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Introduction: In recent time medical image processing and analysis became an essential component 

inclinical practice. Medical images contain huge data to process due to increased image resolution. 

Thesetasks are inherently parallel in nature, so they naturally fit to parallel processors like Graphics 

Processing Unit (GPU). In this work several commonly used image processing algorithms for 2-D and 3-

D were evaluated regarding the computation performance increase using the GPUs and CPUs on a 

personal computer. For tested algorithms, GPU outperforms CPU from 1.1 to 422 times. 

Povzetek: V zadnjem času je obdelava in analiza medicinskih slik postala bistvena sestavina v klinični 

praksi. Medicinske slike vsebujejo ogromne količine podatkov, vendar je procesiranje slik vzporedne 

narave, posebej primerno za obdelavo z grafično procesno enoto (GPU). V tem delu smo ocenili več 

pogosto uporabljenih algoritmov za obdelavo slik za 2-D in 3-D glede povečanja zmogljivosti računanja 

z grafičnimi procesorji na osebnem računalniku. Za testirane algoritme je grafični procesor omogočil 

zmanjšanje časa računanja od 1,1 do 422-krat. 

 

1 Introduction 
In the last decade parallel processing has become the most 

dominant for high-performance computing. Increasing the 

processor clock rate in single-core processors has slowed 

down due to the problems with heat dissipation. 

Application developers cannot count on Moore's law to 

make complex algorithms computationally feasible. 

Consequences are that they are increasingly shifting the 

algorithms to parallel computing architectures [1][2]. 

These architectures are multicore Central Processing 

Units (CPU), Graphical Processing Units (GPU) and 

Field-Programmable Gate Array (FPGA). 

The amount of data processed in clinical practice is 

also increasing. Increased resolution of medical images 

and a huge amount of data for processing is exploding. 

Trends like 3-D and 4-D imaging technologies used in 

treatment planning need a lot of computer power. Due to 

its nature, these tasks are inherently data-parallel, i.e. data 

from such dataset can be processed in parallel using 

multiple threads. GPUs originally designed for 

acceleration of computer graphics, become a versatile 

platform for running massively parallel computation. This 

is due to its nature, like high memory bandwidth, high 

computation throughput etc. [2]. In the year, 2004 

programmable GPUs were introduced. Firstly, they could 

run in parallel custom programs called shaders. This is the 

first time to accelerate the non-graphical applications with 

GPUs. 

Today GPU become a viable alternative to CPUs in 

time-consuming tasks. When same computations can be 

performed on many image elements in parallel, so it can 

easily fit on GPUs. Two dominant parallel computing 

platforms are NVidia CUDA and OpenCL. 

OpenCL [3] is a software framework for writing 

programs that run across heterogeneous platforms like 

CPUs, GPUs, digital signal processors (DSPs) and 

FPGAs. Heterogeneous refers to systems with more the 

one kind of processors or cores. Both CUDA and OpenCL 

support heterogeneous computing. OpenCL is based on a 

C programming language, and it is an open standard. 

NVIDIA CUDA [4] is a parallel computing platform and 

Application Programming Interface (API), which supports 

programming framework OpenCL. 

In [5] authors gave the introduction to the GPU 

architecture, and its applications in image processing, 

software development, and numerical applications.  

In [2] authors review the principles of GPU 

computing in the area of medical physics. Segmentation 

of anatomical structures from image modalities like 

Computed Tomography (CT) and Magnetic Resonance 

Imaging (MRI) were given in [6]. Due to its computational 

complexity most segmentation procedures require vast 

processing power like GPU. A brief literature review of 

several segmentation methods is given here. 
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In [7] authors give a review of applications for GPU 

in medicine, which covers the past and current trend in this 

field, like commonly used method and algorithm which 

are specific to individual image modalities. Also, in the 

field of medical visualization GPU can be effectively 

used. 

Algorithm Marching Cubes that extract surfaces from 

volumetric data was presented [8]. Fast extraction in 

medical applications is necessary, so near real-time 

applications are very desirable. Their algorithm 

implementation is completely data-parallel, which is ideal 

for application on a GPU.  

In [10] authors implement widely known Demons 

algorithm for medical image registration [16] on a GPU, 

for registering 3-D CT lung images. Speedups of 55 times 

were reported over non-optimized CPU version.  

In [20] authors were using OpenCL to evaluate 

reconstruction of 3-D volumetric data from C-arm CT 

projections on a variety of high-performance computing 

platforms, like FPGAs, graphic cards and multi-core 

CPUs. 

