
(local requests), together with more storage capacity
available for replication. All four equally cater for the
two diverse effects. GRA also showed a similar trend but
maintained lower OTC savings. This was in line with the
claims presented in [22] and [26].

To observe the effect of increase in the number of
objects in the system, we chose a softer workload with C
= 15% and U = 40%. The intention was to observe the
trends for all the algorithms under various workloads.
The increase in the number of objects has diverse effects
on the system as new read/write patterns (users are
offered more choices) emerge, and also the increase in
the strain on the overall capacity of the system (increase
in the number of replicas). An effective algorithm should
incorporate both the opposing trends. From the plot, the
most surprising result came from GRA and Greedy. They
dropped their savings from 62% to 2% and 69% to 3%,
respectively. This was contradictory to what was
reported in [26] and [30]. But there the authors had used
a uniformly distributed link cost topology, and their
traffic was based on the Zipf distribution [33]. While the
traffic access logs of the World Cup 1998 are more or
less double-Pareto in nature. In either case the exploits
and limitations of the technique under discussion are
obvious. The plot also shows a near identical
performance by Aε-Star, DA and Greedy. The relative
difference among the three techniques is less than 3%.
However, Aε-Star did maintain its domination. From the
plots the supremacy of EA and MECH is observable.

Next, we observe the effects of system capacity
increase. An increase in the storage capacity means that a
large number of objects can be replicated. Replicating an
object that is already extensively replicated, is unlikely to
result in significant traffic savings as only a small portion
of the servers will be affected overall. Moreover, since
objects are not equally read intensive, increase in the
storage capacity would have a great impact at the
beginning (initial increase in capacity), but has little
effect after a certain point, where the most beneficial
ones are already replicated. This is observable in Figure
6, which shows the performance of the algorithms. GRA
once again performed the worst. The gap between all
other approaches was reduced to within 15% of each
other. DA and MECH showed an immediate initial
increase (the point after which further replicating objects
is inefficient) in its OTC savings, but afterward showed a
near constant performance. GRA although performed the
worst, but observably gained the most OTC savings
(53%) followed by Greedy with 34%. Further
experiments with various update ratios (5%, 10%, and
20%) showed similar plot trends. It is also noteworthy
(plots not shown in this paper due to space restrictions)
that the increase in capacity from 13% to 24%, resulted
in 4.3 times (on average) more replicas for all the
algorithms.

DISCRIMINATORY ALGORITHMIC MECHANISM... Informatica 31 (2007) 105–119 115

No. of Sites

Performance
N=2000, C=30%, U=65%

0 50 100 150 200 250 300 350 400 450 500
50%
52%
54%
56%
58%
60%
62%
64%
66%
68%
70%
72%
74%
76%
78%
80%
82%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

No. of Objects

O
TC

 S
av

es

Performance
M=500, C=15%, U=40%

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5%
10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Figure 4: OTC savings versus number of sites. Figure 5: OTC savings versus number of objects.

Capacity of Sites

Performance
N=2000, M=500, U=10%

10% 14% 18% 22% 26% 30% 34% 38%
16%
20%
24%
28%
32%
36%
40%
44%
48%
52%
56%
60%
64%
68%
72%
76%
80%
84%
88%
92%
96%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Reads

O
TC

 S
av

es

Performance
N=2000, M=500, C=30%

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Figure 6: OTC savings versus capacity. Figure 7: OTC savings versus reads.

Updates

Performance
N=2000, M=500, C=70%

40% 42% 44% 46% 48% 50% 52% 54% 56% 58% 60%
8%

16%

24%

32%

40%

48%

56%

64%

72%

80%

Legend
Greedy
GRA
Aε-Star
DA
EA
MECH

Execution Time Analysis
7%

68%

21%

3%

Replica
Placement

Shortest Paths

Miscellaneous

Data Gathering

Figure 8: OTC savings versus updates. Figure 9: Execution time components.

