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Due to the technology limits, digital images always include some defects, such as noise. Noise reduces 

image quality and affects the result of image processing. While in most cases, noise has Gaussian distri-

bution, in biomedical images, noise is usually a combination of Poisson and Gaussian noises. This com-

bination is naturally considered as a superposition of Gaussian noise over Poisson noise. In this paper, 

we propose a method to remove such a type of mixed noise based on a novel approach: we consider the 

superposition of noises like a linear combination. We use the idea of the total variation of an image in-

tensity (brightness) function to remove this combination of noises. 

Povzetek: Članek predlaga izvirno kombinacijo Gaussovega in Poissonovega filtra za filtriranje šuma v 

slikah.

1 Introduction 
Image denoising has attracted a lot of attention in recent 

years. In order to suppress noise effectively, we need to 

know its type. There are many types of noises, for exam-

ple, Gaussian (digital images), Poisson (X-Ray images), 

Speckle (ultra sonograms) noises and so on. 

One of the most famous effective methods is the to-

tal variation model [2-4, 10, 12, 17, 18, 22, 26]. The first 

person who suggested it to solve the denoising problem 

is Rudin [17]. He used the total variation as a universal 

tool in image processing. His denoising model is well-

known as the ROF model [3, 17]. The ROF model is tar-

geted to efficiently remove Gaussian noise only.  

This model is often used to remove not only Gaussi-

an noise, but also other types of noise. For example, the 

ROF model suppresses Poisson noise not so effectively. 

Le T. [9] proposed another model, well-known as the 

modified ROF model to remove Poisson noise only.  

Gaussian and Poisson noises both are widespread in 

real situations, but their combination is important too, for 

example, in electronic microscopy images [7, 8]. In these 

images, both types of noises are combined as a superpo-

sition. In physical process, Poisson noise usually is added 

first, before Gaussian noise. Luisier F. with co-authors 

proposed the theoretically strong PURE-LET method 

[11] (Poisson-Gaussian unbiased risk estimate – linear 

expansion of thresholds) to remove this type of combina-

tion of noises.  

However, such kind of noises usually can be consid-

ered as dependent on the image acquisition systems. At 

the same time, in many papers devoted to the image de-

noising problem the idea of Poisson-Gaussian noise 

combination  is considered, even though such is not the 

case.   

From other side, many noise reduction approaches 

have been developed, particularly, wavelet-based trans-

forms, etc. It needs to draw attention, noise reduction 

approaches that have been developed based on wavelet 

transform are only for Gaussian or Poisson noise. 

In order to remove mixed noise, let us assume that 

the superposition of noises can be equivalent to some 

unknown linear combination of them. 

We can combine ROF and modified ROF models to 

suppress the linear combination of noises. The obtained 

model is supposed to remove the mixed noise better than 

ROF or modified ROF models separately. Additionally, 

it is simpler than PURE-LET, because we try to find only 

the proportion between Poisson and Gaussian noises in 

the mixed noise. 

In experiments, we use images and add noise into 

them. The image quality is compared with some other 

denoising methods such as ROF, modified ROF models, 

and PURE-LET method to remove the superposition of 

noises. In our paper [19], we proposed to remove the 

linear combination of Poisson and Gaussian noises and 
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compared results with Wiener [1] and median [23] filters, 

and with Beltrami method [29]. Our method gives better 

results for Gaussian and Poisson noises separately, and 

for the combination of noises too. Hence, in this paper, 

we do not compare our approach with these methods.  

In order to compare image quality after restoration, 

we use criteria PSNR (Peak Signal-to-Noise Ratio), MSE 

(Mean Square Error), SSIM (Structure SIMilarity) [24, 

25]. The PSNR criterion is the most important, because it 

is always used to evaluate images and signals quality. 

In this paper, we try to represent and discuss only the 

case limited by the greyscale artificial and real images 

with artificial noise. According to it, we can use only 

criteria above based on the full-reference image quality 

evaluation approach.  

