
Informatica 41 (2017) 363–377 363

An Effective Meta-Heuristic Cuckoo Search Algorithm for Test Suite
Optimization

Manju Khari
Department of Computer Engineering,
Ambedkar Institute Of Advanced Communication Technologies and Research, Delhi, India
E-mail: manjukhari@yahoo.co.in

Prabhat Kumar
Department of Computer Engineering,
National Institute of Technology Patna, Bihar, India
E-mail: prabhat@nitp.ac.in

Keywords: optimization, nature inspired algorithm, cuckoo search, test suite, test data

Received: March 12, 2016

Automation testing is the process of generating test data without any human interventions. In recent times,
nature-inspired solutions are planned, tested and validated successfully in many areas for the purpose of
optimization. One such meta heuristic technique is Cuckoo Algorithm (CA) that receives its sole inspi-
ration from the behavior of cuckoo, who has the ability to resolve complex issues using simple initial
conditions and limited knowledge of the search space. This paper presents a cost effective and time effi-
cient algorithm inspired from cuckoo for optimizing the test data. On comparing the proposed algorithm
with existing Firefly Algorithm (FA) and Hill Climbing (HC) algorithms, it was found that CA outperforms
both FA and HC in terms of the test data optimization process. The work done in the current study would
be helpful to testers in generating optimized test data which would result in saving of both testing cost and
time.

Povzetek: V prispevku je razvita izpopolnjena meta-hevristična metoda kukavičjega algoritma (Cockoo
algorithm), ki temelji na reševanju zapletenih problemov z reševanjem več lokalnih preprostih.

1 Introduction

Software testing is done with the intention of finding bugs
and enhancing the quality before delivering it to the client
[1]. As testing is very tedious and time consuming, it is
highly desirable that this cost be controlled as much as pos-
sible [2]. One way to control this cost is to reduce the data
which is used for testing. Test data optimization is a pro-
cess of reducing the test data sets and it can be successfully
applied to black box as well as white box testing [3].

Optimization mainly focuses on reducing the number
of available solutions depending upon certain parameters.
Merely reducing the number of test data does not accom-
plish the purpose of software testing. The test data should
effectively uncover all potential lapses that exist in the soft-
ware or product. For carrying out test data optimization,
mathematical functions are applied that can effectively fil-
ter out the required test data. The methods of finding the
optimal solutions among the various available options can
be regarded as the optimization problem [20]. This prob-
lem aims at maximizing or minimizing a real value function
from the allowed set of solutions.

With the help of optimization, we can filter out the fittest
test data that can easily test various properties related to

a software or product. Generally, test data optimization is
carried out with the help of various meta-heuristic algo-
rithms. They offer better solutions in comparison to the
traditional algorithm which finds a solution based on hit
and trial method. These algorithms have two components,
exploration (intensification) and exploitation (diversifica-
tion). Exploration means to search solution at a global scale
while exploitation aims at finding a good solution in a lo-
cal region. The combination of these two ensures a global
optimal solution which is achievable.

This paper deals with implementation of a meta-heuristic
CA for optimizing test data. In the year 2009, the behavior
of a cuckoo was initially modeled by Yang [25]. Since then
CA has been successfully used for solving various opti-
mization problems [26][27][28][31][33][35][37], but to the
best of author’s knowledge, no study has explored the ap-
plication of CA for test data optimization at such a large
scale. In order to reduce the testing efforts, CA is applied
for test data generation and compared with existing tradi-
tional algorithms such as FA and HC. The algorithms were
applied to 50 JAVA programs. Various parameters, such
as time taken by each algorithm to perform optimization,
were compared using a number of iterations. It was found
that CA outperformed FA and HC in each and every aspect.

364 Informatica 41 (2017) 363–377 M. Khari et al.

The rest of the paper is organized as follows: Section 2
describes the related work that has been done with context
to CA, Section 3 discusses various concepts related to test
data optimization, Section 4 explains the proposed method-
ology, Section 5 describes that has been collected for show-
ing that proposed methodology outperformed FA and HC,
Section 6 provides a detailed case study of the proposal
along with the statistics applied to JAVA programs for all
three algorithms, Section 7 describes the potential threats
and precautions that need to be taken while implementing
this algorithm and finally, Section 8 concludes the study
with a discussion of the future scope.

2 Related work

Developments in the field of ’automated test data genera-
tion’ were initiated in the early 70’s. Articles like ’Test-
ing large software with automated software evaluation sys-
tems’ by Ramamoorthy et al., in the year 1975 [4] and ’Au-
tomatic generation of floating-point test data’ by Miller et
al., in the year 1976 [5], are a few examples of the early
work in this field. Nevertheless, Clarke’s examines [6] of
the year 1976 is considered to be the first of its kind to pro-
pose an algorithm for automated test data generation which
is written in FORTRAN. The automated test-data genera-
tors can be divided into three classes - random, static and
dynamic. Random test data generation is easy to automate,
but problematic [7][9]. Firstly, it produces a sample of the
possible paths through the software under test (SUT). Sec-
ondly, it may be expensive to generate the expected output
data for a large amount of input data produced. Finally,
provided exceptions occur only rarely, the input domain
which causes an exception is likely to be small. Random
test-data generators may never hit on this small area of the
input domain.

During 70’s up to mid-80’s, people did research on test
data generation using symbolic execution. Researchers
have been working on test data generation since 1975, but
unfortunately, there is hardly any fully automated test data
generation working tool available in the current software
industry. At that time the language used for test data gen-
eration was FORTRAN. In the year 1987, Parther [7] pro-
posed a new idea for test data generation called path prefix
method. In the year 1990, Korel [8] provided a revolu-
tionary change by generating test data dynamically based
on actual value using pattern and explanatory search. In
the year 1996, Ferguson [9] examined an assertion oriented
and chaining approach i.e. goal-oriented test data genera-
tion [10]. Test data generation from dynamic data structure
[5] has encouraged many authors to work on hybrid test-
ing methods for detecting infeasible paths, thereby saving
computational time. Mutation testing technique is used to
improve the reliability of object-oriented software, authors
understand the traditional mutation testing method and ap-
ply on object-oriented programs that are known as class
mutation [12]. Xiao et al. [13] proposed a technique for

test data generation even if more or less path predicate is
unsolvable. However, the proposed method could not pro-
vide a good coverage.