Next, we observe the effects of increase in the read
and update (write) frequencies. Since these two
parameters are complementary to each other, we describe
them together. In both the setups the number of sites and

objects were kept constant. Increase in the number of
reads in the system would mean that there is a need to
replicate as many object as possible (closer to the users).
However, the increase in the number of updates in the

116 Informatica 31 (2007) 105–119 S.U. Khan et al.

Problem Size Greedy GRA Aε-Star DA EA MECH
M=20, N=50 69.76 92.57 97.02 24.66 39.29 25.24
M=20, N=100 76.12 96.31 102.00 26.97 40.91 26.35
M=20, N=150 78.11 100.59 113.79 31.98 53.85 35.64
M=30, N=50 94.33 125.93 139.98 38.20 58.98 38.05
M=30, N=100 108.18 124.20 148.03 38.29 62.97 39.60
M=30, N=150 134.97 148.49 178.84 44.97 67.74 42.02
M=40, N=50 126.25 153.93 198.11 42.34 75.88 44.66
M=40, N=100 134.06 168.09 236.48 43.54 76.27 46.31
M=40, N=150 140.30 204.12 270.10 47.02 82.44 48.41

Table 3: Running time in seconds [C=20%, U=25%].

Problem Size Greedy GRA Aε-Star DA EA MECH
M=300, N=1450 206.26 326.82 279.45 95.64 178.9 97.98
M=300, N=1500 236.61 379.01 310.12 115.19 185.15 113.65
M=300, N=1550 258.45 409.17 333.03 127.1 191.24 124.73
M=300, N=2000 275.63 469.38 368.89 143.94 197.93 142.16
M=400, N=1450 321.6 492.1 353.08 176.51 218.15 176.90
M=400, N=1500 348.53 536.96 368.03 187.26 223.56 195.41
M=400, N=1550 366.38 541.12 396.96 192.41 221.1 214.55
M=400, N=2000 376.85 559.74 412.17 208.92 245.47 218.73
M=500, N=1450 391.55 659.39 447.97 224.18 274.24 235.17
M=500, N=1500 402.2 660.86 460.44 246.43 284.63 259.56
M=500, N=1550 478.1 689.44 511.69 257.96 301.72 266.42
M=500, N=2000 485.34 705.07 582.71 269.45 315.13 262.68

Table 4: Running time in seconds [C=35%, U=35%].

Problem Size Greedy GRA Aε-Star DA EA MECH
N=150, M=20 [C=20%,U=25%] 70.27 69.11 73.96 69.91 72.72 74.40
N=200, M=50 [C=20%,U=20%] 73.49 69.33 76.63 71.90 77.11 75.43
N=300, M=50 [C=25%,U=5%] 69.63 63.45 69.85 67.66 69.80 70.36
N=300, M=60 [C=35%,U=5%] 71.15 64.95 71.51 69.26 70.38 74.03
N=400, M=100 [C=25%,U=25%] 67.24 61.74 71.26 68.67 70.49 73.26
N=500, M=100 [C=30%,U=35%] 65.24 60.77 70.55 69.82 70.87 72.73
N=800, M=200 [C=25%,U=15%] 66.53 65.90 69.33 68.95 70.06 72.95
N=1000, M=300 [C=25%,U=35%] 69.04 63.17 69.98 69.36 71.28 72.44
N=1500, M=400 [C=35%,U=50%] 69.98 62.61 70.41 72.09 72.26 72.78
N=2000, M=500 [C=10%,U=60%] 66.34 62.70 71.33 67.67 68.41 74.06

Table 5: Average OTC (%) savings under some problem instances.