Three-dimensional reconstruction task in cone-beam 

CT, a computation complex algorithm was implemented 

using CUDA [21]. 

Book [9] covers developing data-parallel version of 

registration algorithms suitable for execution on GPU.  

Our main objective was to compare algorithms using 

CPU and GPU, and their assessment on a different 

processor architecture. Some of the most used image 

processing algorithms, which are suitable for algorithm 

parallelization, were evaluated and speedups were 

compared to a single core of the CPU. CPU results were 

used as a base for comparison of the results from the GPU. 

2 Methods  
In this work, time-consuming algorithms were evaluated 

on a CPU and GPU. Algorithms for 2D and 3D were 

tested, and running times were evaluated. 

 

Figure 1: OpenCL platform model [3]. 

There are several software packages for image 

processing and analysis of medical images. For the 

purpose of this research, the different software packages 

were used, as described as follows. 

Plastimatch [11] is an open source software for image 

computation. The main focus is high-performance 

volumetric registration of medical images, such as X-ray 

CT, MRI, and positron emission tomography (PET). 

Software features include methods for medical image 

registration, segmentation etc. 

 OpenMP (Open Multi-Processing) [12] is an 

application programming interface (API) that supports 

multi-platform shared memory multiprocessing 

programming in C, C++, and Fortran, on most platforms, 

processor architectures and operating systems, including 

Solaris, AIX, HP-UX, Linux, OS X, and Windows.  

OpenCL and CUDA allow heterogeneous 

programming model, so a typical sequence of operations 

is the same in both of them. In both platforms, host refers 

to the CPU and its memory, while device refers to GPU 

and its memory. Kernels are functions executed on the 

device (GPU) in parallel. A typical program has the 

following steps: declaring and allocating host and device 

memory, initialize host data, transfer data from the host to 

the device, execute one or more kernels, transfer results 

from device to the host. 

OpenCL is portable API, based on the C99 standard 

of the C programming language. OpenCL platform model 

(Figure 1) consists of a host of several computing devices 

which each contain several computing units. Further, a 

computing unit contains several processing units. The 

serial code runs on a Host (which is a CPU) thread, and 

the parallel code executes in many devices (GPUs) threads 

across multiple processing elements.  

Functions executed on OpenCL devices are called 

kernels. Both CUDA and OpenCL support built-in 

functions which can take scalar and vector arguments. 

Native functions are built-in functions with reduced 

precision which is implementation defined, but with 

decreased execution time. Built-in functions conform to 

IEEE 754 compatible rounding for single precision 

floating point calculations.  

OpenCV [13] is a library of functions for computer 

vision. It is cross platform and released under the BSD 

license, written in C++ language, and supports Intel 

Integrated Performance Primitives (IPP) optimized 

routines, support for GPUs for CUDA and OpenCL. 

In this work nine commonly used algorithms were 

evaluated. First, algorithms in 2D which can be used for 

Capabilities Processor 

GPU  

GTX 

560Ti 

CPU 

Intel 

 i5-2500 

OpenCL version 1.1 
not 

available 

Compute capability 2.1 
not 

available 

Double precision Yes Yes 

Number of cores 384 4 

Max clock freq. (GHz) 1.7 3.7 

Global memory (MB) 1023 6 

Power rating (W) 170 95 

Table 1: Processor specifications. 
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filtering medical images were evaluated. Medical image 

datasets usually come as volumes like CT image. They 

have usually 100 or mores slices, so running times are 

exceptionally high, which prevents their clinical usage in 

real time.  

All experiments presented in this work were evaluated 

on a PC computer with Intel CPU and NVidia GPU with 

8GB of RAM memory. For the GPU implementation of 

algorithms NVIDIA CUDA Toolkit version 7.5 was used. 

CPU implementations were implemented using Microsoft 

Visual Studio Express 2013. Specifications of the 

processors for this research are given in Table 1.  

For the purpose of research, we choose nine image 

processing algorithms with frequent usage in medical 

practice. We have split the analysis of algorithms for 2-D 

and 3-D images as described in the following sections.  

2.1 2-D algorithms 

In medical practice 2-D algorithm can be used on a single 

image slice or extracted images from 3-D volumes. For the 

purpose of this research, we choose the rotation, Gaussian 

filter, Sobel filter, Fast Walsh transform, Farneback 

method and Horn-Schunk optical flow.  

Image rotation is a geometric operation which maps 

the image pixel in an input image onto the position in an 

output image by rotating the image around the specified 

angle about an origin. Rotation is a case of an affine 

transformation, and it is widely used in image processing 

(for example image registration).  