In the case of greyscale real images with unknown 

noises, we need to use the no-reference approach to eval-

uate the quality of denoising. In general, it is complicated 

theoretical problem to develop a criterion for it.  

Our investigation based on BRISQUE criterion [13] 

(Blind/Referenceless Image Spatial QUality Evaluator) 

in this case was discussed in paper [20].  

2 Combined denoising model  

Let in 2R  space a bounded domain 2R  be given. 

Let functions ( , ) Ru x y   and ( , ) R,v x y   respectively, 

be ideal (without noise) and observed (noisy) imag-

es, ( , )x y  .  For smooth function u , its total variation 

can be defined by [ ] | |TV u u dxdy


  , where 

( , )x yu u u   is a gradient, /xu u x   , /yu u y   , 

2 2| | x yu u u   . In this paper, we consider that the func-

tion u  always has limited total variation [ ]TV u   . 

According to [2, 3, 17, 18], an image smoothness is 

characterized by the total variation of an image intensity 

function. The total variation of the noisy image is always 

greater than the total variation of the corresponding 

smooth image. In order to solve the problem 

[ ] minTV u  , we need to use the following condition 

2( )v u dxdy const


  . 

Hence, we obtain the ROF model to remove Gaussi-

an noise in the image [17, 18]: 

2argmin | | ( )
2u

u u dxdy v u dxdy

 

 
    

 
 


, 

where 0  is Lagrange multiplier. This is a solution of 

the unconstrained optimization problem. 

In order to remove Poisson noise, Le T. built another 

model based on ROF model [9] as the optimization prob-

lem [ ] minTV u   with the following constraint 

ln( ( | )) ( ln( ))p v u dxdy u v u dxdy const
 

    . 

This model resulted in the following unconstrained 

optimization problem 

* argmin | | ( ln( ))
u

u u dxdy u v u dxdy
 

 
    

 
  , 

where 0  is a coefficient of regularization. This is the 

known modified ROF model to remove Poisson noise. 

In order to build a model for removing the mixed 

Poisson-Gaussian noise, we also solve the same optimi-

zation problem [ ] minTV u  , but with a different con-

straint as follows. 

This constraint is very similar to constraints above. 

We consider, the noise variance is unchangeable (Pois-

son noise is not changed and Gaussian noise only de-

pends on noise variance): 

      ln( ( | ))p v u dxdy const


 ,   (1) 

where ( | )p v u  is a conditional probability of the real 

image v  with the ideal image u  given. 

The probability density function of Gaussian noise is 
2

1 2

( )
( | ) exp / ( 2 )

2

v u
p v u

 
  

 
 


, 

and the probability distribution of Poisson noise is 

2 ( | ) exp( ) / !vp v u u u v  . 

We have to notice that intensity functions of images 

u  and v  are integer (for example, for 8-bits greyscale 

image the range of intensity is from 0 to 255). 

In order to combine Gaussian and Poisson noises, we 

consider the following linear combination 

1 1 2 2ln( ( | )) ln( ( | )) ln( ( | ))p v u p v u p v u   , 

1 0 , 2 0 , 1 2 1   . 

According to (1), we obtain the denoising problem as 

a constrained optimization problem 

*

21
22

arg min | |

( ) ( ln( )) ,
2

u

u u dxdy

v u u v u dxdy





  



      

  






 


 

where   is a constant value. We transform this problem 

into unconstrained optimization problem by using La-

grange functional 

21

2
( , ) | | ( )

2
L u u dxdy v u dxdy

 


    


 


 



2 ( ln( ))u v u dxdy



  


   

to find the solution as 

 
* *

,

( , ) arg min ( , )
u

u L u


   (2) 

where 0  is Lagrange multiplier. 

If 1 0  and 2   , we obtain the modified ROF 

model to remove Poisson noise. If 2 0  and 
2

1 /    , we obtain the ROF model to remove 

Gaussian noise. If 1 20, 0   , we obtain our model to 

remove mixed Poisson-Gaussian noise. 
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3 Discrete denoising model  
The problem (2) can be solved by using Lagrange multi-

pliers method [5, 16, 28].  