A better way can be the combination of evolutionary
methods with dynamic symbolic execution [15][18], which
would wipe away the disadvantages of both the approaches.
Search-based methods have previously been applied for
testing object-oriented software by making use of method
sequences [19][20] or by the help of strongly typed genetic
programming [21][22]. While creating test data for object-
oriented software, since the early work of Tonella [23], the
authors experimented on issues of handling the techniques
that can be used to reverse engineer several design views
from the source code. These techniques aim at generat-
ing test suites to achieve high quality test data using mu-
tation testing [16][46][47][48] deployed in a search-based
test generation environment. Lakhotia et al. [24] estab-
lished a search based multi-objective approach in which a
random search, Pareto GA and weighted GA algorithm is
used for branch coverage. Various algorithms were also
proposed to optimize and prioritize the test suite. Evolu-
tionary algorithms (like CA) were among them. Amir et
al. used cuckoo search for solving structural optimization
tasks. It has been used in non-linear constrained optimiza-
tion problems [44].

In the year 2010, Yang et al. [25] examined CA to re-
solve the issue of engineering design optimization. The
results that were obtained proved to be better than particle
swarm optimizer. In the year 2011, Rajabioun [26] ana-
lyzed CA to solve nonlinear optimization issues which are
used to solve difficult problems. Chandrasekaran et al. in
the year 2011 [27], substantiated a hybrid CA integrated
with fuzzy logic for solving multi-objective unit commit-
ment problems. Yildiz [28] used this algorithm select op-
timal machining parameters for mining operations in the
year 2013. Valian et al. [29] verified CA to the forward
network for two classification problems.

Sur et al. [33] compared CA to particle swarm optimiza-
tion, differential evolution, and artificial bee colony algo-
rithm and establish CA on optimizing vehicle route in the
graph-based network. Gandomi et al. [31] proposed CA for
the purpose of truss structure optimization. Bulatovic et al.
[32] interpreted CA to solve the issues related to optimum
synthesis of a six bar double dwell linkage. Swain et al.
in the year 2014 [34] critiques bio-inspired CA for a neu-
ral network and applied it on noise cancellation. Prakash
et al. [35] examined CA for finding out optimal schedul-
ing in computational grid. Walton et al. [27] proved CA
for gradient-free optimization. Bhandaria et al. [37] ex-
plores CA and wind driven optimization for satellite image
segmentation for multilevel thresholding using Kapur’s en-
tropy. In the year 2015 Ahmed et al. [43] verified a combi-
natorial test suite technique using CA. This method is only
applicable to the functional testing process. Wang et al.
[36] investigates a robust algorithm used to enhance the
searching process of CA. Elazim et al. [45] maintained CA
in the multi-machine power system. Table 1 summarizes

An Effective Meta-Heuristic Cuckoo Search Algorithm for. . . Informatica 41 (2017) 363–377 365

the literature work.
The above studies show that CA has been applied for

finding optimal solutions to various problems. It has been
used in various applications from mining to finding routes.
However, it has not been used for generating test data
which can be used in testing the software products thereby
reducing the efforts of the testers and developers. We pro-
pose an approach to generate test data that is optimal for
performing testing in software development life cycle by
using the CA.

3 Key research concepts
The concepts involved in developing the proposed algo-
rithm along have been described in this section. This sec-
tion discusses the concepts of nature inspired CA, FA, HC,
and the objective function.

3.1 Cuckoo biological algorithm
It is an optimization algorithm developed by Yang et al. in
the year 2009. Cuckoos are by and large known for their
sweet voices, yet they have a forceful proliferation method.
They lay their eggs in the nest of other host birds. If the
host bird discovers that the eggs are alien then the host bird
shall either discard them or abandon the nest. CA has been
applied to various optimization problems. It is a nature in-
spired meta-heuristic algorithm which supports the theory
of ’survival of the fittest’[38][41]. A number of algorithms
work by beginning with an essential result and progres-
sively adding more and more data that prompts creation of
the best result from the pool of results. On the other hand, a
few algorithms begin with a pool of results and come down
to the best result, via disposing of the most exceedingly
bad results from the pool, by thinking about among the re-
sults. CA falls into the second category of algorithms. The
biological algorithms have been discussed in [39].

Each egg in a nest represents a solution and cuckoo egg
represents a new solution. The algorithm aims at using the
new and better solutions to replace the less good solutions.
It is based on three idealized rules which are given as:

1. Cuckoo chooses one egg at a time which has to be
dumped into a randomly chosen nest.

2. The nests containing high quality of eggs has to be
carried forward to the next generation.

3. Available host nests is of fixed quota and laid eggs are
discovered with the probability of (0, 1).

CA consists of two search capabilities: local search and
global search which is controlled by discovery probability.
In relation to testing, using CA, we can represent the eggs
present in nest, as test data giving a solution. CA will re-
place high quality with the low-quality eggs already present
in the nest. It increases the potential of getting good quality
test data for the SUT.

The advantage of using CA is that it uses only a single
parameter for optimization, unlike other algorithms which
makes it easier to implement and since it consists of local
search and a global search, it tends to give global optimal
solution to the problem under test or SUT.