system requires the replicas be placed as close as to the
primary site as possible (to reduce the update broadcast).
This phenomenon is also interrelated with the system
capacity, as the update ratio sets an upper bound on the
possible traffic reduction through replication. Thus, if we
consider a system with unlimited capacity, the “replicate
everywhere anything” policy is strictly inadequate. The
read and update parameters indeed help in drawing a line
between good and marginal algorithms. The plots in
Figures 7 and 8 show the results of read and update
frequencies, respectively. A clear classification can be
made between the algorithms. Aε-Star, DA, EA, Greedy
and MECH incorporate the increase in the number of
reads by replicating more objects and thus savings
increase up to 89%. Aε-Star gained the most of the OTC
savings of up to 47%. To understand why there is such a
gap in the performance between the algorithms, we
should recall that GRA specifically depend on the initial
population (for details see [26]). Moreover, GRA
maintains a localized network perception. Increase in
updates result in objects having decreased local

significance (unless the vicinity is in close proximity to
the primary location). On the other hand, Aε-Star, DA,
EA, Greedy never tend to deviate from their global view
of the problem domain.

Lastly, we compare the termination time of the
algorithms. Before we proceed, we would like to clarify
our measurement of algorithm termination timings. The
approach we took was to see if these algorithms can be
used in dynamic scenarios. Thus, we gather and process
data as if it was a dynamic system. The average
breakdown of the execution time of all the algorithms
combined is depicted in Figure 9. There 68% of all the
algorithm termination time was taken by the repeated
calculations of the shortest paths. Data gathering and
dispersion, such as reading the access frequencies from
the processed log, etc. took 7% of the total time. Other
miscellaneous operations including I/O were recorded to
carry 3% of the total execution time. From the plot it is
clear that a totally static setup would take no less that
21% of the time depicted in Tables 3 and 4.

Various problem instances were recorded with C =

DISCRIMINATORY ALGORITHMIC MECHANISM... Informatica 31 (2007) 105–119 117

Algorithms

Load Variance (Median)
N=2000, M=500, C=15%

0

4%

8%

12%

16%

20%

24%

28%

32%

36%

40%

Greedy GRA Aε-Star DA EA MECH

Maximum
Minimum
75%
25%
Median
Outliers
Extremes
Grand median

Algorithms

O
TC

 S
av

es

Load Variance (Mean)
N=2000, M=500, C=15%

0

4%

8%

12%

16%

20%

24%

28%

32%

36%

40%

Greedy GRA Aε-Star DA EA MECH

Mean+1.5*Std Dev
Mean-1.5*Std Dev
Mean+Std Dev
Mean-Std Dev
Mean
Outliers
Extremes
Grand mean

Figure 10: Median load variance. Figure 11: Mean load variance.

Algorithms

Capacity Variance (Median)
N=2000, M=500, U=10%

16%

24%

32%

40%

48%

56%

64%

72%

80%

88%

96%

Greedy GRA Aε-StarDA EA MECH

Maximum
Minimum
75%
25%
Median
Outliers
Extremes
Grand median

Algorithms

O
TC

 S
av

es

Capacity Variance (Mean)
N=2000, M=500, U=10%

16%

24%

32%

40%

48%

56%

64%

72%

80%

88%

96%

Greedy GRA Aε-StarDA EA MECH

Mean+1.5*Std Dev
Mean-1.5*Std Dev
Mean+Std Dev
Mean-Std Dev
Mean
Outliers
Extremes
Grand mean

Figure 12: Median capacity variance. Figure 13: Mean capacity variance.

20%, 35% and U = 25%, 35%. Each problem instance
represents the average recorded time over all the 45
topologies and 13 various access logs. The entries in bold
represent the fastest time recorded over the problem
instance. It is observable that MECH and DA terminated
faster than all the other techniques, followed by EA,
Greedy, Aε-Star and GRA. If a static environment was
considered, MECH with the maximum problem instance
would have terminated approximately in 55.16 seconds
(21% of the algorithm termination time).

