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This paper is aimed to give a comprehensive view about the links between computational intelligence and
data mining. Further, a case study is also given in which the extracted knowledge is represented by fuzzy
rule-based expert systems obtained by soft computing based data mining algorithms. It is recognized that
both model performance and interpretability are of major importance, and effort is required to keep the
resulting rule bases small and comprehensible. Therefore, CI technique based data mining algorithms have
been developed for feature selection, feature extraction, model optimization and model reduction (rule base
simplification). Application of these techniques is illustrated using the Wine data classification problem.
The results illustrate that that CI based tools can be applied in a synergistic manner though the nine steps
of knowledge discovery.

Povzetek:

1 Introduction
In our society the amount of data doubles almost every
year. Hence, there is an urgent need for a new generation
of computationally intelligent techniques and tools to assist
humans in extracting useful information (knowledge) from
the rapidly growing volume of data.

Historically the notion of finding useful patterns in data
has been given a variety of names including data mining,
knowledge extraction, information discovery, and data pat-
tern processing. The term data mining has been mostly
used by statisticians, data analysts, and the management
information systems (MIS) communities.

The term knowledge discovery in databases (KDD)
refers to the overall process of discovering knowledge from
data, while data mining refers to a particular step of this
process. Data mining is the application of specific algo-
rithms for extracting patterns from data [1]. The addi-
tional steps in the KDD process, such as data selection,
data cleaning, incorporating appropriate prior knowledge,
and proper interpretation of the results are essential to en-
sure that useful knowledge is derived form the data.

KDD has evolved from the intersection of research fields
such as machine learning, pattern recognition, databases,
statistics, artificial intelligence, and more recently it gets
new inspiration from computational intelligence.

When we attempt to solve real-world problems, like

extracting knowledge from large amount of data, we re-
alize that they are typically ill-defined systems, difficult
to model and with large-scale solution spaces. In these
cases, precise models are impractical, too expensive, or
non-existent. Furthermore, the relevant available informa-
tion is usually in the form of empirical prior knowledge
and input–output data representing instances of the sys-
tem’s behavior. Therefore, we need an approximate reason-
ing system capable of handling such imperfect information.
While Bezdek [2] defines such approaches within a frame
called computational intelligence, Zadeh [3] explains the
same using the soft computing paradigm. According to
Zadeh ”... in contrast to traditional, hard computing, soft
computing is tolerant of imprecision, uncertainty, and par-
tial truth.” In this context Fuzzy Logic (FL), Probabilistic
Reasoning (PR), Neural Networks (NNs), and Evolution-
ary Algorithms (EAs) are considered as main components
of CI. Each of these technologies provide us with comple-
mentary reasoning and searching methods to solve com-
plex, real-world problems. What is important to note is
that soft computing is not a melange. Rather, it is a part-
nership in which each of the partners contributes a distinct
methodology for addressing problems in its domain. In this
perspective, the principal constituent methodologies in CI
are complementary rather than competitive [4].

The aim of this paper is to illustrate how these elements
of CI could be used in data mining. This special issue is
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Figure 1: Steps of the knowledge discovery process.

focused on some of the theoretical developments and ad-
vances in this field.

Steps of Knowledge Discovery
Brachman and Anand [5] give a practical view of the KDD
process emphasizing the interactive nature of the process.
Here we broadly outline some of its basic steps depicted in
Fig. 1 taken from [6], and we show the connections of these
steps to CI based models and algorithms.

1. Developing and understanding the application do-
main, the relevant prior knowledge, and identifying
the goal of the KDD process. The transparency of
fuzzy systems allows the user to effectively com-
bine different types of information, namely linguistic
knowledge, first-principle knowledge and information
from data. An example for the incorporation of prior
knowledge into data-driven identification of dynamic
fuzzy models of the Takagi-Sugeno type can be found
in [7] where the prior information enters to the model
through constraints defined on the model parameters.
In [8] and [9] a different approach has been developed
which uses block-oriented fuzzy models.