3.2 Firefly algorithm
This algorithm is inspired by the nature of fireflies. It is
based on the collective behavior of fireflies. Fireflies are
known for their flashing behavior. The variation of the light
intensity and the formulation of attractiveness are the two
major factors affecting the behavior of the fireflies. They
use their flashlights to attract other fireflies. The algorithm
was developed by Yang in the year 2008.The main purpose
of flashing lights is to attract mating partners and warn off
potential predators [26][27].

The FA algorithm is based on the idealized rules. First,
all the fireflies are unisexual and the attraction between is
irrespective of gender. Attraction is based on the bright-
ness of fireflies such that low brightness firefly will move
towards high brightness firefly. Since light intensity tends
to decrease with the increase in distance between fireflies;
hence, the attractiveness is inversely proportional to the dis-
tance between the fireflies. Brightness and intensity of the
fireflies are determined using the objective function.

3.3 Hill climbing algorithm
This algorithm aims at finding superior results in an incre-
mental way. It transforms its state by software under test
and if the change delivers a superior result then the addi-
tion is carried out for performing the further evaluation. It
aims at finding local optimal solutions, thereby achieving
a result that is globally optimal. It is an iterative algorithm
that starts with a random solution to the problem with the
aim of finding out a better solution. The solution is changed
if an improvement is found. This process continues until no
further improvement can be made in the solution. It is used
widely where you want to reach goal state from starting
node. It also aims at maximizing or minimizing the tar-
get function [40]. Many variants of HC are available like
steepest ascent HC, stochastic HC, random restart HC [20].

HC starts with the process of assigning the random co-
ordinates to each test data. Then, first test data is taken as
input and its neighbors are discovered. The objective func-
tion values are compared to the neighbors and the selected
test data and best one is chosen as optimal test data. This
process is iterated for every original test data. Finally, the
optimized test data is produced by HC for the given SUT.

3.4 Objective function
This function is used to maximize / minimize some numeri-
cal values and is often used for finding the optimal solution
for a given problem. In the provided domain the objective
function’s best value is selected by evaluating its objective

366 Informatica 41 (2017) 363–377 M. Khari et al.

Year Author Key points
1975 Ramamoorthy et al.

[4]
• The paper explores the main features of automated software tools and various software evaluation system, which were available.
• Automated software tools were chosen because it has been found to be valuable to improve the reliability of a software.

1976 Miller et al. [5] • Two examples i.e. a matrix factorization subroutine and a sorting method are used to describe the types of data generation problems.
They are used instead of symbolic execution to generate test data.
• The programs with floating-point data are used for large savings of time and storage are made possible.

1976 Clarke [6] • The system proposed to generate test data for programs written in ANSI Fortran.
• System symbolically executes the path and creates a set of constraints on the program’s input variables.
• It uses linear programming when the set of constraints are linear.

1987 Prather et al. [7] • The novel technique i.e. "adaptive" is analysed for selection of subsequent paths and offers considerable advantages over existing
strategies in its computational requirements.
•Method ensures branch coverage and offers a considerable advantage in its computational requirements.

1990 Korel [8] • The approach for generating test data is extended to programs with dynamic data structures and a search based method on dynamic
data-flow analysis, along with backtracking is presented.
• In the approach, values of array indexes and pointers are used.

1996 Ferguson et al. [9] • The chaining approach for automated software test data generation, which is based on the theory of execution-oriented test data genera-
tion and also used for the search process.
• The approach used significantly improves the test data generation compared to the existing methods.

1996 Korel et al. [10] • The assertions are used to generate test data and is considered a tool for automatic runtime detection of software errors.
• The assertion is violated reducing to the problem of finding program input on which a selected statement is executed. It is done with the
help of white box testing.

2000 Frohlich et al. [11] • Authors experiments, how test suites with a given coverage level can be automatically generated from state chart diagrams.
• It is done by mapping the state chart elements to the STRIPS planning language.

2000 Kim et al. [12] • The authors examine the Class Mutation technique that assesses the quality of test data distinguish between mutated programs from the
original program.
• It is complimented with the help of the results of the case study, which were tested to investigate the applicability of the technique.

2001 Ernst et al. [15] Authors explore three results
• Describes techniques for dynamically discovering invariants.
• Reports on the Daikin’s application to two sets of the program.
• Analyzes scalability issues.

2004 McMinn [20] • The authors reviewed Meta-heuristic search techniques are high-level frameworks.
• It uses heuristics to seek solutions for combinatorial problems at a reasonable computational cost.

2005 Tonella [23] • This proceeding describes some of the most advanced techniques that can be employed to reverse engineer several design views from
the source code.

2006 Wappler et al. [21] • The authors investigate a tree-based representation of method call sequences that search for numeric test data.
• It automatically generates test programs that represent object-oriented unit test data.

2007 Xiao et al. [13] • The paper experiments various automated test generation techniques but chooses goal oriented approach.
• The goal-oriented approach as a promising approach to devising automated test-data generators using optimization techniques.

2007 Harman [14] • Authors examine optimization techniques on seven application of software engineering.
• Optimization techniques evolved from the operational research and metaheuristic research.

2008 Sofokleous et al. [18] • Authors prove dynamic test data generation framework based on genetic algorithms.
• They are the Batch-Optimistic and the Close-Up that provide an optimum set of test data with respect to the condition coverage criterion.

2010 Papadakis et al. [16] • Authors compares an approach conjoins program transformation and dynamic symbolic execution techniques in order to automate
successfully the test generation process.

2010 Yang et al. [25] • Authors provide extensive comparison study using some standard test functions and newly designed stochastic test functions.
• Examines CA to solve engineering design optimization problems.

2011 Fraser et al. [17] • EVOSUITE is critiqued, a search-based approach that optimizes test suites for satisfying distinct coverage goals.
• It achieves up to 18 times the coverage of a traditional approach.