In summary, based on the solution quality alone, the
algorithms can be classified into four categories: 1) Very
high performance: EA and MECH, 2) high performance:
Greedy and DA, 3) medium-high performance: Aε-Star,
and finally 4) mediocre performance: GRA. Considering
the execution time, MECH and DA did extremely well,
followed by EA, Greedy, Aε-Star, and GRA.

Table 5 shows the quality of the solution in terms of
OTC percentage for 10 problem instances (randomly
chosen), each being a combination of various numbers of
sites and objects, with varying storage capacity and
update ratio. For each row, the best result is indicated in

bold. The proposed MECH algorithm steals the show in
the context of solution quality, but Aε-Star, EA and DA
do indeed give a good competition, with a savings within
5%-10% of MECH.

4.3 Comparative Supergame Analysis
Here, we present some supplementary results

regarding the supergame that strengthen our comparative
analysis claims provided in Section 4.2. We show the
relative performance of the techniques with load and
storage capacity variance. The plots in Figures 10-13
show the recorded performances. All the plots
summarize the measured performance with varying
parameters observed over a time period of 86 simulation
days (this is the entire time period of the logs that are
available for the World Cup 1998 web server). Notice
that the supergame setup is tested over all the available
access logs. We are mostly interested in measuring the
median and mean performances of the algorithms. With
load variance MECH edges over EA with a savings of
39%. The plot also shows that nearly every algorithm
performed well with a grand median of 15.9%. The

118 Informatica 31 (2007) 105–119 S.U. Khan et al.

graphs are self explanatory in nature, and also capture the
outliners and extreme points. The basic exercise in
plotting these results is to see which algorithms perform
consistently over an extended period of time. GRA for
example, records the lowest extremes, and hardly any
outliners. On the other hand the proposed MECH’s
performance is captured in a small interval, with high
median and mean OTC savings. The readers may notice
the difference in the performance of the algorithms with
load and capacity variances. This is because load
variance captures all the possible combinations of read
and update parameters. For example, in a network with
100% updates there will hardly be any measurable OTC
Savings. Thus, Figures 10 and 11 show mediocre OTC
savings, simply because they encapsulated the
performance of the networks where update ratio was
extremely high.

5 Related Work
The data replication problem as presented in Section

2 is an extension of the classical file allocation problem
(FAP). Chu [11] studied the file allocation problem with
respect to multiple files in a multiprocessor system.
Casey [10] extended this work by distinguishing between
updates and read file requests. Eswaran [14] proved that
Casey’s formulation was NP complete. In [28] Mahmoud
et al. provide an iterative approach that achieves good
solution quality when solving the FAP for infinite server
capacities. A complete although old survey on the FAP
can be found in [13]. Apers in [4] considered the data
allocation problem (DAP) in distributed databases where
the query execution strategy influences allocation
decisions. In [24] the authors proposed several
algorithms to solve the data allocation problem in
distributed multimedia databases (without replication),
also called as video allocation problem (VAP).

Most of the research papers outlined in [13] aim at
formalizing the problem as an optimization one,
sometimes using multiple objective functions. Network
traffic, server throughput and response time exhibited by
users are considered for optimization. Although a lot of
effort was devoted in providing comprehensive models,
little attention has been paid to good heuristics for
solving this complex problem. Furthermore access
patterns are assumed to remain static and solutions in the
dynamic case are obtained by re-executing a time
consuming mathematical programming technique.

Some on-going work is related to dynamic
replication of objects in distributed systems when the
read-write patterns are not known apriori. Awerbuch’s et
al. work in [7] is significant from a theoretical point of
view, but the adopted strategy for commuting updates
(object replicas are first deleted), can prove difficult to
implement in a real-life environment. In [33] Wolfson et
al. proposed an algorithm that leads to optimal single file
replication in the case of a tree network. The
performance of the scheme for general network
topologies is not clear though. Dynamic replication
protocols were also considered under the Internet
environment. Heddaya et al. [19] proposed protocols that

load balance the workload among replicas. In [31],
Rabinovich et al. proposed a protocol for dynamically
replicating the contents of an ISP (Internet Service
Provider) in order to improve client-server proximity
without overloading any of the servers. However updates
were not considered.

