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Replicating data over geographically dispersed web servers reduces network traffic, server load, and 
more importantly the user-perceived access delays. This paper proposes a unique replica placement 
technique using the concepts of a supergame. The supergame allows the agents who represent the data 
objects to continuously compete for the limited available server memory space, so as to acquire the 
rights to place data objects at the servers. At any given instance in time, the supergame is represented 
by a game which is a collection of subgames, played concurrently at each server in the system. We 
derive a resource allocation mechanism which acts as a platform at the subgame level for the agents to 
compete. This approach allows us to transparently monitor the actions of the agents, who in a non-
cooperative environment strategically place the data objects to reduce the user access time, latency, 
which in turn adds reliability and fault-tolerance to the system. We show that this mechanism exhibits 
Nash equilibrium at the subgame level which in turn conforms to games and supergame Nash 
equilibrium, respectively, guaranteeing the entire system to be in a continuous self-evolving and self-
repairing mode. The mechanism is extensively evaluated against some well-known algorithms, such as: 
greedy, branch and bound, game theoretical auctions and genetic algorithms. The experimental results 
reveal that the mechanism provides excellent solution quality, while maintaining fast execution time. 

Povzetek: Opisana je metoda za multipliciranje internetnih strani. 

 

1 Introduction 
Web replication aims to reduce network traffic, 

server load, and user-perceived delay by replicating 
popular content on geographically distributed web 
servers (sites). Specifically, a replica placement 
algorithm aims to strategically select replicas (or hosting 
services) among a set of potential sites such that some 
objective function is optimized under a given traffic 
pattern. 

One might argue that the ever decreasing price of 
memory renders the optimization or fine tuning of replica 
placement a “moot point”. Such a conclusion is ill-
guided for the following two reasons. First, studies ([4], 
[8], etc.) have shown that users’ access hit ratio grows in 
log-like fashion as a function of the server memory size.  
Second, the growth rate of Web content is much higher 
than the rate with which memory sizes for the servers are 
likely to grow. The only way to bridge this widening gap 
is through efficient replica placement and management 
algorithms.  

The decision where to place the replicated data must 
trade off the cost of accessing the data, which is reduced 
by additional copies, against the cost of storing and 
updating the additional copies. Discussions in [20], [22], 
[25], [26], [30], etc. reveal that client(s) experience 
reduced access latencies provided that data is replicated 

within their close proximity. However, this is applicable 
in cases when only read accesses are considered. If 
updates of the contents are also under focus, then the 
locations of the replicas have to be: 1) in close proximity 
to the client(s), and 2) in close proximity to the primary 
(assuming a broadcast update model) copy. Therefore, 
efficient and effective replication schemas strongly 
depend on how many replicas to be placed in the system, 
and more importantly where.  

The Internet can be considered as a large-scale 
distributed computing system. We abstract this 
distributed computing system as an agent-based model, 
where each agent is responsible for (or represents) a data 
object. Each agent competes in a non-cooperative 
environment for the limited available storage space at 
each server so as to acquire the rights to place the data 
object which they represent. Motivated by their self 
interests and the fact that the agents do not have a global 
view of the distributed system, they concentrate on local 
optimization. In such systems there is no a-priori 
motivation for cooperation and the agents may 
manipulate the outcome of the replica placement 
algorithm (resource allocation mechanism or simply a 
mechanism) in their interests by misreporting critical data 
such as objects’ popularity. To cope with these selfish 
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Symbols Meaning 
M Total number of sites in the network. 
N Total number of objects to be replicated. 
Ok k-th object. 
ok Size of object k. 
Si

 i-th site. 
si Size of site i. 
rk

i  Number of reads for object k from site i. 
Rk

i Aggregate read cost of rk
i. 

wk
i  Number of writes for object k from site i. 

Wk
i  Aggregate write cost of wk

i. 
NNk

i  Nearest neighbor of site i holding object k. 
c(i,j)  Communication cost between sites i and j. 
Pk  Primary site of the k-th object. 
Rk Replication schema of object k. 
Coverall  Total overall data transfer cost. 
LS A list of sites that can replicate an object. 
Li A list of objects that can be replicated onto site Si. 
Bk

i Benefit of replicating object k onto site Si. 
Bk Temporary variable to store object valuations. 
bi Available space at site Si.  
v Valuation of an agent for an object. 
SGRG Self Generate Random Graphs. 
GT-ITM Georgia Tech Internetwork Topology Models. 
GT-ITM PR GT-ITM Pure Random. 
GT-ITM W GT-ITM Waxman. 
SGFCG Self Generated Fully Connected Graphs. 
SGFCGUD SGFCG Uniform Distribution. 
SGFCGRD  SGFCG Random Distribution. 
SGRG Self Generated Random Graphs. 
SGRGLND  SGRG Lognormal Distribution. 
DRP Data replication problem. 
OTC Object transfer cost (network communication cost). 

 
Table 1: Notations and their meanings. 

agents, new mechanisms are to be conceived. The goal of 
a mechanism should be to force the agents not to 
misreport and always follow the rules. 

This paper uses the concepts of game theory to 
formally specify a mechanism with selfish agents. Game 
theory assumes that the participating agents have rational 
thoughts that enable them to express their preferences 
over the set of the possible outcomes of the mechanism. 
In a mechanism, each agent’s benefit or loss is quantified 
by a function called valuation. This function is private 
information for each agent and is very much possible that 
if the agents act selfishly, they can misreport their 
valuations. The mechanism asks the agents to report their 
valuations, and then it chooses an outcome that 
maximizes/minimizes a given objective function. Of 
course the grand problem is to stop the agents from 
misreporting. 

In this paper, we will apply the derived mechanism 
to the fine grained data replication problem (DRP) over 
the Internet. In essence we sculpt the DRP as a 
supergame that is played infinitely during the entire 
lifespan of the system. In a discrete time instance t, the 
supergame is represented by a game, which is the 
collection of independent subgames that are played 
concurrently at each site of the distributed system. It is in 
these subgames that the actual mechanism can be seen to 
operate.   

The major results of this paper are as follows: 
1. We derive a general-purpose distributed 

mechanism that allows selfish agents to compete 
at each site in the distributed computing system 
for the rights to replicate objects in a non-
cooperative environment. 

2. We show that the concurrently played subgames 
exhibit Nash equilibrium which in turn 
guarantees Nash equilibrium for the games and 
the supergame. 

3. The mechanism is compared against some well-
known techniques, such as: greedy, branch and 
bound, genetic and game theoretical auctions, 
employing various internet topology generators 
and real user access data. The experimental 
results reveal that the mechanism provides 
excellent solution quality, while maintaining fast 
execution time. 

This paper is organized as follows. Section 2 
formulates the DRP. Section 3 describes the mechanism. 
The experimental results, related work and concluding 
remarks are provided in Sections 4, 5 and 6, respectively. 

2 Formal Description of the Data 
Replication Problem 

The most frequently used acronyms are recorded in 
Table 1. 