We use Euler-Lagrange equation [28]. Let a function 

( , )f x y  be defined in a limited domain  2R  and be 

second-order continuously differentiated by x  and y , 

where ( , )x y  . Let ( , , , , )x yF x y f f f  be a convex 

functional, where /xf f x   , /yf f y   . Then the 

solution of the following optimization problem 

( , , , , ) minx yF x y f f f dxdy


  

satisfies the following Euler-Lagrange equation  

( , , , , ) ( , , , , )
xf x y f x yF x y f f f F x y f f f

x


 


 

( , , , , ) 0
yf x yF x y f f f

y





, 

where /fF F f   , /
xf xF F f   , /

yf yF F f   . 

We use the above result to solve the obtained model. 

Then the solution of the problem (2) satisfies the follow-

ing Euler-Lagrange equation 

1
22

( ) (1 )
v

v u
u

    





 

2 2 2 2
0,

yx

x y x y

uu

x yu u u u

   
     
     
   

   

(3) 

where 1/  . We rewrite (3) in the form 

1
22

( ) (1 )
v

v u
u

   




2 2

2 2 3/2

2
0

( )

xx y x y xy x yy

x y

u u u u u u u

u u

 





, 

  (4) 

2

2xx

u
u

x





, 

2

2yy

u
u

y





, 

xy yx

u u
u u

x y y x

     
     
      . 

In order to obtain the discrete form of the model (4), we 

add an artificial time parameter and consider the function 

( , , )u u x y t  in the following diffusion equation 

1

22
( ) (1 )t

u v
u v u

t u


     






 

2 2

2 2 3/2

2

( )

xx y x y xy x yy

x y

u u u u u u u

u u

 


 . 

(5) 

Then the discrete form of the equation (5) is 

11

2
( )k k k

i j i j i j i ju u v u


   







2 (1 )
i j k

i jk

i j

v

u


  




  , 

(6) 

2

2 2 3/2

( )( ( ))

(( ( )) ( ( )) )

k k

xx ij y ijk

i j k k

x ij y ij

u u

u u

 
 

  
  

2

2 2 3/2

2 ( ) ( ) ( ) ( ( )) ( )

(( ( )) ( ( )) )

k k k k k

x ij y ij xy ij x ij yy ij

k k

x ij y ij

u u u u u

u u

      

  
, 

1, 1,
( )

2

k k

i j i jk

x ij

u u
u

x

 
 


, 

, 1 , 1
( )

2

k k

i j i jk

y ij

u u
u

y

 
 


,

1, 1,

2

2
( )

( )

k k k

i j ij i jk

xx ij

u u u
u

x

  
 


, 

, 1 , 1

2

2
( )

( )

k k k

i j ij i jk

yy ij

u u u
u

y

  
 


,

1, 1 1, 1 1, 1 1, 1
( )

4

k k k k

i j i j i j i jk

xy ij

u u u u
u

x y

         
 

 
, 

1 1 2 20 1 1, , 0 1 , 1 ,; ; ; ;k k k k k k k k

j j N j N j i i i N i Nu u u u u u u u      

1 21,..., ; 1,..., ;i N j N 

0,1,..., ; 1; 0 1k K x y       , 

where K  is enough great number, 500K  . 

4 Optimal model parameters 

In practice, parameters 1 2, , ,     in procedure (6) are 

usually unknown. We have to change 1 2, ,    into 

1 2, ,k k k    to evaluate them on every iteration step k .  

4.1 Optimal parameters λ1 and λ2 

Let ( , )u   be a solution of problem (2). Then we obtain 

the following condition ( , ) / 0L u u   . This condition 

give us optimal 1  and 2 : 

1

2

(1 )

1
( ) (1 )

v
dxdy

u

v
v u dxdy dxdy

u



 





  



 




, 2 11   . 

The discrete form for 0,1,...,k K  is 

1 2

1 2

1 1

1

2
1 1

(1 )

( 1 )

N N
ij

k
i j ijk

kN N
ij ij ij

k
i j ij

v

u

v u v

u

 

 






 









, 2 11k k   . 