Our work differs from all the above in: 1) Taking
into account the more pragmatic scenario in today’s
distributed information environments, we tackle the case
of allocating replicas so as to minimize the network
traffic under storage constraints with “read from the
nearest” and “update through the primary server”
policies, and 2) in using game theoretical techniques.

6 Concluding Remarks
This paper proposed a game theoretical

discriminatory mechanism (MECH) for fine-grained data
replication in large-scale distributed computing systems
(e.g. the Internet). In MECH we employ agents who
represent data objects to compete for the limited
available storage space on web servers to acquire the
rights to replicate. MECH uses a unique concept of
supergame in which these agents continuously compete
in a non-cooperative environment. MECH allows the
designers the flexibility to monitor the behavior and
strategies of these agents and fine-tune them so as to
attain a given objective. In case of the data replication
problem, the object for these agents is to skillfully
replicate data objects so that the total object transfer cost
is minimized.

MECH was compared against some well-known
techniques, such as: greedy, branch and bound, game
theoretical auctions and genetic algorithms. To provide a
fair comparison, the assumptions and system parameters
were kept the same in all the approaches. The
experimental results revealed that MECH outperformed
the five widely cited and powerful techniques in both the
execution time and solution quality.

In summary, MECH exhibited 5%-10% better
solution quality and 25%-35% savings in the algorithm
termination timings.

References
[4] V. Almeida, A. Bestavros, M. Crovella and A. de

Oliveria, “Characterizing reference locality in the
WWW,” in Proc. of International Conference on
Parallel and Distributed Information Systems,
1996, pp. 92-103.

[5] P. Apers, “Data Allocation in Distributed Database
Systems,” ACM Trans. Database Systems, 13(3),
pp. 263-304, 1988.

[6] M. Arlitt and T. Jin, “Workload characterization of
the 1998 World Cup Web Site,” Tech. report,
Hewlett Packard Lab, Palo Alto, HPL-1999-
35(R.1), 1999.

[7] B. Awerbuch, Y. Bartal and A. Fiat, “Competitive
Distributed File allocation,” in Proc. 25th ACM
STOC, Victoria, B.C., Canada, 1993, pp. 164-173.

DISCRIMINATORY ALGORITHMIC MECHANISM... Informatica 31 (2007) 105–119 119

[8] L. Breslau, P. Cao, L. Fan, G. Philips and S.
Shenker, “Web caching and Zipf-like distributions:
Evidence and implications,” in Proc. of IEEE
INFOCOM, 1999, pp. 126-134.

[9] K. Calvert, M. Doar, E. Zegura, “Modeling Internet
Topology,” IEEE Communications, 35(6), pp. 160-
163, 1997.

[10] R. Casey, “Allocation of Copies of a File in an
Information Network,” in Proc. Spring Joint
Computer Conf., IFIPS, 1972, pp. 617-625.

[11] W. Chu, “Optimal File Allocation in a Multiple
Computer System,” IEEE Trans. on Computers, C-
18(10), pp. 885-889, 1969.

[12] E. Clarke, “Multi Pricing of Public Goods,” Public
Choice, vol. 11, pp. 17-33, 1971.

[13] L. Dowdy and D. Foster, “Comparative Models of
the File Assignment problem,” ACM Computing
Surveys, 14(2), pp. 287-313, 1982.

[14] K. Eswaran, “Placement of Records in a File and
File Allocation in a Computer Network,”
Information Processing Letters, pp. 304-307, 1974.

[15] S. Floyd and V. Paxson, “Difficulties in Simulating
the Internet,” IEEE/ACM Trans. Networking, 9(4),
pp. 253-285, 2001.