2011 Rajabioun [26] • Authors observe CA which is suitable for continuous nonlinear optimization problems.
2011 Valian [29] • Authors interpret an algorithm which is employed for training feedforward neural networks for two benchmark classification problems.
2012 Walton et al. [27] • New modified CA robust algorithm has been analysed, modification of CA involves the addition of information exchange between the

best solutions.
2012 Prakash et al. [35] • CA examines an Optimal Job Scheduling in Grid computational resource allocation and Resource Discovery.
2013 Gandomi et al. [44] • The CA proves for solving structural optimization tasks with Leivy flights is first verified using a nonlinear constrained optimization

problem and also validation against structural engineering optimization problem.
2013 Civicioglu et al. [30] • The numerical optimization problem-solving successes of the proposed CA has been compared statistically over 50 different benchmark

functions.
2013 Yildiz et al. [28] • Authors examine a hybrid optimization approach based on differential evolution algorithm and also having receptor editing property of

the immune system.
2013 Gandomi et al. [31] • Authors examine CA to solve truss optimization problems.

• It also adds unique search features used in the proposed CA.
2013 Bulatovic et al. [32] • CA scrutinizes the procedure of optimum synthesis of mechanism parameters.

• The paper also highlights the dimensional synthesis of a six-bar linkage with turning kinematic pairs.
2014 Sur et al. [33] •Modified CA analyzes for discrete problem domain like that of the graph based problem and other combinatorial optimization problems.
2014 Swain et al. [34] • The authors verify CA for noise removal from a signal.

• It uses trained network to remove noise from sine signal, which was contaminated, with white Gaussian noise.
2014 Bhandaria et al. [37] • Authors examine on image segmentation is to extract meaningful objects by CA and wind driven optimization using entropy.
2015 Ahmed et al. [43] • CA maintains to construct optimized combinatorial sets.

• The strategy consists of different algorithms for construction.
2016 Wang et al. [36] • In robust CS, the pitch adjustment operation in harmony search (HS) that can be considered as a mutation operator is added to the

process of the cuckoo updating to speed up convergence.
• It is used for enhancing the capability of CS.

2016 Elazim et al. [45] • CS verifies for optimal Power System Stabilizers (PSSs) design in a multi-machine power system.
• The design problem of PSS is formulated as an optimization problem.

Table 1: List of research paper included for literature work.

An Effective Meta-Heuristic Cuckoo Search Algorithm for. . . Informatica 41 (2017) 363–377 367

function [42].The objective function is used to describe the
closeness of a given design solution to achieving its aims
in terms of numerical value. It works as a single figure of
merit for determining the quality of the test data which can
be compared to the objective function value of other test
data. By this, we can compare the results and choose the
better quality test data, hence optimal test data.

In this paper, we have considered the Sphere objective
function [43]. The two major types of objective functions
are:

– For Multi-Objective Optimization Problems: Some
problems have multiple criteria to fulfill a particular
objective[42]. They are: “Chakong and Haimes Func-
tion, Binh and Korn Function, Fonseca and Fleming
Function, Test Function, Kursave Function, Schaffer
Function N.1, Poloni’s Two Objective Function”.

– For Single Objective Optimization Problems: Some
problems have single criteria to fulfill a particular ob-
jective hence it is not guaranteed that there may exist
a single solution that will satisfy a particular objective
[42]. They are: “Levi Function, Rosenbrock Func-
tion, Booth Function, Beale Function, Sphere Func-
tion, Three Hump Camel Function, Goldstein Price
Function, and Cross in Tray Function”.

4 Proposed algorithm
This section explains the proposed methodology that has
been applied for optimizing test data. The technique is
based upon the natural behavior of cuckoo for producing
optimized test data that can be used for carrying out soft-
ware testing efficiently thereby, reducing the cost of the
product. The proposed technique uses the concept of ex-
ploration and exploitation for carrying out test data analysis
and finding out the result which is optimal in nature.

The approach devised is mainly applicable to path test-
ing. It ensures that proper path and code coverage is
achieved with the help of optimized test data. Initially, am-
ple amount of test data for the program or software under
test is generated. These initial test data are analogous to the
eggs which are laid by cuckoo. The paths on which testing
needs to be performed are equivalent to the nests where the
fitness of the eggs needs to be judged. Just as a cuckoo
searches for a random nest for disposing of its eggs, in the
same way, a test data is picked up randomly which is dis-
posed of in a random path. The host bird can discard the
egg or the path itself depending upon the conditions. Simi-
larly, the chosen test data is validated with the chosen path.
If they are found to be compatible then the test data is kept
in that path else it is kept in another path named buffer.

In simple words, a test data and a path are chosen at ran-
dom. If the chosen test data belongs to that path then the
test data is kept there itself, else it is kept in another path
called buffer. Initially, each test data undergoes this pro-
cess unless the initial list of test data becomes empty. Once

this initial list of test data becomes empty, we consider an-
other list called buffer. This is an extra path or nest which
keeps those test data for which a compatible path was not
found in first go. Before further picking of nests and eggs,
the test data with a minimum value of objective function is
discarded from each path. For further evaluations, random
picking of test data is done from the buffer list and not from
the initial list. A test data is picked up randomly along with
a path. If the test data belongs to that path then that test
data is kept in that path only, else it remains in the buffer.
This process continues until the buffer list becomes empty.
Every time when a match is found, the objective function
is applied to the available test data. The test data with a
minimum value of the objective function is discarded ev-
ery time. At the end, when the list empties, the optimized
test data belonging to a particular path are obtained. There
might be a case that a path might be discarded which means
that no test data might be available for evaluation purpose.
In such data, the path becomes obsolete and it becomes in-
eligible for performing testing.