4.2 Optimal parameter μ 

In order to find the optimal  , we multiply (3) by 

( )v u  and integrate by parts over domain  . Finally, 

we obtain the formula to find the optimal 
2

21
22

2 2

2 2

( )
( ( ) )

( )
x x y y

x y

x y

v u
v u dxdy

u

u v u v
u u dxdy

u u






  




 










 . 

The discrete form is 

1 2

1 2

2

21
22

1 1

1 1

( )
( ( ) )

kN N k
ij ijk k

ij ij k
i j ijk

N N
k

ij

i j

v u
v u

u 

 


  















, 
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2 2( ( )) ( ( ))k k k

ij x ij y iju u    

2 2

( ) ( ) ( ) ( )

( ( )) ( ( ))

k k

x ij x ij y ij y ij

k k

x ij y ij

u v u v

u u

   

  
, 

1, 1,
( )

2

k k

i j i jk

x ij

u u
u

x

 
 


, 

, 1 , 1
( )

2

k k

i j i jk

y ij

u u
u

y

 
 


, 

1, 1,
( )

2

k k

i j i jk

x ij

v v
v v

x

 
 


, 

, 1 , 1
( )

2

k k

i j i jk

y ij

v v
v

y

 
 


, 

1 1 2 20 1 1, , 0 1 , 1 ,; ; ; ;k k k k k k k k

j j N j N j i i i N i Nu u u u u u u u      

1 1 2 20 1 1, 0 1 , 1 ,; ; ; ;j j N j N j i i i N i Nv v v v v v v v      

1 21,..., ; 1,..., ;i N j N  0,1,..., ; 1k K x y     . 

4.3 Optimal parameter σ 

The parameter   is calculated at the first step of the 

iteration process. We use the method of Immerker [6]: 

1 2

1 11 2

/ 2
| * |

6( 2)( 2)

N N

ij

i j

u
N N  

 
 




 , 

with the mask 
1 2 1

2 4 2

1 2 1



 



 
   

 
 for convolution operator *,  

1, 1 33 , 1 32 1, 1 31 1, 23*ij i j i j i j i ju u u u u                

22 1, 21 1, 1 13 , 1 12 1, 1 11ij i j i j i j i ju u u u u              , 

1 21,..., ; 1,..., ;i N j N   

0iju  , if 0i  , or 0j  , or 1 1i N  , or 2 1j N  . 

4.4 Initial solution 

In the iteration procedure (6), the result depends on ini-

tial parameters 0 0 0

1 2, ,   . If 0 0 0

1 2, ,    are given first, 

then its unsuitable values define not so good solution iju  

and later, not so good evaluation of a probability distri-

bution parameters. If 
0 0 0

1 2, ,    are randomized, the re-

sult is unacceptable too, because of the additional noise 

added in the image. 

Of course, initial values of 
0 0 0

1 2, ,    need to be 

closed to required values. We evaluate
0 0 0

1 2, ,    as av-

erage values of neighbour pixels of the image, for exam-

ple, by the method of Immerker. 

5 Image quality evaluation 
In order to evaluate the image quality after denoising, we 

use criteria PSNR, MSE and SSIM [24, 25]: 

1 2

2

MSE

1 11 2

1
Q ( )

N N

ij ij

i j

v u
N N  

  ,
2

PSNR

MSE

Q 10lg
Q

L 
  

 
, 

1 2

SSIM 2 2 2 2

1 2

(2 )(2 )
Q

( )( )

uv

u v

u v C C

u v C C



 

 


   
, 

where 
1 2

1 11 2

1
N N

ij

i j

u u
N N  

  , 
1 2

1 11 2

1
N N

ij

i j

v v
N N  

  . 