Consider a distributed system comprising M sites, 
with each site having its own processing power, memory 
(primary storage) and media (secondary storage). Let Si 
and si be the name and the total storage capacity (in 
simple data units e.g. blocks), respectively, of site i 
where 1 ≤ i ≤ M. The M sites of the system are connected 

by a communication network. A link between two sites Si 

and Sj (if it exists) has a positive integer c(i,j) associated 
with it, giving the communication cost for transferring a 
data unit between sites Si and Sj. If the two sites are not 
directly connected by a communication link then the 
above cost is given by the sum of the costs of all the links 
in a chosen path from site Si to the site Sj. Without the 
loss of generality we assume that c(i,j) = c(j,i). This is a 
common assumption (e.g. see [20], [22], [26], [30], etc.).  
Let there be N objects, each identifiable by a unique 
name Ok and size in simple data unites ok where 1 ≤ k ≤ 
N. Let rk

i and wk
i be the total number of reads and writes, 

respectively, initiated from Si for Ok during a certain time 
period t. This time period t determines when to initiate a 
replica placement algorithm (in our case the mechanism). 
Note that this time period t is the only parameter that 
requires human intervention. However, in this paper we 
use analytical data that enables us to effectively predict 
the time interval t (see Section 3.4. for details).  

Our replication policy assumes the existence of one 
primary copy for each object in the network. Let Pk, be 
the site which holds the primary copy of Ok, i.e., the only 
copy in the network that cannot be de-allocated, hence 
referred to as primary site of the k-th object. Each 
primary site Pk, contains information about the whole 
replication scheme Rk of Ok. This can be done by 
maintaining a list of the sites where the k-th object is 
replicated at, called from now on the replicators of Ok. 
Moreover, every site Si stores a two-field record for each 
object. The first field is its primary site Pk and the second 
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the nearest neighborhood site NNk
i of site Si which holds 

a replica of object k. In other words, NNk
i is the site for 

which the reads from Si for Ok, if served there, would 
incur the minimum possible communication cost, i.e., 
NNk

i = {Site j | j∈Rk ^ min c(i,j)}. It is possible that NNk
i = 

Si, if Si is a replicator or the primary site of Ok. Another 
possibility is that NNk

i = Pk, if the primary site is the 
closest one holding a replica of Ok. When a site Si reads 
an object, it does so by addressing the request to the 
corresponding NNk

i. For the updates we assume that 
every site can update every object. Updates of an object 
Ok are performed by sending the updated version to its 
primary site Pk, which afterwards broadcasts it to every 
site in its replication scheme Rk.  

For the DRP under consideration, we are interested 
in minimizing the total network transfer cost due to 
object movement, i.e. the Object Transfer Cost (OTC). 
The communication cost of the control messages has 
minor impact to the overall performance of the system, 
therefore, we do not consider it in the transfer cost 
model, but it is to be noted that incorporation of such a 
cost would be a trivial exercise. There are two 
components affecting OTC. The first component of OTC 
is due to the read requests.  Let Rk

i denote the total OTC, 
due to Sis’ reading requests for object Ok, addressed to 
the nearest site NNk

i. This cost is given by the following 
equation:  

( ),i i i
k k k kR r o c i NN= .                (1) 

The second component of OTC is the cost arising 
due to the writes. Let Wk

i be the total OTC, due to Sis’ 
writing requests for object Ok, addressed to the primary 
site Pk. This cost is given by the following equation:  

 ( ) ( )
,

, ,i i i
k k k k k

j R j ik
W w o c i P c NN j

∀ ∈ ≠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= + ∑ .  (2) 

Here, we made the indirect assumption that in order 
to perform a write we need to ship the whole updated 
version of the object. This of course is not always the 
case, as we can move only the updated parts of it 
(modeling such policies can also be done using our 
framework). The cumulative OTC, denoted as Coverall, 
due to reads and writes is given by:  

          ( )1 1
M N i i

overall k ki kC R W= == +∑ ∑ .                (3) 

Let Xik=1 if Si holds a replica of object Ok, and 0 
otherwise. Xiks define an M×N replication matrix, named 
X, with boolean elements. Equation 3 is now refined to:  
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∑
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Sites which are not the replicators of object Ok 
create OTC equal to the communication cost of their 
reads from the nearest replicator, plus that of sending 
their writes to the primary site of Ok . Sites belonging to 
the replication scheme of Ok, are associated with the cost 
of sending/receiving all the updated versions of it. Using 
the above formulation, the DRP can be defined as:  

Find the assignment of 0, 1 values in the X matrix 
that minimizes Coverall, subject to the storage capacity 
constraint:  

( )1   1N i
ik kk X o s i M= ≤ ∀ ≤ ≤∑ , 

and subject to the primary copies policy: 
( )1  1p kk

X k N= ∀ ≤ ≤ . 

The minimization of Coverall will have two impacts on 
the distributed system under consideration: First, it 
ensures that the object replication is done in such a way 
that it minimizes the maximum distance between the 
replicas and their respective primary objects. Second, it 
ensures that the maximum distance between an object k 
and the user(s) accessing that object is also minimized. 
Thus, the solution aims for reducing the overall OTC of 
the system. In the generalized case, the DRP has been 
proven to be NP-complete [26]. 

3 The Mechanism 
In game theory, usually mechanisms refer to 

auctions. Mechanisms are used to make allocation and 
pricing decisions in a competitive environment where all 
involved parties act strategically in their own best 
interests. In recent years, many areas of mathematical 
sciences research started to focus on strategic behavior 
and, consequently, we are witnessing the use of 
mechanisms in areas where pure optimization techniques 
were dominant in the past. For example, in the context of 
distributed systems, such mechanisms have been applied 
to the scheduling problems [18], [29], etc.  

One has to be careful when incorporating a “one-
size-fits-all” mechanism model as a piece of solution to a 
problem. Most of the mechanisms were developed and 
analyzed in microeconomic theory abstraction. Thus, 
assumptions underlying desirable properties of some 
mechanisms could be oversimplifying or even 
contradictory to the assumptions underlying a problem 
that plans to incorporate such mechanisms in its solution. 

3.1 Discriminatory Mechanism 
In this paper we limit our analysis to one-shot (single 

round) mechanisms in which every agent demands a 
specific entity. Under our DRP formulation we aim to 
identify a replica schema that effectively minimizes the 
OTC. We propose a one-shot discriminatory mechanism, 
where the agents compete for memory space at sites so 
that they can acquire the rights to place replicas. The 
mechanism described in this paper is called 
discriminatory because not all winning agents pay the 
same amount. In essence it works as follows: In a 
discriminatory mechanism, sealed-bids are sorted from 
high to low, and rights to the available memory space are 
awarded at the current highest bid price until the 
(memory) supply is exhausted. The most important point 
to remember is that the winning agents can (and usually 
do) pay different prices. 

It is to be noted that in a discriminatory mechanism, 
an agent always bids below its valuation for the entity 
[16]. If the agent bids at or above its value, then its 
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payment equals or exceeds its value if it wins, and 
therefore its expected profit will be zero or negative. 
Since bids are below the agents’ value, the 
discriminatory mechanism is not a demand reveling 
mechanism [27].  

In a discriminatory mechanism, there is no sequential 
interaction among agents [27]. Therefore, the mechanism 
environment is non-cooperative in nature. Agents submit 
the bids only once. Agents are trading between bidding 
high and winning for certain and bidding low and 
benefiting more if the bid wins. In [12] the authors have 
shown that the discriminatory mechanism is a 
generalization of the first price sealed-bid auction which 
is strategically equivalent to the Dutch auction. Unlike in 
the second price sealed-bid and the English auctions, it is 
not a dominant strategy for a bidder in the first price 
sealed-bid auction to bid its valuation for the entity. 
However, the theoretically optimal bidding strategy in 
both the first price sealed-bid and the Dutch auctions is 
the same for any given bidder. Since discriminatory 
auctions are generalization of the first price sealed-bid 
auctions, the same argument (about the dominating 
strategies) holds [17]. Therefore, we are confined to a 
probabilistic analysis of the discriminatory mechanism.  