Depending upon the type of test data, different values
are fed into the objective function for reaching optimized
results for a particular path. If the test data is of a numeri-
cal type, then the values are directly fed into the objective
function for carrying out analysis and finding the value. For
string type of test data, the value that is fed into the objec-
tive function is the average of the ASCII values of individ-
ual characters. Characters can be alphabetical or special
characters. For example, let the test data which has been
given for evaluation be ’mam’ then the value that we will
be opting for putting into objective function can evaluated
as mentioned in equation 1
m=109 (ASCII value of m), a=97 (ASCII value of a)

mam = (109 + 97 + 109)/3 = 105. (1)

105 is given as input to the objective function which
helps in determining the optimality of the test data which
are of type string. The pseudo code for the CA is depicted
below:

368 Informatica 41 (2017) 363–377 M. Khari et al.

Pseudo code of CA

Declaration
initlist: initial list.
buff: buffer or temporary list.
Input:Program under test.
Output:Optimize test data.

1. Initialize test data for the whole program in a path or nest in a list
called initlist.

2. Separate paths or nests for the program.

3. Initialize objective function.

4. While (initlist!=empty)

(a) Pick a random test data or egg

(b) Pick a random path or nest

i. If (the chosen test data belong to the chosen path)
A. Keep it in the path or nest
B. Remove it from the initlist or path

ii. Else
A. Keep it in a list or nest call buff
B. Remove it from the initlist

iii. End if

5. End while

6. For each path or nest

(a) Find objective function for each test data using formula in
equation 1

(b) Find out test data or egg with minimum value of objective
function and remove it

7. End for

8. While (buff!=empty)

(a) Select a test data or egg randomly

(b) Select a path or nest randomly

i. If (test data or egg belong to that path or nest)
A. Keep it in that path or nest
B. Remove it from buff list or nest

ii. Else
A. Put it back in the buff list or nest

iii. End if

(c) Calculate value of the objective function for each test or egg
data for the path or nest opted.

(d) Remove the test data or egg with a minimum value of the
objective function from the path or nest.

9. End while

10. Optimized test data or eggs for each path or nest.

5 Data collection
Evaluating the performance of any technique requires se-
lecting certain subject programs which form the basis for
evaluation. To evaluate the performance of our proposed
algorithm and to compare it with other algorithms, we have
selected fifty real time programs written in Java language.
The subject programs were chosen for test data generation
and optimization activity has been discussed in the follow-
ing subsection. The size of programs ranges from 30 to 250
lines of source code. A diversified range of programs were
chosen including mathematical problems such as finding
roots of quadratic equation, triangle classification problem,

computing the median of the triangle; general logical prob-
lems such as checking for the Armstrong number, magic
number, palindrome number; Pythagorean triplet, convert
a number to hexadecimal, octal or binary. All these pro-
grams are written in standard Java language that makes it
easier to work with.

To discuss the advantage of our algorithm over other
techniques, we have developed an analytical framework.
This framework evaluates our algorithm and compares it
with other algorithms on the basis of four parameters: op-
timized test data, iteration, duration, and complexity.

5.1 List of programs
Table 2 lists the JAVA programs used for the analysis of the
algorithms.

Program Description
P1. Find greatest of three given numbers.
P2. Find if a number is even or odd.
P3. Find if a number is positive or negative.
P4. Find if a year is a leap or not.
P5. Find if a number is multiple of 2,3,5,7 or not.
P6. Find smallest of three numbers.
P7. Find the area of figures depending upon choice entered by the

user.
P8. Find if a number id perfect square or not.
P9. Find if a number is in powers of two or not.
P10. Check if the number entered is palindrome or not.
P11. Find if a number is Armstrong number or not.
P12. Find if a number is perfect or not.
P13. Find if a number is a magic number or not.
P14. Find if a number is prime or not.
P15. Find the type of character entered by the user (character, spe-

cial character, number).
P16. Find if a string entered is palindrome or not.
P17. Perform a calculation on the entered numbers depending

upon the choice.
P18. Find if a triangle is a scalene, equilateral or isosceles.
P19. Find if the given three numbers entered from a Pythagorean

triplet or not.
P20. Find if the number entered is a single digit number or not.
P21. Calculate bonus depending upon the number of extra days

entered by the user.
P22. Find the quadrant of the points entered by the user.
P23. Find types of roots entered by the user.
P24. Implement linear search.
P25. Implement a binary search
P26. Convert a number to binary, hexadecimal or octal entered by

the user.
P27. Find greatest common divisor of the entered two numbers.
P28. Find least common multiple of entered two numbers.
P29. Find if the number entered is strong or not.
P30. Calculate bill depending upon the units entered by the user.
P31. Find if a triangle is right-angled or not.
P32. Find the volume of the given figure.
P33. Find the total surface area of a given figure.
P34. Find the total surface area of a given figure.
P35. Convert the temperature from Celsius to Fahrenheit, Kelvin

to Celsius and vice-versa.
P36. Find S.T.D codes or states depending upon the value entered

by the user.
P37. To allot section to a student depending upon the marks ob-

tained.
P38. Calculate profit or loss.
P39. Find details of any element depending upon the element en-

tered by the user.
P40. Find if the string entered by the user starts with a vowel or

not.
P41. Find the strength of a password.
P42. Find the sum of three numbers entered by the user.

Continued on next page

An Effective Meta-Heuristic Cuckoo Search Algorithm for. . . Informatica 41 (2017) 363–377 369

Continued from previous page
Program Description
P43. Interconvert currencies.
P44. Calculate B.M.I after entering height and weight.
P45. Convert interconvert seconds, minutes and hours.
P46. Calculate simple interest.
P47. Calculate compound interest.
P48. Calculate factors of given number.
P49. Determine if the given series are in A.P or G.P.
P50. Find the capital of a given state or vice versa.