1 2

2 2

1 11 2

1
( )

1

N N

u ij

i j

u u
N N  

 

 , 

1 2

2 2

1 11 2

1
( )

1

N N

v ij

i j

v v
N N  

 

 , 

1 2

1 11 2

1
( )( )

1

N N

uv ij ij

i j

u u v v
N N  

  

 , 

2 2

1 1 2 2 1 2( ) , ( ) ; 1; 1C K L C K L K K    . 

For example, 6

1 2 10K K   , L  is an image intensi-

ty with 255L   for 8-bits greyscale image. 

The greater the value of 
PSNRQ , the better the image 

quality. If the value of 
PSNRQ  belongs to the interval 

from 20 to 25, then the image quality is acceptable, for 

example, for wireless transmission [21]. 

The MSEQ  is a mean squared error and is used to 

evaluate the difference between two images. The lower 

the value of MSEQ , the better the result of restoration. 

The value of MSEQ  directly related to the value of PSNRQ . 

The value of SSIMQ  is used to evaluate an image 

quality by comparing the similarity of two images. This 

value is between -1 and 1. The greater the value of 

SSIMQ , the better the image quality. 

6 Experiments and discussion 
In this paper, we consider cases as in [19] and additional-

ly the superposition of noises. The image size is changed 

from 300x300 pixels to 256x256 pixels specified in 

PURE-LET method [11]. We process the artificial image 

with artificial noise and the real image with artificial 

noise. The artificial image is noise-free and we need to 

add noise with high intensity (the image to be very noisy) 

to reduce its quality. Therefore, we specify 0.6 for pro-

portion of Gaussian noisy image and 0.4 for proportion 

of Poisson noisy image. The real image (captured by a 

digital device) already includes some noise. We specify 

0.5 for proportion of Gaussian noisy image and 0.5 for 

proportion of Poisson noisy image too.  

We need to point the attention in the case of Gaussi-

an noise our method sometimes can be better than ROF, 

because the method to evaluate the variance of Gaussian 

noise can be better than one included in the original ROF 

model in many cases. In the case of superposition of 

noises, our method sometimes can be better than PURE-

LET, because parameters of our method are usually more 

optimal than in original model too. 

6.1 Artificial image with artificial noise 

We use artificial image with artificial mixed noise for the 

first test. The image includes eight bars (Fig. 1a). Other 

images (Fig. 1b-j) show noisy and denoised images and 

zoomed out part of them. 

Artificial noise is generated by linear combination, 

and by superposition of Poisson and Gaussian noises.  

For both cases, we consider Poisson noise first. Its 

probability density is 2 ( | )p v u , and variance is
2 i ju  
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at every pixel ( , )i j , 11,...,i N , 21,...,j N . Poisson 

noise variance is an average value 2 11.7939 . If the 

grey value of a pixel after adding of Poisson noise is out 

of the interval from 0 to 255, it needs to be reset to 
(2)

i j i jv u . For this image, there are no pixels out of this 

interval. Next, we consider the variance of Gaussian 

noise is four times greater than the variance of Poisson 

noise 21 4 47.1757  . 

For the linear combination of noises, we denote the 

intensity function of Gaussian noisy image as (1)v . As 

above, values of (1)v  need to be between 0 and 255. If the 

grey value of a pixel after adding of Gaussian noise is out 

of the interval from 0 to 255, it needs to be reset to 
(1)

i j i jv u . In this case, there are 1075 pixels out of this 

  
a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

  
i) j) 

Figure 1: Denoising of the artificial image: a)-b) 

original image, c)-d) noisy image with linear combi-

nation of noises, e)-f) denoised image (c), g)-h) noisy 

image with superposition of noises, i)-j) denoised 

image (g). 

  
a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

  
i) j) 

Figure 2: Denoising of the real image: a)-b) original 

image, c)-d) noisy image with linear combination of 

noises, e)-f) denoised image (c), g)-h) noisy image 

with superposition of noises, i)-j) denoised image (g). 
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interval (1.64%).  

The final noisy image (linear combination of noises 

in Fig. 1c) is created with proportion 0.6 for Gaussian 

noisy image (1)v  and proportion 0.4 for Poisson noisy 

image (2)v : (1) (2)0.6 0.4v v v  .  