3.2 Preliminaries 
 
Definition 1 (Supergame): Generally a game in which 
some simple game is played more than once (often 
infinitely many times); the simple game is called the 
“stage” game or the “constituent” game __ a game 
repeated infinitely is called a supergame. If Γ represents 
a game then Γ(∞) represents a supergame.  
 
Definition 2 (Stage game (subgame)): Frequently it is 
the case that a game naturally decomposes into smaller 
games. This is formalized by the notion of stage game 
(more popularly known as subgames).  
 
Remarks __ We explain this concept using decision trees 
[27]. Let x be a node which belongs to the set of all the 
nodes, X, in a tree, K, and let Kx be the subtree of K rising 
at x. If it is the case that ever information set of Γ either 
is completely contained in Kx or is disjoint from Kx, then 
the restriction of Γ to Kx constitutes a game of its own, to 
be called subgame Γx starting at x. This decomposition 
also affects strategies. Let b represent the strategy set for 
any player i, then the strategy combination b decomposes 
into a pair (b-x, bx) where bx is a strategy combination in 
Γx and b-x is a strategy combination for the remaining part 
of the game (the truncated game). If it is known that bx 
will be played in Γx, then, in order to analyze Γ it suffices 
to analyze the truncated game Γ-x(bx) which results from 
Γ. 

Interestingly, the concept connecting supergame, 
games, and subgames is the Nash equilibrium.   
 
Definition 3 (Nash equilibrium): If there is a set of 
strategies with the property that no player can benefit by 

changing her strategy while the other players keep their 
strategies unchanged, then that set of strategies and the 
corresponding payoffs constitute the Nash equilibrium. 
 
Definition 4 (Equilibrium path): For a given (Nash) 
equilibrium an information set is on the equilibrium path 
if it will be reached with positive probability when the 
game is played according to the equilibrium strategies.  
 
Lemma 1 ([17]): Nash equilibrium only depends upon 
subgame strategy profiles played along the equilibrium 
path.                                                                                 ■ 
 
Theorem 1 ([16]): In Nash equilibrium each player’s 
repeated game (supergame) strategy need only be 
optimal along the equilibrium path.                                ■ 
 
Remarks __  In essence Definitions 3 and 4 and Lemma 1 
propose that if a game Γ is in Nash equilibrium, it is only 
so because all subgames Γx are in Nash equilibrium. 
Extending the same concept, Theorem 1 asserts that Nash 
equilibrium can be reached in a supergame via the 
equilibrium path followed by games. Recall that a 
supergame is an infinite play of games. In summary, if 
all the subgames are in Nash equilibrium, the 
corresponding game that encapsulates the subgames is 
also in Nash equilibrium and so is the supergame which 
is the collection of infinite number of games played over 
time. 

3.3 Mechanism Applied to the DRP 
Form the discussion above, we choose the following 

line of action. 
[1] Define the DRP as a supergame. 
[2] Define an instance of the supergame as a game. 
[3] Split the game into concurrently played subgames. 

Each identical to each other in terms of:  
a. Form: A discriminatory mechanism.  
b. Valuation: Obtainable via the system 

parameters. 
c. Information: Independent of any other 

subgame. 
2. Establish the fact that subgames conform to 

Nash equilibrium provided agents play 
optimally. 

3. Use Lemma 1 to establish that the entire game 
at instance t is in Nash equilibrium. 

4. Use Theorem 1 to establish that the entire 
supergame is in Nash equilibrium. 

 
1. Supergame: A supergame Γ(∞) is defined as a 
mechanism that is played infinitely during the lifespan of 
the distributed system under consideration. The 
supergame allows the agents to compete for memory 
spaces of the sites. The purpose of a supergame is to 
keep the system in a self evolving and self repairing 
mode. 
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Site 1Site 2

Site 3 Site 4

Site 5
Figure 1(a): The network architecture. 

 

Site 1Site 2

Site 3 Site 4

Site 5

Reads
Writes

Figure 1(b): Read and write patterns. 
 

Site 1Site 2

Site 3 Site 4

Site 5
 Figure 1(c): Benefits of replication (reads). 

 

Site 1Site 2

Site 3 Site 4

Site 5
Figure 1(d): Benefits of replication (writes). 

2. Game: At any given instance t (t is the instance when 
a game is invoked, in Section 3.4. we explain what t 
really means), a game Γ is played. It is to be noted that 
the sole purpose of defining a game is to observe the 
solution quality of the replica placements at a given 
instance t [26]. 
 

3. Subgames: A game is split into M concurrently played 
subgames. Each of these subgames take place at a 
particular site i. Each agent k competes through bidding 
for memory at a site i. 
 
3.a. Form: Each site i has a finite amount of space si, and 
available space bi. It is for this available space bi that the 
agents compete. In one-shot all the participating agents 
submit their bids for the available space. All the bids are 
sorted in descending order and the first n agents are 
awarded the rights to place their objects onto site i. 
Recall that each agent represents an object of size ok. 
Therefore, the decision of the first n agents solely 
depends upon 1 ,n i

kk o b n N= ≤ ≤∑ . After the decision is 
made, the first n agents pay their respective bids. This is 
discriminatory for the following two reasons. First, all 
the successful agents pay a different amount for their 
rights to place an object. Second, the payment is in no 
relation to the size of the object or the available space at 
site i. The only connection that the payments have is the 
benefit that the object brings if replicated to that site. 
This benefit is the valuation of an agent for its object k if 
replicated at site i. We describe this valuation below. 
 
3.b. Valuation: Each agent k’s policy is to place a 
replica at a site i, so that it maximizes its (object’s) 
benefit function. This benefit is equivalent to the savings 
that the object k brings in the total OTC if the object k is 
replicated at site i. This benefit is given as: 

   ( )1 ,Mi i x i
k k k k k kxB R w o c i P W=

⎛ ⎞
⎜ ⎟
⎝ ⎠

= − −∑ .  (5) 

We illustrate the notion of benefit associated with an 
object k if it is replicated at site i. Figure 1(a) depicts the 
network with four sites. Site 1 has the primary object 
represented by �, while Site 4 has the replica of the same 
object represented by �. If these are the only copies of 
object k available in the network, then the read and write 
requests are always sent to the nearest neighbors, where 
Site 4 is the nearest neighbor of itself (Figure 1(b)). Now 
what would be the benefit of replicating object k at Site 
3? In Figure 1(c), we see that the reads and writes of Site 
3 are entertained locally. Moreover, Site 5 can now 
redirect its request to its newest nearest neighbor, i.e., 
Site 3.  Therefore, the replication of object k at Site 3 
clearly reduces the OTC by RCk

i = Rk
i+Wk

i. However 
(Figure 1(d)), this will cause the Site 1 (location of 
primary object) to repeatedly send updates of object k to 
Site 3. Since the local update is already captured by RCk

i, 
the increased aggregate updates are given by: 

1 ( , )M x
k k kx w o c i P=∑ . 

From here onwards, for simplicity, we will denote 
the benefit Bk

i as v (valuation). It is to be understood that 
to differentiate the valuations between agents k and j we 
may denote the valuations as vk and vj, respectively. 
 