2. Creating target data set.

3. Data cleaning and preprocessing: basic operations
such as the removal of noise, handling missing data
fields.

4. Data reduction and projection: finding useful fea-
tures to represent the data depending the goal of the
task. Using dimensionality reduction or transforma-
tion methods to reduce the effective number of vari-
ables under consideration or to find invariant repre-
sentation of data. Neural networks [10], cluster analy-
sis [11], Markov blanket modeling [12], decision trees
[13], evolutionary computing [14] and neuro-fuzzy
systems are often used for this purpose.

5. Matching the goals of the KDD process to a partic-
ular data mining method: Although the boundaries
between prediction and description are not sharp, the
distinction is useful for understanding the overall dis-
covery goal. The goals of knowledge discovery are
achieved via the following data mining methods:

– Clustering: Identification of a finite set of cat-
egories or clusters to describe the data. Closely
related to clustering is the method of probabil-
ity density estimation. Clustering quantizes the
available input-output data to get a set of pro-
totypes and use the obtained prototypes (signa-
tures, templates, etc., and many writers refer to
as codebook) and use the prototypes as model
parameters.

– Summation: finding a compact description for
subset of data, e.g. the derivation of summary for
association of rules and the use of multivariate
visualization techniques.

– Dependency modeling: finding a model which
describes significant dependencies between vari-
ables (e.g. learning of belief networks).

– Regression: learning a function which maps a
data item to a real-valued prediction variable
and the discovery of functional relationships be-
tween variables.

– Classification: learning a function that maps
(classifies) a data item into one of several pre-
defined classes.

– Change and Deviation Detection: Discover-
ing the most significant changes in the data from
previously measured or normative values.

6. Choosing the data mining algorithm(s): selecting al-
gorithms for searching for patterns in the data. This
includes deciding which model and parameters may
be appropriate and matching a particular algorithm
with the overall criteria of the KDD process (e.g. the
end-user may be more interested in understanding the
model than its predictive capabilities.) One can iden-
tify three primary components in any data mining al-
gorithm: model representation, model evaluation, and
search.

– Model representation: the language is used to
describe the discoverable patterns. If the repre-
sentation is too limited, then no amount of train-
ing time or examples will produce an accurate
model for the data. Note that more powerful
representation of models increases the danger of
overfitting the training data resulting in reduced
prediction accuracy on unseen data. It is impor-
tant that data analysts fully comprehend the rep-
resentational assumptions which may be inher-
ent in a particular method.
For instance, rule-based expert systems are of-
ten applied to classification problems in fault
detection, biology, medicine etc. Among the
wide range of CI techniques, fuzzy logic im-
proves classification and decision support sys-
tems by allowing the use of overlapping class de-
finitions and improves the interpretability of the
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results by providing more insight into the classi-
fier structure and decision making process [15].
In Section 2 a detailed discussion about the use
of fuzzy techniques for knowledge representa-
tion in classifier systems will be given.

– Model evaluation criteria: qualitative state-
ments or fit functions of how well a particular
pattern (a model and its parameters) meet the
goals of the KDD process. For example, pre-
dictive models can often judged by the empirical
prediction accuracy on some test set. Descriptive
models can be evaluated evaluated along the di-
mensions of predictive accuracy, novelty, utility,
and understandability of the fitted model.
Traditionally, algorithms to obtain classifiers
have focused either on accuracy or interpretabil-
ity. Recently some approaches to combining
these properties have been reported; fuzzy clus-
tering is proposed to derive transparent models
in [16], linguistic constraints are applied to fuzzy
modeling in [15] and rule extraction from neural
networks is described in [17]. Hence, to ob-
tain compact and interpretable fuzzy models, re-
duction algorithms have to be used that will be
overviewed in Section 3.