Table 2: List of JAVA program used as a program under
test

5.2 Metrics for evaluation

The following metrics were considered for the evaluation
and comparison of the proposed work with the existing FA
and HC algorithms:

1. Number of Optimized Test data: This is the main fo-
cus of this research paper as the proposed algorithm
aims at reducing the number of test data for any given
path of any particular program. FA, HC and pro-
posed algorithm using CA were implemented on the
programs and it was observed that good results were
given by proposed algorithm. The number of opti-
mized test data was counted by embedding a counter
in the source code of each program. For each opti-
mized test data optCount (OC) can be defined as in
equation 2:

OC = OC + 1 (2)

2. Iterations: Number of iterations while applying the
algorithm and finding out test data was calculated for
FA, HC and proposed CA. A counter for counting a
number of lines of execution was embedded in each
program for all three algorithms. After the execution
of each program under test, the counter was incre-
mented for finding out a number of lines of execution.
For each optimized test data iterations Count (IC) can
be defined as in equation 3:

IC = IC + 1 (3)

3. Duration:This metric refers to the execution time of
the program. The code for calculating the time of ex-
ecution was embedded in every program. Initial time
(IT) and final time (FT) after completion were noted
and the two were subtracted for finding out the time
period of execution. Therefore, Time of execution/
Duration (ET) can be represented in equation 4:

ET = FT − IT (4)

4. Cyclomatic Complexity: The complexity of the codes
were calculated using a plugin of Eclipse IDE tool,
Metrics. It takes the programs for which the complex-
ity has to be generated as the input. It was found that
CA gave better results as compared to FA and HC.

McCabe Cyclomatic Complexity (CMC) where, num-
ber of edges (E) in control flow graph and number of
nodes (N) as in equation 5:

CMC = E −N + 2 (5)

6 Analytical evaluation and
comparison

6.1 Case study

In this section, we consider a case study of calculating
bonus of an employee depending upon the number of days
he has worked extra. The detailed results are generated
after evaluating a particular case study with the help of
CA. The example shows how CA can be employed to
find out optimized test data. The case study has three
paths; one in which the number of days is in between 1-
5, second in which the number of days is in between 6-
10, and the third path in which the number of days is in
between 11-15. The following sections show the detailed
view of each and every iteration involved while evaluat-
ing the case study. The initial list (initlist) of test data
is given as 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. There
are three paths in the program that are named as Path 1,
Path 2, and Path 3.The test data in terms of path are given
as: Path 1 = 1,2,3,4,5,6 ; Path 2 = 7,8,9,10 ; Path 3 =
11,12,13,14,15,16.

Now in the first iteration, the cuckoo bird picks up a test
data and a particular nest which is termed as a path. The
lists of the three paths are given as one, two and three. If
both of them are compatible then the chosen test data is put
into that path else it is kept in a nest called buff (buffer/
temporary list) which does not discard them completely.
The first iteration result is shown in the following Table 3,
which gives the chosen test data, chosen path and the path
to which the test data has been added.

Table 4 shows the lists after the first iteration along with
the objective function value.

After the first iteration, the test data / eggs with a min-
imum value of objective functions are removed from the
lists. The modified lists are mentioned in table 5.

Now the test data are again picked randomly from the
buff list and again a random path is chosen. If both are
compatible then the test data is added to the list of the cor-
responding path else it is kept in the buff list. This process
continues until the buff list becomes empty. Every time the
nest and the egg are compatible then the egg with the least
value of the objective function will be removed from the
nest or path. The egg was chosen, the nest was chosen, sta-
tus if it has been added or not in the list, and value removed
from the list has been shown in the following table 6.

Once the buff list is empty then the optimized test data
are obtained for each path. The number of optimized test
data for each and every path is 1. Table 7 shows the path-
wise total number of test data along with optimized test

370 Informatica 41 (2017) 363–377 M. Khari et al.

Chosen
egg/test data

Chosen
path/nest

Nest to which the
egg/test data has
been added

8 Two Two
11 One Buff
3 Three Buff
2 One One
4 Two Buff
13 Three Three
15 One Buff
5 One One
6 Two Buff
16 Three Three
12 One Buff
14 One Buff
9 One Buff
1 Two Buff
7 Two Two
10 Two Two

Table 3: Results after Iteration 1 of CA

data, Iteration and Complexity results obtained after apply-
ing FA, HC, and CA on the case study mentioned in section
6.

6.2 Results for 50 programs

Table 7 shows comparative results for JAVA programs after
applying FA, HC, and CA on them. The results for various
parameters have been depicted in Table 8. The obtained
results show that CA achieves best results in terms of opti-
mized test data, duration, iteration, and complexity. Fig1 -
Fig4 provides graphical comparisons of the algorithms us-
ing the aforementioned metrics.

Figure 1 shows the number of optimized test data using
FA, HC, and CA along with the total number of test data. In
this figure line plots the number of optimized test data and
a number of programs showing the maximum optimized
result of CA. The square line represents test data using FA,
triangle line shows the number of optimized test data using
HC, cross line represent a number of test data using CA and
the total number of test data are represented by diamond
lines.

Through statically analysis, we can check whether the
performance of all the algorithms is similar or not. As the
theory of ANOVA states that for the larger value of com-
puted value of F proves its better capability. To fulfill this
objective ANOVA two-factor without replication for that
we have to set null hypothesis, which states: H0: There is
not a significant difference between the various programs
among different algorithms. To check the significance of
the algorithms, authors are using ANOVA for optimization
of test suite. In Table 9, 10, 11 and 12 Rows are Numbers of
programs and Columns indicated all algorithms. The result

Figure 1: The comparison of FA, HC, and CA on number
of optimized test data

is shown in Table 9.
Since the computed values of F test statistic (21) is

greater than that of critical value (1.48) in terms of number
of programs and in terms of algorithms computed values of
F test statistic (15.7) is greater than that of critical value (3)
at 5 % level of significance, H0 is not accepted and hence
the result of optimized test suite differs significantly.