3.c. Information: It is clear that the subgames can 
operate independently of each other. There is no critical 
information that is required and is withheld from a 
subgame. For instance, 1) the frequency of reads and 
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writes are obtained locally through the site which hosts 
the subgame, 2) the information about network 
architecture is globally available since domains can 
easily pull such information from the routers using the 
border gate protocol (BGP) [32], and 3) the locations of 
the primary sites are also available locally since the 
agents represent the objects, (i.e., they have to know 
where they originated from,) etc. 
 
4. Subgame Nash equilibrium: To understand the 
bidding behavior in a discriminatory mechanism, we 
shall, for simplicity, assume that the agents are ex-ante 
symmetric. That is, we shall suppose that for all bidders k 
= 1,…, N, fk(v) = f(v) for all v ∈ [0,1], where v is the 
valuation of an agent k for an object, whereas f translates 
this valuation into something useful, for instance, when 
bids are required for an object, f can take the form of a 
bidding function for a valuation v. Note that we only 
assume that v ∈ [0,1] for underlying the groundwork for 
the probabilistic analysis. In reality the valuations are of 
the form of v ≥ 0. Clearly, the main difficulty is in 
determining how the agents, will bid. But note that a 
rational agent k would prefer to win the right to replicate 
at a lower price rather than a higher one, agent k would 
bid low when the others are bidding low and would want 
to bid higher when the others bid higher. Of course, 
agent k does not know the bids that the others submit 
because of the sealed-bid rule. Yet, agent k’s optimal bid 
will depend on how the others bid. Thus, the agents are 
in a strategic setting in which the optimal action (bid) of 
each agent depends on the actions of others.  

Let us consider the problem of how to bid from the 
point of view of agent k. Suppose that agent k’s value is 
vk. Given this value; agent k must submit a sealed-bid, bk. 
Because bk will in general depend on k’s value, let’s 
write bk(vk) to denote bidder k’s bid when his value is vk. 
Now, because agent k must be prepared to submit a bid 
bk(vk) for each of his potential values v ∈ [0,1], we may 
view agent k’s strategy as a bidding function 
bk:[0,1]→ℜ+, mapping each of his values into a (possibly 
different nonnegative) bid. 
Before we discuss payoffs, it will be helpful to focus our 
attention on a natural class of bidding strategies. It seems 
very natural to expect that agents with higher values will 
place higher bids. So, let’s restrict attention to strictly 
increasing bidding functions. Next, because the agents 
are ex-ante symmetric, it is also natural to suppose that 
agents with the same value will submit the same bid. 
With this in mind, we shall focus on finding a strictly 
increasing β function, b^k:[0,1]→ℜ+, that is optimal for 
each agent to employ, given that all other agents employ 
his bidding function as well. That is, we wish to find 
Nash equilibrium in strictly increasing bidding functions. 

Now, let us suppose that we find Nash equilibrium 
given by the strictly increasing bidding function b^(·). By 
definition it must be payoff-maximizing for an agent, say 
k, with value v to bid b^(v) given that the other agents 
employ the same bidding function b^(·).  
 

Remarks __ We explain why we assume that all other 
agents employ the same bidding function b^(·). Imagine 
that agent k cannot attend the auction and that he sends a 
friend to bid for him. The friend knows the equilibrium 
bidding function b^(·) (since it is a public knowledge), but 
does not know agent k’s value. Now, if agent k’s value is 
v, agent k would like his friend to submit the bid b^ (v) on 
his behalf. His friend can do this for him once agent k 
calls him and tells his value. Clearly, agent k has no 
incentive to lie to his friend about his value. That is, 
among all the values r ∈ [0,1] that agent k with value v 
can report to his friend, his payoff is maximized by 
reporting his true value, v, to his friend. This is because 
reporting the value r results in his friend submitting the 
bid b^(r) on his behalf. But if agent k were there himself 
he would submit the bid b^(v). 

Let us calculate agent k’s expected payoff from 
reporting an arbitrary value, r, to his friend when his 
value is v, given that all other agents employ the bidding 
function b^(·). To calculate this expected payoff, it is 
necessary to notice just two things. First, agent k will win 
only when the bid submitted for him is highest. That is, 
when b^(r) > b^(vj) for all agents j ≠ k. Because b^ (·) is 
strictly increasing this occurs precisely when r exceeds 
the values of all N-1 other agents. Let F denote the 
distribution function associated with f, the probability 
that this occurs is (F(r))N-1 which we will denote FN-1(r). 
Second, agent k pays only when it wins the right to 
replicate, and pays its bid, b^(r). Consequently, agent k’s 
expected payoff from reporting the value r to his friend 
when his value is v, given that all other bidders employ 
the bidding function b^(·), can be written as: 

1 ˆ( , ) ( ) ( )Nu r v F r v b r− ⎛ ⎞
⎜ ⎟
⎝ ⎠

= − .               (6) 

Now, as we have already remarked, because b^(·) is 
an equilibrium, agent k’s expected payoff-maximizing 
bid when his value is v must be b^(v). Consequently, 
Equation 6 must be maximized when r = v, i.e., when 
agent k reports his true value, v, to his friend. So, we may 
differentiate the right-hand side with respect to r and set 
the derivative equal to zero when r = v. Differentiating 
yields: 

1

2 1

ˆ( ) ( )

ˆ ˆ1 ( ) ( ) ( ) ( ) '( )

N

N N

F r v b r

N F r f r v b r F r b r

d dr
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⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−

− −

− =

− − −

. (7) 

Setting this equal to zero when r = v and rearranging 
yields: 

 ( )
( )

2 1

2

ˆ ˆ1 ( ) ( ) ( ) ( ) '( )

1 ( ) ( )

N N

N

N F v f v b v F v b v

N vf v F v

− −

−

− + =

−
. (8) 

Looking closely at the left-hand side of Equation 8, 
we see that is just the derivative of the product FN-1(v) 
times b^(v) with respect to v. With this observation, we 
can rewrite Equation 8 as: 
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Discriminatory Mechanism 
Initialize: 
01 LS, Li. 
02 WHILE LS ≠ NULL DO 
03     PARFOR each Si∈LS DO                       /*M subgames*/ 
04                FOR each k∈O  DO 
05                          Bk = compute (Bk

i×(N-1)/N);  /*compute benefit*/ 
06                          Report Bk to Si which is stored in array B; 
07                END FOR 
08                Sort array B in descending order. 
09       WHILE bi ≥ 0 
10        Bk = argmaxk(B);                /*Choose the best offer*/ 
11        Extract the info from Bk such as Ok and ok; 
12         bi = bi-ok;           /*Calculate space and termination condition*/ 
13         Replicate Ok; 
14         Payment = Bk;                                    /* Calculate payment*/ 
15         Delete Bk from B;                  /*Update the list for highest bid*/ 
16         SEND Pi to Si; RECEIVE at Si  /*Agent pays the bid*/ 
17          Li = Li - Ok;                                                    /*Update the list*/ 
18          Update NNi

OMAX                        /*Update the nearest neighbor list*/ 
19         IF Li = NULL THEN SEND info to M to update LS = LS - Si;  
/*update the player list */       
20       END WHILE 
21    ENDPARFOR 

22 END WHILE 
Figure 2: Mechanism game at instance t. 

 

 ( )1 2ˆ( ) ( ) 1 ( ) ( )N NF v b v N vf v F vd dv − −⎛ ⎞
⎜ ⎟
⎝ ⎠

= − . (9)

Now, because Equation 9 must hold for every v, it must 
be the case that: 

 ( )
1

2
0

( ) ( )

1 ( ) ( )

N

v N

F v b v

N xf x F x dx constant

−

−

=

− +∫
.           (10) 

Noting that an agent with value zero must bid zero, 
we conclude that the constant above must be zero. 