  

 

Figure 2: Image used for all 2-D experiments. 

Gaussian filter is the most common used in filtering 

and have significant usage in medical applications (for 

example in image registration which acts as smoother). 

Gaussian filter was evaluated for input image of 

2048x2048 with parameters sigma 10 pixels and kernel 

size 81. For purpose of these experiments, Gaussian kernel 

were implemented on the CPU and the GPU. For CPU, we 

used up to 4 threads with standard CPU optimizations. For 

these experiments the image showed in Figure 2 was used.  

Fast Walsh or Hadamard transform is a special case 

of generalized Fourier transforms, which has the same 

complexity like Fourier transform but without 

multiplications. 

Farneback method for computation of optical flow 

was presented in [14]. Optical flow was used for the 

finding of relative motion between two images. It can be 

used to recover motion for example between two organs. 

The method is based on approximation of each 

neighborhood of two frames by quadratic polynomials, 

using the polynomial expansion transform (images are 

shown in Figure 3 and Figure 4). Obtained deformation 

field is shown in Figure 5 and Figure 6, where colors 

correspond to different values of deformation obtained. 

Two deformations appear similar but a significant value 

difference can be seen in the lower and the right part of 

Figure 5. If we take the CPU implementation as the golden 

truth, the difference between these two results originates 

from a loss of computation precision of the GPU. 

Horn-Schunck is optical flow method is a classical 

method for finding the apparent motion in images [15]. 

The method assumes smoothness in the flow over the 

whole image and tries to minimize global energy 

functional which consists of two parts, intensity and 

regularization. The method employs iterative scheme 

using Jacobi method. For this experiment, image showed 

in Figure 3 and Figure 4 were used. Deformation field 

after registration obtained with this algorithm are showed 

in Figure 7 and Figure 8. Comparing the obtained 

deformation fields from two algorithms we found some 

small differences on the pixels on GPU image (Figure 5 

and Figure 6). 

 

 

Figure 3: Static image used for all 3-D experiments. 

Results for described 2-D algorithms are given in 

Table 2 and corresponding Figure 9. From the results one 

can see that almost all algorithms, with exception of image 

rotation, execute faster on the GPU, and depending on the 

algorithm speedups are from 10x to 84x compared to one 

CPU thread. Significant improvements can be also 

obtained with some loss of the accuracy. Almost all 

algorithms can be run in a real-time on the GPU, and just 

one on the CPU.  
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Figure 4: Moving image used for all 3-D experiments. 

The Sobel operator is a widely used filter in image 

processing for edge detection. In 2-D Sobel operator is 3x3 

for one dimension, whereas in 3-D 3x3x3 for each of 3 

dimensions. The result of Sobel operator is a gradient 

vector. The filter is separable so it can be written as 

product of two simpler filters.  

For this experiment, we used up to four CPU thread 

for evaluation. Speedups are given in Table 3 and Figure 

10. For the best experiment we can expect the speedup of 

38 times for the four CPU cores, or in worst case 141 times 

compared to one CPU core. From these results can be 

clearly seen that Sobel algorithm can benefit significantly 

from implementation on the GPU compared to one CPU 

thread. 

2.2  3-D algorithms 

3-D algorithms in medical practice are very important. 

Most of medical images are 3-D volumes and needs to be 

preprocessed, analyzed or visualized in some way. In the 

next part the five widely used algorithms in 3-D were 

evaluated. 

For the purpose of this evaluation, we implemented 3-

D Gaussian filter in C programming language. Volume 

dimensions for tested images were 482x360x141 with 

kernel size of 5 and sigma 0.5 voxels.  

The Sobel operator in 2D has the dimension of 3x3, 

whereas in 3-D 3x3x3 for each of 3 dimensions. The result 

of Sobel operator is a gradient vector. The filter is 

separable so it can be written as the product of two simpler 

filters, thus reducing the computation time. For this 

experiment, the same volume was used as in the previous 

experiment. 

All 3-D registration was evaluated for the three resolution 

levels, with maximal 30, 50 and 50 iterations respectively. 

Threading in CUDA, OpenMP, and single thread have 

been used. For registration bspline,  

Demons, and affine algorithms from Plastimatch were 

used. Registration using bsplines falls into a category of 

Free-Form Deformations (FFD) in which object to be 

registered is embedded into bspline object [19]. 

Deformation of bspline object represents the 

transformation of the registration [17]. Affine image 

registration falls into a category of linear registration, 

which is a composition of linear transformations with 

translations. In this category falls rigid transformations 

(translating plus rotations), rigid plus scaling and affine. 