– Search method: consists of two components:
parameter search and model search. Once the
model representation and the model evaluation
criteria are fixed, then the data mining problem
has been reduced to purely an optimization task:
find the parameters/models for the selected fam-
ily which optimize the evaluation criteria given
observed data and fixed model representation.
Model search occurs as a loop over the parame-
ter search method [18].
The automatic determination of fuzzy classifi-
cation rules from data has been approached by
several different techniques: neuro-fuzzy meth-
ods [19], genetic-algorithm based rule selec-
tion [20], hybrid combination of genetic algo-
rithm and neural learning [21] and fuzzy cluster-
ing in combination with GA-optimization [22]
[23]. For high-dimensional classification prob-
lems, the initialization step of the identification
procedure of the fuzzy model becomes very sig-
nificant. Several CI based tools developed for
this purpose will be presented in Section 4.

7. Data mining: searching for patterns of interest in a
particular representation form or a set of such rep-
resentations: classification rules or trees, regression.
Some of the CI models lend themselves to trans-
form into other model structure that allows informa-
tion transfer between different models. For example,
in [24] a decision tree was mapped into a feedforward
neural network. A variation of this method is given
in [25] where the decision tree was used for the in-

put domains discretization only. This approach was
extended with a model pruning method in [26]. An-
other example is that as radial basis functions (RBF)
are functionally equivalent to fuzzy inference sys-
tems [27, 28], tools developed for the identification
of RBFs can also be used to design fuzzy models.

8. Interpreting mined patterns, possibly return to any
of the steps 1-7 described above for further itera-
tion. This step can also involve the visualization of
the extracted patterns/models, or visualization of the
data given the extracted models. Self-Organizing Map
(SOM) as a special clustering tool that provides a
compact representation of the data distribution, hence
it has been widely applied in the visualization of high-
dimensional data [29]. In Section 5 the theory and in
Section 6 the application of SOM will be presented.

9. Consolidating discovered knowledge: incorporating
this knowledge into another system for further action,
or simply documenting and reporting it.

The remainder of this article is organized as follows.
In the remaining sections, tools for visualization, knowl-
edge representation, classifier identification and reduction
are discussed. The proposed approaches are experimentally
evaluated for the three-class Wine classification problem.
Finally, conclusions are given in Section 7.

2 Effective Model Representation by
Fuzzy Systems

2.1 Classifier Systems
The identification of a classifier system means the con-
struction of a model that predicts whether a given pattern,
xk = [x1,k, . . . , xn,k, ], in which yk = {c1, . . . , cC} class
should be classified. The classic approach for this problem
with C classes is based on Bayes’ rule. The probability of
making an error when classifying an example x is mini-
mized by Bayes’ decision rule of assigning it to the class
with the largest posterior probability:

x is assigned to ci ⇐⇒ p(ci|x) ≥ p(cj |x) ∀j 6= i (1)

The a posteriori probability of each class given a pattern
x can be calculated based on the p(x|ci) class conditional
distribution, which models the density of the data belong-
ing to the ci class, and the P (ci) class prior, which repre-
sents the probability that an arbitrary example out of data
belongs to class ci

p(ci|x) =
p(x|ci)P (ci)

p(x)
=

p(x|ci)P (ci)∑C
j=1 p(x|cj)P (cj)

(2)

As (1) can be rewritten using the numerator of (2) we would
have an optimal classifier if we would perfectly estimate
the class priors and the class conditional densities. Of
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course in practice one needs to find approximate estimates
of these quantities on a finite set of training data {xk, yk},
k = 1, . . . , N . Priors P (ci) are often estimated on the ba-
sis of the training set as the proportion of samples of class
ci or using prior knowledge. The p(ci|x) class conditional
densities can be modeled with non-parametric methods like
histograms, nearest-neighbors or parametric methods such
as mixture models.

2.2 Fuzzy Rules for Providing
Interpretability of Classifiers

The classical fuzzy rule-based classifier consists of fuzzy
rules that each describe one of the C classes. The rule
antecedent defines the operating region of the rule in the
n-dimensional feature space and the rule consequent is a
crisp (non-fuzzy) class label from the {c1, . . . , cC} set:

ri : If x1 is Ai,1(x1,k) and . . . xn is Ai,n(xn,k)
then ŷ = ci, [wi] (3)

where Ai,1, . . . , Ai,n are the antecedent fuzzy sets and wi

is a certainty factor that represents the desired impact of the
rule. The value of wi is usually chosen by the designer of
the fuzzy system according to his or her belief in the ac-
curacy of the rule. When such knowledge is not available,
wi = 1, ∀ i is used.