Hence, it must be the case that: 
2

1 0
1ˆ( ) ( ) ( )
( )

v N
N
Nb v xf x F x dx

F v
−

−
−= ∫ ,              (11) 

which can be written as: 
2

1 0
1ˆ( ) ( ) ( )

( )
v N

Nb v xf x F x dx
F v

−
−= ∫ .              (12) 

There are two things to notice about the bidding 
function in Equation 12. First, as we has assumed, it is 
strictly increasing in v. Second, it has been uniquely 
determined. Now since we assumed that each agent is ex-
ante in nature, then F(v) = v and f(v) = 1. Consequently, 
if there are N bidders then each employs the bidding 
function: 
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Hence, in conclusion, we have proven the following: 
 
Theorem 2: If N agents have independent private values 
drawn from the common distribution, F, then bidding b^

(v) = (N-1/N)v whenever one’s value is v constitutes 
Nash equilibrium of the discriminatory mechanism, 
where the nature of the bids are sealed-bids.                  ■ 

 
So, each agent shades its bid, by bidding less than its 

valuation. Note that as the number of agents increases, 
the agents bid more aggressively. Because FN-1(·) is the 
distribution function of the highest value among an 
agent’s N-1 competitors, the bidding strategy displayed 
in Theorem 2 says that each agent bids the expectation of 
the second highest agent’s value conditional on his value 
being highest. But, because the agents use the same 
strictly increasing bidding function, having the highest 
value is equivalent to having the highest bid and so 
equivalent to winning the right to replicate.  
 
Theorem 3: If N agents play their bids according to the 
bidding strategy as: b^(v) = (N-1/N)v, the corresponding 
game at instance t and eventually the supergame are in 
Nash equilibrium. 
Proof: It follows from Lemma 1 and Theorem 1.           ■ 

 
We are now ready to present the pseudo-code 

(Figure 2) for a game at instance t. 
Briefly, we maintain a list Li at each server. The list 

contains all the objects that can be replicated at Si (i.e., 
the remaining storage capacity bi is sufficient and the 
benefit value is positive). We also maintain a list LS 
containing all servers that can replicate an object. In 
other words, Si ∈ LS if and only if Li ≠ NULL. Each 
player k ∈ O calculates the benefit function of object 
(Line 05). The set O represents the collection of players 
that are legible for participation. A player k is legible if 
and only if the benefit function value obtained for site Si 
is positive. This is done in order to suppress mediocre 
bids, which, in turn improves computational complexity. 
After receiving (Line 06) all the bids, the bid vector is 
sorted in descending order (Line 08). Now, recursively 
the rights are assigned to the current highest agent (Line 
10) as long as there is available memory (Line 09 and 
12). It is to be noted that in each step Li together with the 
corresponding nearest server value NNk

i, are updated 
accordingly. 

The above discussion allows us to deduce the 
following result about the mechanism. 
 
Theorem 4: In the worst case the mechanism takes 
O(N2logN) time. 
Proof: The worst case scenario is when each site has 
sufficient capacity to store all objects. In that case, the 
PARFOR loop (Line 03) performs N iterations. The most 
consuming time is to sort the bids in descending order 
(Line 10). This will take at least of the order of 
O(NlogN). Hence, we conclude that the worst case 
running time of the mechanism is O(N2logN).                 ■ 
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Figure 3(a): Access on days with no matches. 
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Figure 3(b): Access on days with matches. 

3.4 When to invoke the game? 
As noted previously (in Sections 2 and 3.3.), the time 

(interval t) when to initiate the mechanism, i.e., when to 
play a game at instance t requires high-level human 
intervention. Here, we will show that this parameter if 
not totally can at least partially be automated. The 
decision when to initiate the mechanism depends on the 
past trends of the user access patterns. The experiments 
performed to test the mechanism used real user access 
patterns collected at the 1998 Soccer World Cup website 
[6]. This access log file has become a default standard 
over the number of years to benchmark various replica 
placement techniques. Works reported in [20], [21], [22], 
[23], [25], and [30] all have used this access log for 
analysis.  

Figures 3(a) and 3(b) show the user access patterns. 
The two figures represent different traffic patterns, i.e., 
Figure 3(a) shows the traffic recorded on the days when 
there was no scheduled match, while Figure 3(b) shows 
the traffic on the days when there were scheduled 
matches. We can clearly see that the website incurred 
soaring and stumpy traffic at various intervals during a 
24-hour time period (it is to be noted that the access logs 

have a time stamp of GMT+1). For example, on days 
when there was no scheduled match, the traffic was 
mediocre before 0900 hrs. The traffic increased after 
0900 hrs till 2200 hrs. The two vertical dashed lines 
indicate this phenomenon. These traffic patterns were 
recorded over a period of 86 days (April 30th 1998 to 
July 26th 1998). Therefore, on the days when there was 
no scheduled match, a replica placement algorithm (in 
our case the mechanism) could be initiated twice daily: 
1) at 0900 hrs and 2) at 2200 hrs. The time interval t for 
0900 hrs would be t = (2200-0900) = 11 hours and for 
2200 hrs would be t = (0900-2200) = 13 hours. On the 
other hand the days when there were scheduled matches, 
the mechanism could be initiated at 1900 hrs and 0100 
hrs. It is to be noted that the autonomous agents can 
easily obtain all the other required parameters (for the 
DRP) via the user access logs and the underlying 
network architecture. 

4 Experimental Setup and the 
Discussion of Results 

We performed experiments on a 440MHz Ultra 10 
machine with 512MB memory. The experimental 
evaluations were targeted to benchmark the placement 
policies. The mechanism was implemented using IBM 
Pthreads.  

To establish diversity in our experimental setups, the 
network connectively was changed considerably. In this 
paper, we only present the results that were obtained 
using a maximum of 500 sites (nodes). We used existing 
topology generator toolkits and also self generated 
networks. In all the topologies the distance of the link 
between nodes was equivalent to the communication 
cost. Table 2 summarizes the various techniques used to 
gather forty-five various topologies for networks with 
100 nodes. It is to be noted that the parameters vary for 
networks with lesser/larger number of nodes.  

To evaluate the chosen replication placement 
techniques on realistic traffic patterns, we used the access 
logs collected at the Soccer World Cup 1998 website [6]. 
Each experimental setup was evaluated thirteen times, 
i.e., the Friday (24 hours) logs from May 1, 1998 to July 
24, 1998. Thus, each experimental setup in fact 
represents an average of the 585 (13×45) data set points. 
To process the logs, we wrote a script that returned: only 
those objects which were present in all the logs (2000 in 
our case), the total number of requests from a particular 
client for an object, the average and the variance of the 
object size. From this log we chose the top five hundred 
clients (maximum experimental setup). A random 
mapping was then performed of the clients to the nodes 
of the topologies. Note that this mapping is not 1-1, 
rather 1-M. This gave us enough skewed workload to 
mimic real world scenarios. It is also worthwhile to 
mention that the total amount of requests entertained for 
each problem instance was in the range of 1-2 million. 
The primary replicas’ original site was mimicked by 
choosing random locations. The capacities of the sites 
C% were generated randomly with range from Total 
Primary Object Sizes/2 to 1.5×Total Primary Object 
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Topology Mathematical Representation Parameter Interval Variance 
SGRG  
(12 topologies) 

Randomized layout with node degree (d*) and Euclidian distance (d) between 
nodes as parameters. 

d={5,10,15,20},  
d*={10,15,20}. 