Then we define proportion for linear combination as 

   1 2/ 0.6 47.1757 / 0.4 11.7939 6 /1     . Coeffi-

cients of linear combination are defined as 

1 = 6/7 = 0.8571, 2 = 1/7 = 0.1429.  

Values of QPSNR, QMSE, and QSSIM of the noisy im-

age (linear combination of noises) are, respectively, 

19.4291, 741.5963, and 0.1073. 

In the case of the image with superposition of noises, 

we add Gaussian noise over Poisson noisy image. The 

intensity function of this Gaussian noisy image is (1)v  

too. As above, the grey values of (1)v  need to be between 

0 and 255. If the grey value of a pixel after adding of 

Gaussian noise is out of the interval from 0 to 255, it 

needs to be reset to 
(1) (2)

i j i jv v .  

There are 1220 pixels out of this interval (1.86%). 

The noisy image (superposition of noises, Fig. 1g) is also 

Gaussian noisy image (1)v v . In this case, we don’t 

know 1 and 2, therefore we use the algorithm with au-

tomatically defined parameters. 

Values of QPSNR, QMSE, and QSSIM of the noisy im-

age are, respectively, 14.9211, 2093.9827, and 0.0439. 

Tables 1 – 4 show results for linear combination of 

noises, Gaussian noise, Poisson noise, and superposition 

of noises for the artificial image. 

6.2 Real image with artificial noise 

The artificial noise is generated by linear combination 

and superposition of Poisson and Gaussian noises. 

For both cases, we consider Poisson noise first. Pois-

son noise variance is an average value 2 9.0882 . If 

the grey value of a pixel after adding of Poisson noise is 

out of the interval from 0 to 255, it needs to be reset to 

 QPSNR QSSIM QMSE 

Noisy 19.4291 0.1073 741.5963 

ROF 34.1236 0.8978 25.1606 

Modified ROF 32.4315 0.8703 37.8791 

PURE-LET  33.0309 0.9277 32.3587 

Proposed method  

1=0.8571, 

2=0.1429, 

 = 0.5003, 

 = 47.1757 

41.1209 0.9841 4.9905 

Proposed method 

with automatically 

defined parameters 

1=0.8414, 

2=0.1586, 

 = 0.5112, 

 = 41.0314 

41.0998 0.9840 5.0478 

Table 1: Quality of noise removing for the artificial 

image with linear combination of noises. 

 QPSNR QSSIM QMSE 

Noisy 15.1406 0.0457 1990.8 

ROF 31.4797 0.8364 21.2502 

Modified ROF 28.4591 0.7871 27.5694 

PURE-LET  28.9451 0.7986 25.9883 

Proposed method  

1=1, 2=0, 

 = 0.3033, 

 = 47.1757 

35.8011 0.9598 16.8122 

Proposed method 

with automatically 

defined parameters 

1=0.9715, 

2=0.0285, 

 = 0.3021, 

 = 46.0314 

35.7589 0.9596 17.2658 

Table 2: Quality of noise removing for the artificial 

image with Gaussian noise. 

 QPSNR QSSIM QMSE 

Noisy 26.6776 0.3640 139.7396 

ROF 36.4958 0.9381 14.5715 

Modified ROF 44.6347 0.9897 2.2001 

PURE-LET  37.4485 0.9404 10.5692 

Proposed method  

1=0,  

2=1, 

 = 0.8012, 

 = 0.0001 

44.6343 0.9897 2.2014 

Proposed method 

with automatically 

defined parameters 

1=0.0524, 

2=0.9476, 

 = 0.7923, 

 = 2.0544 

44.6156 0.9896 2.2466 

Table 3: Quality of noise removing for the artificial 

image with Poisson noise. 