The and connective is modeled by the product opera-
tor allowing for interaction between the propositions in the
antecedent. Hence, the degree of activation of the ith rule
is calculated as:

βi(xk) = wi

n∏

j=1

Ai,j(xj,k) (4)

The output of the classical fuzzy classifier is determined
by the winner takes all strategy, i.e. the output is the class
related to the consequent of the rule that has the highest
degree of activation:

ŷk = c∗i , i∗ = arg max
1≤i≤C

βi(xk) (5)

The fuzzy classifier defined by the previous equations
is in fact a quadratic Bayes classifier when βi(xk) =
p(x|ci)P (ci).

As the number of the rules in the above representation
is equal to the number of the classes, the application of
this classical fuzzy classifier is restricted. In the [30], a
new rule-structure has been derived to avoid this problem,
where the p(ci|x) posteriori densities are modeled by R >
C mixture of models

p(ci|x) =
R∑

l=1

p(rl|x)P (ci|rl) (6)

This idea results in fuzzy rulebase where the consequent of
rule defines the probability of the given rule represents the
c1, . . . , cC classes:

ri : If x1 is Ai,1(x1,k) and . . . xn is Ai,n(xn,k)

then ŷk = c1 with P (c1|ri) . . . ,
ŷk = cC with P (cC |ri) [wi] (7)

The aim of the remaining part of the paper is to review
some techniques for the identification of the fuzzy classifier
presented above. In addition, methods for reduction of the
model will be described.

3 Model Evaluation Criteria and
Rule Base Reduction

Traditionally, algorithms to obtain best classifiers have
been based either on accuracy or interpretability. Recently
some approaches to combining these properties have been
reported; fuzzy clustering is proposed to derive transparent
models in [16], linguistic constraints are applied to fuzzy
modeling in [15] and rule extraction from neural networks
is described in [17].

3.1 Similarity-driven rule base
simplification

The similarity-driven rule base simplification method [31]
uses a similarity measure to quantify the redundancy
among the fuzzy sets in the rule base. A similarity mea-
sure based on the set-theoretic operations of intersection
and union is applied:

S(Ai,j , Al,j) =
|Ai,j ∩Al,j |
|Ai,j ∪Al,j | (8)

where |.| denotes the cardinality of a set, and the ∩ and
∪ operators represent the intersection and union of fuzzy
sets, respectively. S is a symmetric measure in [0,1]. If
S(Ai,j , Al,j) = 1, then the two membership functions
Ai,j and Al,j are equal. S(Ai,j , Al,j) becomes 0 when the
membership functions are non-overlapping. The complete
rule base simplification algorithm is given in [31].

Similar fuzzy sets are merged when their similarity ex-
ceeds a user defined threshold θ ∈ [0, 1] (θ=0.5 is applied).
Merging reduces the number of different fuzzy sets (lin-
guistic terms) used in the model and thereby increases the
transparency. The similarity measure is also used to detect
“don’t care" terms, i.e., fuzzy sets in which all elements of
a domain have a membership close to one. If all the fuzzy
sets for a feature are similar to the universal set, or if merg-
ing led to only one membership function for a feature, then
this feature is eliminated from the model. The method is
illustrated in Fig. 2

3.2 Multi-Objective Function for GA based
Identification

To improve the classification capability of the rule base,
genetic algorithm (GA) optimization method can be ap-
plied [32] where the cost function is based on the model
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Figure 2: Similarity-driven simplification.

accuracy measured in terms of the number of misclassifi-
cations. Also other model properties can be optimized by
applying multi-objective functions. For example in [33]
to reduce the model complexity, the misclassification rate
is combined with a similarity measure in the GA objec-
tive function. Similarity is rewarded during the iterative
process, that is, the GA tries to emphasize the redundancy
in the model. This redundancy is then used to remove un-
necessary fuzzy sets in the next iteration. In the final step,
fine tuning is combined with a penalized similarity among
fuzzy sets to obtain a distinguishable term set for linguistic
interpretation.