GT-ITM PR [9] 
(5 topologies) 

Randomized layout with edges added between the randomly located vertices 
with a probability (p). 

p={0.4,0.5,0.6,0.7,0.8}. 

GT-ITM W [9] 
(9 topologies) 

P(u,v)=αe-d/(βL) α={0.1,0.15,0.2,0.25},  β={0.2,0.3,0.4}. 

SGFCGUD  
(5 topologies) 

Fully connected graph with uniform link distances (d). d1=[1,10],d2=[1,20],d3=[1,50], d4=[10,20], 
d5=[20,50]. 

SGFCGRD  
(5 topologies) 

Fully connected graph with random link distances (d). d1=[1,10],d2=[1,20],d3=[1,50], d4=[10,20], 
d5=[20,50]. 

SGRGLND  
(9 topologies) 

Random layout with link distance having a lognormal distribution [15]. µ={8.455,9.345,9.564}, 
σ={1.278,1.305,1.378}. 

Table 2: Parameter interval variance characterization for topologies with 100 nodes. 

Sizes. The variance in the object size collected from the 
access logs helped to install enough diversity to 
benchmark object updates. The updates were randomly 
pushed onto different sites, and the total system update 
load was measured in terms of the percentage update 
requests U% compared that to the initial network with no 
updates.  

4.1 Comparative Algorithms 
For comparisons, we selected five various types of 

replica placement techniques. To provide a fair 
comparison, the assumptions and system parameters 
were kept the same in all the approaches. The techniques 
studied include efficient branch-and-bound based 
technique (Aε-Star [22]). For fine-grained replication, the 
algorithms proposed in [23], [25], [26], and [30] are the 
only ones that address the problem domain similar to 
ours. We select from [30] the greedy approach (Greedy) 
for comparison because it is shown to be the best 
compared with four other approaches (including the 
proposed technique in [25]); thus, we indirectly compare 
with four additional approaches as well. Algorithms 
reported in [23] (Dutch (DA) and English auctions (EA)) 
and [26] (Genetic based algorithm (GRA)) are also 
among the chosen techniques for comparisons. Due to 
space limitations we will only give a brief overview of 
the comparative techniques. Details for a specific 
technique can be obtained from the referenced papers. 
 
Performance metric: The solution quality is measured 
in terms of network communication cost (OTC 
percentage) that is saved under the replication scheme 
found by the algorithms, compared to the initial one, i.e., 
when only primary copies exists.  
 
Aε-Star: In [22] the authors proposed a 1+ε admissible 
A-Star based technique called Aε-Star. This technique 
uses two lists: OPEN and FOCAL. The FOCAL list is 
the sub-list of OPEN, and only contains those nodes that 
do not deviate from the lowest f node by a factor greater 
than 1+ε. The technique works similar to A-Star, with the 
exception that the node selection (lowest h) is done not 
from the OPEN but from the FOCAL list. It is easy to see 
that this approach will never run into the problem of 
memory overflow, moreover, the FOCAL list always 
ensures that only the candidate solutions within a bound 
of 1+ε of the A-Star are expanded.  

 
Greedy based technique: We modify the greedy 
approach reported in [30], to fit our problem formulation. 
The greedy algorithm works in an iterative fashion. In 
the first iteration, all the M sites are investigated to find 
the replica location(s) of the first among a total of N 
objects. Consider that we choose an object i for 
replication. The algorithm recursively makes calculations 
based on the assumption that all the users in the system 
request for object i. Thus, we have to pick a site that 
yields the lowest cost of replication for the object i. In 
the second iteration, the location for the second site is 
considered. Based on the choice of object i, the algorithm 
now would identify the second site for replication, 
which, in conjunction with the site already picked, yields 
the lowest replication cost. The readers will immediately 
realize that the bidding mechanism reported in this paper 
works similar to the Greedy algorithm. This is true; 
however, the Greedy approach does not guarantee 
optimality even if the algorithm is run on the very same 
problem instance. Recall that Greedy relies on making 
combinations of object assignments and therefore, suffers 
from the initial choice of object selection (which is done 
randomly).  
 
Dutch auction: The auctioneer begins with a high asking 
price which is lowered until some agent is willing to 
accept the auctioneer's price. That agent pays the last 
announced price. This type of auction is convenient when 
it is important to auction objects quickly, since a sale 
never requires more than one bid. In no case does the 
auctioneer reveal any of the bids submitted to him, and 
no information is shared between the agents. It is shown 
that for an agent to have a probabilistically superior bid 
than n-1 other bids; agent should have the valuation 
divided by n [23]. 
 
English auction: In this type of auction, the agents bid 
openly against one another, with each bid being higher 
than the previous bid. The auction ends when no agent is 
willing to bid further. During the auction when an 
auctioneer receives a bid higher than the currently 
submitted bids, he announces the bid value so that other 
agents (if needed) can revise their currently submitted 
bids. In [23], the discussion on EA reveals that the 
optimal strategy for a bidder i is to bid a value which is 
directly derived from his valuation. 
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GRA: In [26], the authors proposed a genetic algorithm 
based heuristic called GRA. GRA provides good solution 
quality, but suffers from slow termination time. This 
algorithm was selected since it realistically addressed the 
fine-grained data replication using the same problem 
formulation as undertaken in this article. 

4.2 Comparative Game Analysis 
First, we concentrate on observing the improvement 

brought by the discriminatory mechanism (for short we 
will refer to it as MECH). To this end we observe the 
solution quality at the game level. In the post-ceding text 
(Section 4.3.) we shall discuss the results obtained in the 
supergame setup. 

We study the behavior of the placement techniques 
when the number of sites increases (Figure 4), by setting 
the number of objects to 2000, while in Figure 5, we 
study the behavior when the number of objects increase, 
by setting the number of sites to 500. We should note 
here that the space limitations restricted us to include 
various other scenarios with varying capacity and update 
ratio. The plot trends were similar to the ones reported in 
this article. For the first experiment we fixed C = 30% 
and U = 65%. We intentionally chose a high workload so 
as to see if the techniques studied successfully handled 
the extreme cases. The first observation is that MECH 
and EA outperformed other techniques by considerable 
amounts. Second, DA converged to a better solution 
quality under certain problem instances than EA. This is 
inline with the general trends of DA. It outperforms EA 
when the agents are bidding aggressively. Some 
interesting observations were also recorded, such as, all 
but GRA and Greedy showed initial loss in OTC savings 
with the initial number of site increase in the system, as 
much as 5% loss was recorded in case of MECH with 
only a 40 site increase. GRA and Greedy showed an 
initial gain since with the increase in the number of sites, 
the population permutations increase exponentially, but 
with the further increase in the number of sites this 
phenomenon is not so observable as all the essential 
objects are already replicated. The top performing 
techniques (DA, EA, Aε-Star and MECH) showed an 
almost constant performance increase (after the initial 
loss in OTC savings). This is because by adding a site 
(server) in the network, we introduce additional traffic 
(local requests), together with more storage capacity 
available for replication. All four equally cater for the 
two diverse effects. GRA also showed a similar trend but 
maintained lower OTC savings. This was in line with the 
claims presented in [22] and [26]. 