 QPSNR QSSIM QMSE 

Noisy 14.9211 0.0439 2093.983 

ROF 31.2913 0.8346 48.3008 

Modified ROF 30.5471 0.8232 56.5601 

PURE-LET  33.9889 0.9298 25.9534 

Proposed method 

with automatically 

defined parameters 

1=0.8014, 

2=0.1986, 

 = 0.4812, 

 = 40.0314 

37.3366 0.9677 12.0066 

Table 4: Quality of noise removing for the artificial 

image with superposition of noises. 
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(2)

i j i jv u . Here there are no pixels out of this interval.  

For Gaussian noise, we consider the variance of 

Gaussian noise is four times greater than the variance of 

Poisson noise 21 4 36.3529  . The real image is a 

human skull [14] (Fig. 2a). Others (Fig. 2b-j) show noisy 

and denoised images and zoomed out part of them.  

For the case of linear combination of noises, we de-

note the intensity function of Gaussian noisy image as 
(1)v . As above, the grey values of intensity function (1)v  

also need to be between 0 and 255. If the grey value of a 

pixel after adding of Gaussian noise is out of the interval 

from 0 to 255, it needs to be reset to 
(1)

i j i jv u . In this 

case, there are 5355 pixels out of this interval (8.17%). 

The final image (linear combination of noises, Fig. 2c) is 

created with proportion 0.5 for Gaussian noisy image (1)v  

and proportion 0.5 for Poisson noisy image (2)v : 
(1) (2)0.5 0.5v v v  . The proportion for linear combina-

tion is: 1 2 (0.5 36.3529) / (0.5 9.0882 4 1/ ) /     . 

Hence, coefficients of linear combination are defined 

as 1 = 4/5 =0.8, 2 = 1/5 = 0.2. Values of QPSNR, QMSE, 

and QSSIM of final noisy image are, respectively, 23.6878, 

278.1619, and 0.5390. 

For superposition of noises, we add Gaussian noise 

over Poisson noisy image. We denote the intensity func-

tion of Gaussian noisy image as (1)v . As above, grey val-

ues of (1)v  need to be between 0 and 255. If the grey val-

ue after adding of Gaussian noise is out of the interval 

from 0 to 255, it needs to be reset to 
(1) (2)

i j i jv v . In this 

case, there are 5621 pixels out of this interval (8.58%). 

The final noisy image (superposition of noises, Fig. 2g) 

is also the Gaussian noisy image (1)v v .  

In this case, we don’t know 1 and 2, therefore we 

use the algorithm to find them. Values of QPSNR, QMSE, 

and QSSIM of the final noisy image (superposition) are, 

respectively, 17.8071, 1077.3831, and 0.3242. 

Tables 5 – 8 show results for linear combination of 

noises, Gaussian noise, Poisson noise, and superposition 

of noises for the real image. 

 QPSNR QSSIM QMSE 

Noisy 23.6878 0.5390 278.1619 

ROF 27.3974 0.8295 118.3975 

Modified ROF 25.5644 0.7513 197.5403 

PURE-LET  25.7781 0.8105 191.0341 

Proposed method  

1=0.8, 2=0.2, 

 = 0.0524, 

 = 36.3529 

27.6641 0.8331 110.9451 

Proposed method 

with automatically 

defined parameters 

1=0.7804, 

2=0.2196, 

 = 0.0512, 

 = 34.2311 

27.6039 0.8325 112.8984 

Table 5: Quality of noise removing for the real im-

age with linear combination of noises. 

 QPSNR QSSIM QMSE 

Noisy 18.0693 0.3337 1014.3 

ROF 24.0246 0.7299 257.4095 

Modified ROF 23.2511 0.7019 311.8742 

PURE-LET  23.8712 0.7989 265.6153 

Proposed method  

1=1, 2=0, 

 = 0.0956, 

 = 36.3529 

24.2011 0.8029 242.5101 

Proposed method 

with automatically 

defined parameters 

1=0.9538, 

2=0.0462, 

 = 0.0902, 

 = 35.0633 

24.1882 0.8028 247.8894 

Table 6: Quality of noise removing for the real im-

age with Gaussian noise. 