[16] J. Green and J. Laffont, “Characterization of
Satisfactory Mechanisms for the revelation of
Preferences for Public Goods,” Econometrica, pp.
427-438, 1977.

[17] T. Groves, “Incentives in Teams,” Econometrica,
pp. 617-631, 1973.

[18] D. Grosu and A. Chronopoulos, “Algorithmic
Mechanism Design for Load Balancing in
Distributed Systems,” IEEE Trans. Systems, Man
and Cybernatics B, 34(1), pp. 77-84, 2004.

[19] A. Heddaya and S. Mirdad, “WebWave: Globally
Load Balanced Fully Distributed Caching of Hot
Published Documents,” in Proc. 17th International
Conference on Distributed Computing Systems,
Baltimore, Maryland, 1997, pp. 160-168.

[20] S. Jamin, C. Jin, Y. Jin, D. Riaz, Y. Shavitt and L.
Zhang, “On the Placement of Internet
Instrumentation,” in Proc. of the IEEE INFOCOM,
2000, pp. 295-304.

[21] S. Jamin, C. Jin, T. Kurc, D. Raz and Y. Shavitt,
“Constrained Mirror Placement on the Internet,” in
Proc. of the IEEE INFOCOM, 2001, pp. 31-40.

[22] S. Khan and I. Ahmad, “Heuristic-based
Replication Schemas for Fast Information Retrevial
over the Internet,” in Proc. of 17th International
Conference on Parallel and Distributed Computing
Systems, San Fransisco, U.S.A., 2004, pp. 278-283.

[23] S. Khan and I. Ahmad, “A Powerful Direct
Mechanism for Optimal WWW Content
Replication,” in Proc. of 19th IEEE International
Parallel and Distributed Processing Symposium,
Denver, U.S.A., 2005, p. 86.

[24] Y. Kwok, K. Karlapalem, I. Ahmad and N. Pun,
“Design and Evaluation of Data Allocation
Algorithms for Distributed Database Systems,”
IEEE Journal on Selected areas in Communication,
14(7), pp. 1332-1348, 1996.

[25] B. Li, M. Golin, G. Italiano and X. Deng, “On the
Optimal Placement of Web Proxies in the Internet,”
in Proc. of the IEEE INFOCOM, 2000, pp. 1282-
1290.

[26] T. Loukopoulos, and I. Ahmad, “Static and
Adaptive Distributed Data Replication using
Genetic Algorithms,” Journal of Parallel and
Distributed Computing, 64(11), pp. 1270-1285,
2004.

[27] R. MacAfee and J. McMillan, “Auctions and
Bidding,” Journal of Economic Literature, vol. 25,
pp. 699-738, 1987.

[28] S. Mahmoud and J. Riordon, “Optimal Allocation
of Resources in Distributed Information Networks,”
ACM Trans. on Database Systems, 1(1), pp. 66-78,
1976.

[29] N. Nisan and A. Ronen, “Algorithmic Mechanism
Design,” in Proc. of 31st ACM STOC, 1999, pp.
129-140.

[30] L. Qiu, V. Padmanabhan and G. Voelker, “On the
Placement of Web Server Replicas,” in Proc. of the
IEEE INFOCOM, 2001, pp. 1587-1596.

[31] M. Rabinovich, “Issues in Web Content
Replication,” Data Engineering Bulletin, 21(4), pp.
21-29, 1998.

[32] Y. Rekhter and T. Li, “A Border Gateway Protocol
4 (BGP-4),” Internet Engineering Task Force, RFC
1771, 1995.

[33] O. Wolfson, S. Jajodia and Y. Hang, “An Adaptive
Data Replication Algorithm,” ACM Trans. on
Database Systems, 22(4), pp. 255-314, 1997.

[34] G. Zipf, Human Behavior and the Principle of
Least-Effort, Addison-Wesley, 1949.

120 Informatica 31 (2007) 105–119 S.U. Khan et al.