To observe the effect of increase in the number of 
objects in the system, we chose a softer workload with C 
= 15% and U = 40%. The intention was to observe the 
trends for all the algorithms under various workloads. 
The increase in the number of objects has diverse effects 
on the system as new read/write patterns (users are 
offered more choices) emerge, and also the increase in 
the strain on the overall capacity of the system (increase 
in the number of replicas). An effective algorithm should 
incorporate both the opposing trends. From the plot, the 
most surprising result came from GRA and Greedy. They 
dropped their savings from 62% to 2% and 69% to 3%, 
respectively. This was contradictory to what was 
reported in [26] and [30]. But there the authors had used 
a uniformly distributed link cost topology, and their 
traffic was based on the Zipf distribution [33]. While the 
traffic access logs of the World Cup 1998 are more or 
less double-Pareto in nature. In either case the exploits 
and limitations of the technique under discussion are 
obvious. The plot also shows a near identical 
performance by Aε-Star, DA and Greedy. The relative 
difference among the three techniques is less than 3%. 
However, Aε-Star did maintain its domination. From the 
plots the supremacy of EA and MECH is observable. 

Next, we observe the effects of system capacity 
increase. An increase in the storage capacity means that a 
large number of objects can be replicated. Replicating an 
object that is already extensively replicated, is unlikely to 
result in significant traffic savings as only a small portion 
of the servers will be affected overall. Moreover, since 
objects are not equally read intensive, increase in the 
storage capacity would have a great impact at the 
beginning (initial increase in capacity), but has little 
effect after a certain point, where the most beneficial 
ones are already replicated. This is observable in Figure 
6, which shows the performance of the algorithms. GRA 
once again performed the worst. The gap between all 
other approaches was reduced to within 15% of each 
other. DA and MECH showed an immediate initial 
increase (the point after which further replicating objects 
is inefficient) in its OTC savings, but afterward showed a 
near constant performance. GRA although performed the 
worst, but observably gained the most OTC savings 
(53%) followed by Greedy with 34%. Further 
experiments with various update ratios (5%, 10%, and 
20%) showed similar plot trends. It is also noteworthy 
(plots not shown in this paper due to space restrictions) 
that the increase in capacity from 13% to 24%, resulted 
in 4.3 times (on average) more replicas for all the 
algorithms.  
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Figure 4: OTC savings versus number of sites. Figure 5: OTC savings versus number of objects. 
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Next, we observe the effects of increase in the read 
and update (write) frequencies. Since these two 
parameters are complementary to each other, we describe 
them together. In both the setups the number of sites and 

objects were kept constant. Increase in the number of 
reads in the system would mean that there is a need to 
replicate as many object as possible (closer to the users). 
However, the increase in the number of updates in the 
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Problem Size Greedy GRA Aε-Star DA EA MECH 
M=20, N=50 69.76 92.57 97.02 24.66 39.29 25.24 
M=20, N=100 76.12 96.31 102.00 26.97 40.91 26.35 
M=20, N=150 78.11 100.59 113.79 31.98 53.85 35.64 
M=30, N=50 94.33 125.93 139.98 38.20 58.98 38.05 
M=30, N=100 108.18 124.20 148.03 38.29 62.97 39.60 
M=30, N=150 134.97 148.49 178.84 44.97 67.74 42.02 
M=40, N=50 126.25 153.93 198.11 42.34 75.88 44.66 
M=40, N=100 134.06 168.09 236.48 43.54 76.27 46.31 
M=40, N=150 140.30 204.12 270.10 47.02 82.44 48.41 

Table 3: Running time in seconds [C=20%, U=25%]. 
 

Problem Size Greedy GRA Aε-Star DA EA MECH 
M=300, N=1450 206.26 326.82 279.45 95.64 178.9 97.98 
M=300, N=1500 236.61 379.01 310.12 115.19 185.15 113.65 
M=300, N=1550 258.45 409.17 333.03 127.1 191.24 124.73 
M=300, N=2000 275.63 469.38 368.89 143.94 197.93 142.16 
M=400, N=1450 321.6 492.1 353.08 176.51 218.15 176.90 
M=400, N=1500 348.53 536.96 368.03 187.26 223.56 195.41 
M=400, N=1550 366.38 541.12 396.96 192.41 221.1 214.55 
M=400, N=2000 376.85 559.74 412.17 208.92 245.47 218.73 
M=500, N=1450 391.55 659.39 447.97 224.18 274.24 235.17 
M=500, N=1500 402.2 660.86 460.44 246.43 284.63 259.56 
M=500, N=1550 478.1 689.44 511.69 257.96 301.72 266.42 
M=500, N=2000 485.34 705.07 582.71 269.45 315.13 262.68 

Table 4: Running time in seconds [C=35%, U=35%]. 
 

Problem Size Greedy GRA Aε-Star DA EA MECH 
N=150, M=20 [C=20%,U=25%] 70.27 69.11 73.96 69.91 72.72 74.40 
N=200, M=50 [C=20%,U=20%] 73.49 69.33 76.63 71.90 77.11 75.43 
N=300, M=50 [C=25%,U=5%] 69.63 63.45 69.85 67.66 69.80 70.36 
N=300, M=60 [C=35%,U=5%] 71.15 64.95 71.51 69.26 70.38 74.03 
N=400, M=100 [C=25%,U=25%] 67.24 61.74 71.26 68.67 70.49 73.26 
N=500, M=100 [C=30%,U=35%] 65.24 60.77 70.55 69.82 70.87 72.73 
N=800, M=200 [C=25%,U=15%] 66.53 65.90 69.33 68.95 70.06 72.95 
N=1000, M=300 [C=25%,U=35%] 69.04 63.17 69.98 69.36 71.28 72.44 
N=1500, M=400 [C=35%,U=50%] 69.98 62.61 70.41 72.09 72.26 72.78 
N=2000, M=500 [C=10%,U=60%] 66.34 62.70 71.33 67.67 68.41 74.06 

Table 5: Average OTC (%) savings under some problem instances. 
 

system requires the replicas be placed as close as to the 
primary site as possible (to reduce the update broadcast). 
This phenomenon is also interrelated with the system 
capacity, as the update ratio sets an upper bound on the 
possible traffic reduction through replication. Thus, if we 
consider a system with unlimited capacity, the “replicate 
everywhere anything” policy is strictly inadequate. The 
read and update parameters indeed help in drawing a line 
between good and marginal algorithms. The plots in 
Figures 7 and 8 show the results of read and update 
frequencies, respectively. A clear classification can be 
made between the algorithms. Aε-Star, DA, EA, Greedy 
and MECH incorporate the increase in the number of 
reads by replicating more objects and thus savings 
increase up to 89%. Aε-Star gained the most of the OTC 
savings of up to 47%. To understand why there is such a 
gap in the performance between the algorithms, we 
should recall that GRA specifically depend on the initial 
population (for details see [26]). Moreover, GRA 
maintains a localized network perception. Increase in 
updates result in objects having decreased local 

significance (unless the vicinity is in close proximity to 
the primary location). On the other hand, Aε-Star, DA, 
EA, Greedy never tend to deviate from their global view 
of the problem domain.  

Lastly, we compare the termination time of the 
algorithms. Before we proceed, we would like to clarify 
our measurement of algorithm termination timings. The 
approach we took was to see if these algorithms can be 
used in dynamic scenarios. Thus, we gather and process 
data as if it was a dynamic system. The average 
breakdown of the execution time of all the algorithms 
combined is depicted in Figure 9. There 68% of all the 
algorithm termination time was taken by the repeated 
calculations of the shortest paths. Data gathering and 
dispersion, such as reading the access frequencies from 
the processed log, etc. took 7% of the total time. Other 
miscellaneous operations including I/O were recorded to 
carry 3% of the total execution time. From the plot it is 
clear that a totally static setup would take no less that 
21% of the time depicted in Tables 3 and 4.  