The GAs is subject to minimize the following multi-
objective function:

J = (1 + λS∗) · Error , (9)

where S∗ ∈ [0, 1] is the average of the maximum pairwise
similarity that is present in each input, i.e., S∗ is an aggre-
gated similarity measure for the total model. The weight-
ing function λ ∈ [−1, 1] determines whether similarity is
rewarded (λ < 0) or penalized (λ > 0).

3.3 Other Reduction Algorithms

The application of orthogonal transforms for reducing the
number of rules has received much attention in recent liter-
ature [34]. These methods evaluate the output contribution
of the rules to obtain an importance ordering. For modeling
purpose Orthogonal Least Squares (OLS) is the most ap-
propriate tool [35]. Evaluating only the approximation ca-
pabilities of the rules, the OLS method often assigns high
importance to a set of redundant or correlated rules. To
avoid this, in [36] some extension for the OLS method was
proposed.

Using too many input variables may result in difficul-
ties in the interpretability capabilities of the obtained clas-
sifier. Hence, selection of the relevant features is usually
necessary. Others have focused on reducing the antecedent
by similarity analysis of the fuzzy sets [33], however this
method is not very suitable for feature selection. Hence, for
this purpose, Fischer interclass separability method which
is based on statistical properties of the data [37] has been
modified in [38].

4 CI based Search Methods for the
Identification of Fuzzy Classifiers

Fixed membership functions are often used to partition the
feature space [20]. Membership functions derived from the
data, however, explain the data-patterns in a better way.
The automatic determination of fuzzy classification rules
from data has been approached by several different tech-
niques: neuro-fuzzy methods [19], genetic-algorithm based
rule selection [20] and fuzzy clustering in combination with
GA-optimization [22]. For high-dimensional classification
problems, the initialization step of the identification proce-
dure of the fuzzy model becomes very significant. Com-
mon initializations methods such as grid-type partitioning
[20] and rule generation on extrema initialization [39], re-
sult in complex and non-interpretable initial models and the
rule-base simplification and reduction step become compu-
tationally demanding.

4.1 Identification by Fuzzy Clustering

To obtain compact initial fuzzy models fuzzy clustering al-
gorithms [22] or similar but less complex covariance based
initialization techniques [38] were put forward, where the
data is partitioned by ellipsoidal regions (multivariable
membership functions). Normal fuzzy sets can then be
obtained by an orthogonal projection of the multivariable
membership functions onto the input-output domains. The
projection of the ellipsoids results in hyperboxes in the
product space. The information loss at this step makes the
model suboptimal resulting in a much worse performance
than the initial model defined by multivariable membership
functions. However, gaining linguistic interpretability is
the main advantage derived from this step. To avoid the er-
roneous projection step multivariate membership functions
[40] or clustering algorithms providing axis-parallel clus-
ters can be used [30]

4.2 Other Initialization Algorithms

For the effective initialization of fuzzy classifiers crisp de-
cision tree-based initialization technique is proposed in
[41]. DT-based classifiers perform a rectangular partition-
ing of the input space, while fuzzy models generate non-
axis parallel decision boundaries [42]. Hence, the main
advantage of rule-based fuzzy classifiers over crisp-DTs is
the greater flexibility of the decision boundaries. There-
fore fuzzy classifiers can be more parsimonious than DTs
and one may conclude that the fuzzy classifiers, based on
the transformation of DTs only [43], [44] will usually be
more complex than necessary. This suggests that the sim-
ple transformation of a DT into a fuzzy model may be
successfully followed by model reduction steps to reduce
the complexity and improve the interpretability. The next
section proposes rule-base optimization and simplification
steps for this purpose.
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5 Clustering by SOM for
Visualization