 QPSNR QSSIM QMSE 

Noisy 28.4991 0.7625 91.8683 

ROF 31.0567 0.9457 50.9818 

Modified ROF 31.1992 0.9022 48.9375 

PURE-LET  30.8955 0.8678 53.1066 

Proposed method  

1=0, 2=1, 

 = 0.0541, 

 = 0.0001 

31.1334 0.8986 49.7922 

Proposed method 

with automatically 

defined parameters 

1=0.0491, 

2=0.9509, 

 = 0.0567, 

 = 4.2012 

31.1316 0.8986 50.1094 

Table 7: Quality of noise removing for the real image 

with Poisson noise. 

 QPSNR QSSIM QMSE 

Noisy 17.8077 0.3242 1077.383 

ROF 23.1936 0.7062 311.6856 

Modified ROF 23.0413 0.7033 319.3831 

PURE-LET  23.6278 0.7072 282.0349 

Proposed method 

with automatically 

defined parameters 

1=0.7704, 

2=0.2296, 

 = 0.1102, 

 = 36.3412 

23.7292 0.7094 275.5229 

Table 8: Quality of noise removing for the real image 

with superposition of noises. 
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6.3 About of initial solution 

In order to create the initial image, we use the convolu-

tion operator. The table 9 shows the dependency of re-

stored result for the initial image, where:  

(a) Initial parameters 0 0

1 20, 1, 1     ;  

(b) Initial parameters 0 0

1 2 0.5, 1     ;    

(c) Initial solution 0u  is given as a randomized matrix; 

(d) Initial solution 0u v   is given as an average val-

ue of neighbour pixels by the convolution operator 

with the mask  1/ 9   of the size 3x3. 

Table 9 shows the best result of denoising is (d) by 

criteria PSNR and MSE.  

The result (c) by SSIM looks different in contract to 

ones in Tables 1-8. It illustrates incorrectness of a ran-

domized initial solution (accidental and not stable, if a 

probability distribution is unknown).  

Next, we have to notice that the non-optimal result 

(a) has been used in experiments for Table 5. It appears 

to be enough for the good result with automatically de-

fined model parameters. 

 (a) (b) (c) (d) 

1 0.7804 0.8094 0.8733 0.8032 

2 0.2196 0.1906 0.1267 0.1968 

 0.0512 0.0573 0.0653 0.0565 

 34.2311 

QPSNR 27.6039 27.2214 26.5611 27.6523 

QMSE 112.8984 120.4355 132.0264 107.5431 

QSSIM 0.8325 0.8317 0.8395 0.8392 

Table 9: Dependency of denoising on initial solution. 

At last, the variant (b) initially looks better than (a) 

for kind of better assumption of 
0 0

1 2 0.5    to process 

the real image. Nevertheless, our assumption about 1  

is very far from the good one, and evidently the limit of 

the number of steps 500K   is insufficient in this case.  

As a result, the variant (d) is the best idea for initial 

solution. 

7 Conclusion 
In this paper, we proposed a novel method that can effec-

tively remove the mixed Poisson-Gaussian noise. Fur-

thermore, our proposed method can be also used to re-

move Gaussian or Poisson noise separately. This method 

is based on the variational approach. 

The denoising result strongly depends on values of 

coefficients of linear combination 1  and 2 . These val-

ues can be set manually or can be defined automatically. 

When processing real images, we can use the proposed 

method with automatically defined parameters. 

Although our method concentrates on removing the 

linear combination of noise, but it also efficiently re-

moves the superposition of noises. In this case, we con-

sider the superposition of noises is equivalent to some 

linear combination of them with coefficients found in 

iteration process. 

In this paper we show that our simple model “feels” 

well the wide range of proportion of two types of noises. 

As a result, it appears to be the good basis for removing 

superposition of such noises.   

It is evident, the iteration process (6) used here is in-

sufficiently effective in comparing with other possible 

computational schemes. In this paper, we try to compare 

our approach to image denoising with PURE-LET meth-

od only in possible reduction of our model complexity, 

not in others.  

We would like to express our great thanks to devel-

opers of PURE-LET method for kindly granted us the 

original executable module of it.  
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