Various problem instances were recorded with C = 



DISCRIMINATORY ALGORITHMIC MECHANISM...                                                 Informatica 31 (2007) 105–119   117 

  
  

Algorithms

Load Variance (Median)
N=2000, M=500, C=15%

0

4%

8%

12%

16%

20%

24%

28%

32%

36%

40%

Greedy GRA Aε-Star DA EA MECH

Maximum
Minimum
75%
25%
Median
Outliers
Extremes
Grand median

Algorithms

O
TC

 S
av

es

Load Variance (Mean)
N=2000, M=500, C=15%

0

4%

8%

12%

16%

20%

24%

28%

32%

36%

40%

Greedy GRA Aε-Star DA EA MECH

Mean+1.5*Std Dev
Mean-1.5*Std Dev
Mean+Std Dev
Mean-Std Dev
Mean
Outliers
Extremes
Grand mean

Figure 10: Median load variance. Figure 11: Mean load variance. 
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Figure 12: Median capacity variance. Figure 13: Mean capacity variance. 
 

20%, 35% and U = 25%, 35%. Each problem instance 
represents the average recorded time over all the 45 
topologies and 13 various access logs. The entries in bold 
represent the fastest time recorded over the problem 
instance. It is observable that MECH and DA terminated 
faster than all the other techniques, followed by EA, 
Greedy, Aε-Star and GRA. If a static environment was 
considered, MECH with the maximum problem instance 
would have terminated approximately in 55.16 seconds 
(21% of the algorithm termination time).  

In summary, based on the solution quality alone, the 
algorithms can be classified into four categories: 1) Very 
high performance: EA and MECH, 2) high performance: 
Greedy and DA, 3) medium-high performance: Aε-Star, 
and finally 4) mediocre performance: GRA. Considering 
the execution time, MECH and DA did extremely well, 
followed by EA, Greedy, Aε-Star, and GRA. 

Table 5 shows the quality of the solution in terms of 
OTC percentage for 10 problem instances (randomly 
chosen), each being a combination of various numbers of 
sites and objects, with varying storage capacity and 
update ratio. For each row, the best result is indicated in 

bold. The proposed MECH algorithm steals the show in 
the context of solution quality, but Aε-Star, EA and DA 
do indeed give a good competition, with a savings within 
5%-10% of MECH.  

4.3 Comparative Supergame Analysis 
Here, we present some supplementary results 

regarding the supergame that strengthen our comparative 
analysis claims provided in Section 4.2. We show the 
relative performance of the techniques with load and 
storage capacity variance. The plots in Figures 10-13 
show the recorded performances. All the plots 
summarize the measured performance with varying 
parameters observed over a time period of 86 simulation 
days (this is the entire time period of the logs that are 
available for the World Cup 1998 web server). Notice 
that the supergame setup is tested over all the available 
access logs. We are mostly interested in measuring the 
median and mean performances of the algorithms. With 
load variance MECH edges over EA with a savings of 
39%. The plot also shows that nearly every algorithm 
performed well with a grand median of 15.9%. The 
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graphs are self explanatory in nature, and also capture the 
outliners and extreme points. The basic exercise in 
plotting these results is to see which algorithms perform 
consistently over an extended period of time. GRA for 
example, records the lowest extremes, and hardly any 
outliners. On the other hand the proposed MECH’s 
performance is captured in a small interval, with high 
median and mean OTC savings. The readers may notice 
the difference in the performance of the algorithms with 
load and capacity variances. This is because load 
variance captures all the possible combinations of read 
and update parameters. For example, in a network with 
100% updates there will hardly be any measurable OTC 
Savings. Thus, Figures 10 and 11 show mediocre OTC 
savings, simply because they encapsulated the 
performance of the networks where update ratio was 
extremely high. 

5 Related Work 
The data replication problem as presented in Section 

2 is an extension of the classical file allocation problem 
(FAP). Chu [11] studied the file allocation problem with 
respect to multiple files in a multiprocessor system. 
Casey [10] extended this work by distinguishing between 
updates and read file requests. Eswaran [14] proved that 
Casey’s formulation was NP complete. In [28] Mahmoud 
et al. provide an iterative approach that achieves good 
solution quality when solving the FAP for infinite server 
capacities. A complete although old survey on the FAP 
can be found in [13]. Apers in [4] considered the data 
allocation problem (DAP) in distributed databases where 
the query execution strategy influences allocation 
decisions. In [24] the authors proposed several 
algorithms to solve the data allocation problem in 
distributed multimedia databases (without replication), 
also called as video allocation problem (VAP). 

Most of the research papers outlined in [13] aim at 
formalizing the problem as an optimization one, 
sometimes using multiple objective functions. Network 
traffic, server throughput and response time exhibited by 
users are considered for optimization. Although a lot of 
effort was devoted in providing comprehensive models, 
little attention has been paid to good heuristics for 
solving this complex problem. Furthermore access 
patterns are assumed to remain static and solutions in the 
dynamic case are obtained by re-executing a time 
consuming mathematical programming technique. 

Some on-going work is related to dynamic 
replication of objects in distributed systems when the 
read-write patterns are not known apriori. Awerbuch’s et 
al. work in [7] is significant from a theoretical point of 
view, but the adopted strategy for commuting updates 
(object replicas are first deleted), can prove difficult to 
implement in a real-life environment. In [33] Wolfson et 
al. proposed an algorithm that leads to optimal single file 
replication in the case of a tree network. The 
performance of the scheme for general network 
topologies is not clear though. Dynamic replication 
protocols were also considered under the Internet 
environment. Heddaya et al. [19] proposed protocols that 

load balance the workload among replicas. In [31], 
Rabinovich et al. proposed a protocol for dynamically 
replicating the contents of an ISP (Internet Service 
Provider) in order to improve client-server proximity 
without overloading any of the servers. However updates 
were not considered. 

Our work differs from all the above in: 1) Taking 
into account the more pragmatic scenario in today’s 
distributed information environments, we tackle the case 
of allocating replicas so as to minimize the network 
traffic under storage constraints with “read from the 
nearest” and “update through the primary server” 
policies, and 2) in using game theoretical techniques. 

6 Concluding Remarks 
This paper proposed a game theoretical 

discriminatory mechanism (MECH) for fine-grained data 
replication in large-scale distributed computing systems 
(e.g. the Internet). In MECH we employ agents who 
represent data objects to compete for the limited 
available storage space on web servers to acquire the 
rights to replicate. MECH uses a unique concept of 
supergame in which these agents continuously compete 
in a non-cooperative environment. MECH allows the 
designers the flexibility to monitor the behavior and 
strategies of these agents and fine-tune them so as to 
attain a given objective. In case of the data replication 
problem, the object for these agents is to skillfully 
replicate data objects so that the total object transfer cost 
is minimized. 

MECH was compared against some well-known 
techniques, such as: greedy, branch and bound, game 
theoretical auctions and genetic algorithms. To provide a 
fair comparison, the assumptions and system parameters 
were kept the same in all the approaches. The 
experimental results revealed that MECH outperformed 
the five widely cited and powerful techniques in both the 
execution time and solution quality. 

In summary, MECH exhibited 5%-10% better 
solution quality and 25%-35% savings in the algorithm 
termination timings.  
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