The Self-Organizing Map (SOM) algorithm performs a
topology preserving mapping from high dimensional space
onto map units so that relative distances between data
points are preserved. The map units, or neurons, form usu-
ally a two dimensional regular lattice. Each neuron i of the
SOM is represented by an l-dimensional weight, or model
vector mi = [mi,1, . . . , mi,l]T . These weight vectors of
the SOM form a codebook. The neurons of the map are
connected to adjacent neurons by a neighborhood relation,
which dictates the topology of the map. The number of the
neurons determines the granularity of the mapping, which
affects the accuracy and the generalization capability of the
SOM.

SOM is a vector quantizer, where the weights play the
role of the codebook vectors. This means, each weight
vector represents a local neighborhood of the space, also
called Voronoi cell. The response of a SOM to an input x
is determined by the reference vector (weight) m0

i which
produces the best match of the input

i0 = arg min
i

‖mi − x‖ (10)

where i0 represents the index of the Best Matching Unit
(BMU).

During the iterative training, the SOM forms an elastic
net that folds onto "cloud" formed by the data. The net
tends for approximate the probability density of the data:
the codebook vectors tend to drift there where the data are
dense, while there are only a few codebook vectors where
the data are sparse. The training of SOM can be accom-
plished generally with a competitive learning rule as

m
(k+1)
i = m

(k)
i + ηΛi0,i(x−m

(k)
i ) (11)

where Λi0,i is a spatial neighborhood function and η is the
learning rate. Usually, the neighborhood function is

Λi0,i = exp
(‖ri − r0

i ‖2
2σ2(k)

)
(12)

where ‖ri − r0
i ‖ represents the Euclidean distance in the

output space between the i-th vector and the winner.

6 Case study: Wine Classification by
CI techniques

6.1 Wine Data
The Wine data 1 contains the chemical analysis of 178
wines grown in the same region in Italy but derived from
three different cultivars. The problem is to distinguish the
three different types based on 13 continuous attributes de-
rived from chemical analysis. : Alcohol, Malic acid, Ash,
Alcalinity of ash, Magnesium, Total phenols, Flavanoids,
Non-flavanoid phenols, Proanthocyaninsm color intensity,
Hue, OD280/OD315 of diluted wines and Proline (Fig. 3).

6.2 Fuzzy Classifier Identified by GA
An initial classifier with three rules was constructed by the
covariance–based model initialization technique proposed
in [38] using all samples resulting in 90.5% correct, 1.7%
undecided and 7.9% misclassifications for the three wine
classes. Improved classifiers are developed based on the
GA based optimization technique discussed in Section 3.2.
Based on the similarity analysis of the optimized fuzzy sets,
some features have been removed from individual rules,
while the interclass separability method have been used to
omit some features in all the rules. The achieved member-
ship functions are shown in Fig. 4, while the obtained rules
are shown in Table 1.

6.3 Fuzzy Classifier Identified by Fuzzy
Clustering

A fuzzy classifier, that utilizes all the 13 information profile
data about the wine, has been identified by the clustering
algorithm proposed in [30], where the obtained classifier
is formulated by rules given by (7). Fuzzy models with
three and four rules were identified. The three rule-model
gave only 2 misclassification (98.9%). When a cluster was

1The Wine data is available from the University of California, Irvine,
via anonymous ftp ftp.ics.uci.edu/pub/machine-learning-databases.
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Figure 3: Wine data: 3 classes and 13 attributes.
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Figure 5: Membership functions obtained by fuzzy cluster-
ing.

added to improve the performance of this model, the ob-
tained classifier gave only 1 misclassification (99.4%).

The classification power of the identified models is com-
pared with fuzzy models with the same number of rules
obtained by Gath-Geva clustering, as Gath-Geva cluster-
ing can be considered the unsupervised version of the
proposed clustering algorithm. The Gath-Geva identified
fuzzy model gives 8 (95.5%) misclassification when the
fuzzy model has three rules and 6 (96.6%) misclassification
with four rules. These results indicate that the proposed
clustering method effectively utilizes the class labels.