Another category of non-linear registration is non-rigid, 

deformable, fluid elastic etc. Affine transformation 

preserves points, straight lines, and planes. After 

transformation set of parallel lines remains parallel. Affine 

transformations define translation, scale, shear, and 

rotation. 

Obtained deformations of Horn-Schunk algorithm are 

shown in Figure 7 and Figure 8, where colors correspond 

to different values of deformation which was obtained 

from algorithms running on the GPU and CPU 

respectively. In contrast to the 2-D Farneback method, 

some small differences can be spotted between the two 

deformation fields, which corresponds to very small error 

for the GPU. 

All results obtained with 3-D registration are showed 

in Table 4 and Figure 11. For these experiments, OpenMP 

were used with four CPU threads, except for filtering 

algorithms Gaussian and Sobel. Obtained speedups are 

from 1x to 422x depending on the algorithm. Lowest 

speedup is for the affine registration where CPU version 

of the algorithm is little faster. Highest speedup is for 

 

Figure 5: Color representation of deformation field 

using Farneback algorithm (GPU). 

 

Figure 6: Color representation of deformation field 

using Farneback algorithm (CPU). 
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filtering, from 127x to 422x compared with single CPU 

thread. Registration algorithm Demons and affine have 

little or no speedup for 4x, whereas bspline have a 

significantly lower performance in this case. Algorithms 

for image registration are highly computing extensive and 

obtained speedup is from about 1x for affine to 15x for 

Demons algorithm. 

It is worth to mention that Demons algorithm uses 

Gaussian filter in each iteration to smooth the deformation 

field. From the running times for Demons, one can see that 

speedup is almost the same for CPU, which indicates the 

single thread implementation for this algorithm. Similar to 

2-D implementations, there is a trade-off between 

precision and running time. 

3 Conclusions 
In this paper was presented an evaluation of speed gain 

using modern GPU cards compared to the standard CPU. 

In total, nine common used algorithms on different 

processors were evaluated using parallel processing for 2-

D and 3-D. For the CPU up to 4 threads were used, 

 
Figure 9: Speedups for 2-D experiments. 

Algorithm  GPU (s)  CPU (s)  speedup (in times) 

Image rotation   0.0090  0.10   0.01 

Fast Walsh transform 0.0399 3.38 84 

Farneback optical flow [14] 0.0116  0.50 43 

Horn-Schunk optical flow [15]  1.4200 13.69  10 

Table 2: Running times and corresponding GPU Speedups for 2-D experiments. 
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Figure 7: Color representation of deformation field using 

Horn-Schunk algorithm (GPU). 

Figure 8: Color representation of deformation field using 

Horn-Schunk algorithm (CPU). 
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depending on the algorithm implementation. For the GPU, 

algorithms were used with simple naïve implementation, 

without optimization and all available cores. 

In almost all cases processing times decrease due to 

highly parallelizable algorithms. Obtained speedups 

varied from 1.1x to 422x depending on the algorithm. 

Some of the tested algorithms was not well suited to 

parallel implementation, i.e. their running times increased 

with larger number of threads. Obtained results on a GPU 

suffers small loss of accuracy, and show near real-time 

performance. 

Future work can evaluate the specific optimizations 

for CPU and GPU, instructions like SSE, AVX for CPU. 

Native instructions, determining the optimal local and 

global block size for CUDA and OpenCL and instructions 

with lower precision can be analyzed for the GPU. 

Another possibility for detecting and reducing the 

bottlenecks in the GPU implementation can be done using 

a GPU profiler. 
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Figure 10: Speedups for Sobel algorithm. 

 

Algorithm GPU (s) Number of CPU threads (s) speedup (in times) 

1 2 3 4 1 2 3 4 

Sobel filter 0.0155 2.2 1.1 0.8 0.6 141 71 51 38 

Table 3: Running times (in seconds) and corresponding GPU speedups for 2-D Sobel filter. 
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Figure 11: Speedups for 3-D algorithms. 

Algorithm  GPU (s) Number of CPU threads (s) speedup (in times) 

1 4 1 4 

Sobel filter  0.0557  23.5 -  422 - 

Gaussian filter  0.7860 100.1 -  127 - 

Bspline registration [17]  41.4000 323.4 99.6  8  2 

Demons registration [18]  6.5100  98.9 99.0  15 15 

Affine registration  74.7100  69.2 81.2  0.92  1.1 

Table 4: Running times (in seconds) and corresponding GPU speedups for 3-D algorithms. 
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