Similarly, other performance parameters like execution
time and H0 rejected their respective null hypothesis at 5%
level of significance. For execution time the computed val-
ues of F test statistics (3.14) is greater than that of critical
value (1.48) for number of programs and for different algo-
rithms computed values of F test statistics (18.5) is greater
than that of critical value (3) at 5% level of significance, so
H0 cannot accept and hence the duration of execution time
of the test suite differs significantly. Table 10 shows the
result.

Figure 2 line plots show the comparison between FA,
HC, and CA based on the time taken by the respective algo-
rithms to optimize the test suite of the JAVA programs. The
diamond line represents time taken by FA and the square
line shows time taken by HC and triangle line plots in their
presentation of CA.

Figure 2: The comparison of FA, HC, and CA on duration
of test data

Figure 3 gives the graphical representation of compared
result in terms of iteration according to the result is shown
in table 8. We analyze that the CA performs the best due
to its cumulative response. FA always calculate iteration
depending on each path separately. The diamond line rep-
resents FA, the square line represents HC, and the triangle
line plotting represents CA.

An Effective Meta-Heuristic Cuckoo Search Algorithm for. . . Informatica 41 (2017) 363–377 371

List
one

Objective
Function
value

List
two

Objective
function
value

List
three

Objective
function
value

Buff

2 4 8 64 13 169 11
5 25 7 49 16 256 3
- - 10 100 - - 4
- - - - - - 15
- - - - - - 6
- - - - - - 12
- - - - - - 14
- - - - - - 9
- - - - - - 1

Table 4: lists which include objective function

List one List two List three
5 8 16
- 10 -

Table 5: Updated lists after removing minimum value ob-
jective function test data.

Test
Data

Path Status Value re-
moved

9 One Not compatible -
4 Three Not compatible -
12 Three Compatible 12
9 Two Compatible 8
6 Two Not compatible -
3 Three Not compatible -
15 One Not compatible -
3 Two Not compatible -
6 Three Not compatible -
4 Two Not compatible -
14 Two Not compatible -
15 Two Not compatible -
15 Three Compatible 15
6 Three Not compatible -
11 Three Compatible 11
6 One Compatible 6
1 One Compatible 1
14 One Not compatible -
3 One Compatible 2
14 Three Compatible 14

Table 6: Status of egg and nest chosen

Figure 3: The comparison of FA, HC, and CA on Iteration
of test data

For the Iteration, statically the computed value of F test
statistics (5.5) is greater than that of critical value (1.48) for
Rows and in Columns the computed value of F test statis-
tics (71.7) is greater than that of critical value (3) at 5%
level of significance, H0 is not accepted and hence, the it-
eration differs significantly. Table 11 shows the result.

Figure 4 gives the graphical representation of running
time complexity of JAVA programs. CA run time complex-
ity is based on Big O notation. CA outperforms as com-
pared to rest of the algorithms. The diamond line repre-
sents time taken by FA, the square line shows time taken
by HC and triangle line plotting represents CA.

Figure 4: The comparison of FA, HC, and CA on complex-
ity of test data

Statically analyzing the cyclomatic Complexity, we find

372 Informatica 41 (2017) 363–377 M. Khari et al.

Main Iteration Optimized test data Iterations Complexity
Path number Test data HC CA FA HC CA FA HC CA FA

1 6 6 1 2 204 114 47 3.25 1.88 2.38
2 4 4 1 1 76 27 3.25 2.38
3 6 6 1 2 211 47 3.25 2.38

Table 7: Final compared result using the three algorithms on a case study

that, the computed value of F test statistics (3.8) is greater
than that of critical value (1.48) for Rows and in Columns
the computed value of F test statistics (113) is greater than
that of critical value (3) at 5% level of significance, H0 is
not accepted and hence, the iteration differs significantly.
Table 12 shows the result.

In Table 13, descriptive statistics for the result of test
data of FA, HC, and CA algorithm are been mentioned.
The given descriptive statistics include: mean, standard er-
ror, median, mode, and standard deviation. At 95 % confi-
dence, authors can say that the result of optimized test data
of CA which shows much-improved performance as com-
pared to FA and HC.

The descriptive statistics for the execution time of test
data using FA, HA, and CA algorithm is mentioned in Ta-
ble 14. At 95% confidence, authors can say that the dura-
tion time of CA is shown much-improved performance as
compared to FA and HA.

The descriptive statistics for the Iteration of test data us-
ing FA, HC, and CA algorithm is mentioned in Table 15. At
95% confidence, authors can say that the execution time of
CA is testifying much-improved performance as compared
to FA and HC.

The descriptive statistics for the Cyclomatic complexity
of test data using FA, HC, and CA algorithm is mentioned
in Table 16. At 95% confidence, authors can say that the
execution time of CA is testifying much-improved perfor-
mance as compared to FA and HC.

The performance of the algorithms has been analyzed
statistically. ANOVA two-factor without replication has
been implemented to check the significant difference
among the various algorithms. Descriptive statistics also
be performed and the confidence interval is built on the ba-
sis of average and standard error. Statistically, it was found
that the performance of CA is better than that of FA and
HA algorithms.

7 Threats

7.1 Internal threats
– The initial test data were generated by making use of

the worst case analysis.

– The optimized test data were produced although the
approach that we have adopted is purely randomized.

– This algorithm might take some amount of time to

make the buff list empty and hence, the process needs
to be continued till it becomes empty.

– It may happen that a test data which does not belong
to any path will be there in the buff list which would
mean that the desired results might not be obtained.

External threats
– This algorithm is only applied to Java based programs

and has also not been applied to any other application.

Construction threats
– The above program needs Java development kit and

Java runtime environment.

– The calculated computation time might change every
time as it could depend on the operating system and
other system features.