The interclass separability based model reduction tech-
nique is applied to remove redundancy and simplify the ob-
tained fuzzy models and five features were selected. The
clustering has been applied again to identify a model based
on the selected five attributes. This compact model with
three, four and five rules gives four, two and zero misclas-
sification, respectively. The resulted membership functions
and the selected features are shown in Fig. 5.

6.4 Visualization by SOM
The SOM presented in Section 5. has been utilized to vi-
sualize the Wine data. SOM can be effectively used for
correlation hunting, which procedure is useful for detect-
ing the redundant features. It is interesting to note that the
rules given in Table 1 can easily validated by the map of
the variables given in Fig. 6

Figure 6: Self-Organizing Map of the Wine data

6.5 Discussion
The Wine data is widely applied for comparing the capa-
bilities of different data mining tools. Corcoran and Sen
[45] applied all the 178 samples for learning 60 non-fuzzy
if-then rules in a real-coded genetic based-machine learn-
ing approach. They used a population of 1500 individ-
uals and applied 300 generations, with full replacement,
to come up with the following result for ten independent
trials: best classification rate 100%, average classification
rate 99.5% and worst classification rate 98.3% which is 3
misclassifications. Ishibuchi et al. [20] applied all the 178
samples designing a fuzzy classifier with 60 fuzzy rules
by means of an integer-coded genetic algorithm and grid
partitioning. Their population contained 100 individuals
and they applied 1000 generations, with full replacement,
to come up with the following result for ten independent
trials: best classification rate 99.4% (1 misclassifications),
average classification rate 98.5% and worst classification
rate 97.8% (4 misclassifications). In both approaches the
final rule base contains 60 rules. The main difference is the
number of model evaluations that was necessary to come
to the final result.

As can be seen from Table 2, because of the simplic-
ity of the proposed clustering algorithm, the proposed ap-
proach is attractive in comparison with other iterative and
optimization schemes that involves extensive intermediate
optimization to generate fuzzy classifiers.

The results are summarized in Table 2. As it is shown,
the performance of the obtained classifiers are comparable
to those in [45] and [20], but use far less rules (3-5 com-
pared to 60) and less features.

Comparing the fuzzy sets in Fig. 5 with the data in Fig. 3
shows that the obtained rules are highly interpretable. For
example, the Flavonoids are divided in Low, Medium and
High, which is clearly visible in the data. This knowledge
can be easily validated by analyzing the SOM of the data
given in Fig. 6.
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7 Conclusion
The design of rule base classifiers is approached by com-
bining a wide range of CI tools developed for knowledge
representation (fuzzy rules), feature selection (class sepa-
rability criterion), model initialization (clustering and deci-
sion tree), model reduction (orthogonal methods) and tun-
ing (genetic algorithm). It has been shown that these tools
can be applied in a synergistic manner though the nine steps
of knowledge discovery.
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Table 1: Three rule fuzzy classifier (L=low, M=medium , H=high).
1 2 3 4 5 6 7 8 9 10 11 12 13

Alc Mal Ash aAsh Mag Tot Fla nFlav Pro Col Hue OD2 Pro Class

R1 H - - - - - H - - M L - L 1
R2 L - - - - - - - - L L - H 2
R3 H - - - - - L - - H H - H 3

Table 2: Classification rates on the Wine data for ten independent runs.

Method Best result Aver result Worst result Rules Model eval

Corcoran and Sen [45] 100% 99.5% 98.3% 60 150000
Ishibuchi et al. [20] 99.4% 98.5% 97.8% 60 6000
Cluster + GA 99.4 % varying schemes 98.3% 3 4000-8000
Gath-Geva clustering 95.5 % 95.5 % 95.5 % 3 1
Sup. cluster (13 features) 98.9 % 98.9 % 98.9 % 3 1
Sup. cluster (5 features) 100 % 100 % 100 % 5 2