8 Conclusion and future scope
CA has been proved to be effective in producing optimized
test data. A large number of test data for all possible paths
in a program under test were reduced without any redun-
dancy. The reduced number of test data were effective in
minimizing the overall cost, effort, and time of the test-
ing phase in software development life cycle. In future,
attempts can be made to extend the work by applying the
algorithm to large datasets and for real-time applications
as well. This potentially powerful optimization technique
can be extended to study multi-objective optimization ap-
plications with various constraints, even to NP-hard prob-
lems. The studies can also focus on hybridization of CA
with other metaheuristic algorithms.

References
[1] Sommerville, I. (2004) Software engineering, Inter-

national computer science series. ed: Addison Wes-
ley.

[2] Mathur, A. P. (2008) Foundations of Software Testing,
Pearson Education India.

[3] Mall, R. (2014) Fundamentals of software engineer-
ing, PHI Learning Pvt. Ltd.

An Effective Meta-Heuristic Cuckoo Search Algorithm for. . . Informatica 41 (2017) 363–377 373

No. Total Data Optimization Duration(in ms) Iterations Complexity
- - FA HC CA FA HC CA FA HC CA FA HC CA

P1 27 6 83 4 266 395 3 183 1715 214 11.2 14.48 2.11
P2 12 4 11 5 33 93 1 106 264 249 5.42 6.75 1.5
P3 12 2 12 4 58 4 2 68 396 48 5.34 6.24 1.5
P4 50 18 50 24 197 443 3 962 3000 280 4.4 6.5 2
P5 75 29 75 8 247 324 10 764 3000 436 12.5 16.25 2.25
P6 27 9 89 5 109 137 6 246 1715 179 9.32 15 2.11
P7 18 10 18 4 29 43 4 109 618 85 6.57 10.74 1.89
P8 200 190 200 98 290 1729 8 19 3000 91 5.14 6.54 1.5
P9 15 10 16 8 10 7 1 119 400 70 5.34 6.5 1.5
P10 500 492 500 241 677 772 20 2420 3000 1840 5.37 7 1.62
P11 1000 977 1000 491 975 1446 620 1600 2500 53 5.5 7.22 1.86
P12 1000 994 1000 509 1056 1695 61 2300 3000 1001 6 6.54 2
P13 1000 994 1000 489 659 1694 47 2200 3000 1577 6.5 6.58 1.62
P14 100 86 100 49 406 202 4 2341 3000 812 5.2 7.82 1.62
P15 70 69 70 25 234 246 7 2141 3000 419 7.25 12 1.75
P16 8 2 8 2 117 8 1 38 172 24 4.58 7.5 1.5
P17 16 8 38 4 28 69 2 80 305 78 8.56 15 2.11
P18 27 11 157 7 34 267 3 434 3000 205 6.42 9.82 1.89
P19 27 6 126 11 48 503 2 137 3000 142 4.28 7.25 1.67
P20 50 35 50 22 384 304 4 1800 3000 267 4.76 6.76 1.62
P21 16 5 16 3 82 87 6 121 491 114 7.14 9.75 1.88
P22 16 16 52 4 51 299 2 104 264 83 9.16 14.48 2
P23 27 1 143 9 153 298 3 361 3000 148 6.87 10.86 1.89
P24 10 3 10 1 2 100 5 123 738 538 2.12 3.25 1.88
P25 13 7 13 3 3 5 5 124 1527 578 2.12 3.25 1.88
P26 39 16 13 11 62 173 5 377 3000 260 6.36 9.75 1.88
P27 6 6 6 2 2 3 1 39 210 29 2.14 3.62 1.56
P28 6 6 6 2 2 2 1 12 210 31 2.14 3.62 1.56
P29 450 442 450 253 681 599 17 2400 3000 2300 5.29 6.63 2
P30 600 593 600 297 1130 776 23 2200 3000 1300 4.76 6.76 1.88
P31 27 6 126 10 22 279 2 60 3000 125 4.28 7.24 1.67
P32 29 18 29 3 70 93 4 164 650 187 12.01 17.36 2.22
P33 29 18 29 3 70 93 4 164 650 187 12.01 17.38 2.22
P34 29 18 29 3 70 93 4 164 650 187 12.01 17.37 2.22
P35 60 22 60 24 128 158 7 682 3000 124 10.68 13.52 1.62
P36 14 12 6 6 117 24 2 145 1762 66 2.43 4 1.62
P37 10 74 100 18 264 255 6 1874 3000 786 9.26 13 2.25
P38 100 100 100 50 442 344 4 2975 3000 645 4.86 7.5 1.75
P39 118 77 120 13 489 602 49 1684 3000 1325 17.01 28 2.78
P40 7 4 7 2 49 11 7 36 162 125 4.86 8 1.62
P41 15 5 14 6 22 7 2 88 330 137 6.75 9.36 1.75
P42 8 3 16 4 3 3 2 82 464 137 2.33 3.62 1.56
P43 60 22 60 24 128 158 7 682 3000 124 10.68 13.52 1.62
P44 23 23 23 5 113 73 3 161 1126 141 8.56 14.48 2
P45 30 30 30 14 131 77 7 540 3000 130 5 7.04 1.62
P46 24 13 24 7 20 89 87 385 3000 1712 2.43 3.38 1.75
P47 24 13 24 7 20 89 87 385 3000 1712 2.43 3.38 1.75
P48 500 496 500 51 1007 193 60 2246 3000 1518 2.43 3.38 2
P49 20 4 20 7 8 51 7 154 1419 92 5 6.5 1.56
P50 14 10 14 4 65 24 6 94 624 61 4.86 8 1.67

Table 8: Comparison results for JAVA programs

374 Informatica 41 (2017) 363–377 M. Khari et al.

Source of Variation SS df MS F P-value F crit
Rows 6715135 49 137043.6 21 7.31 1.48
Columns 204886.9 2 102443.4 15.7 1.15 3.08
Error 636560.4 98 6495.515 - - -

Total 7556583 149 - - - -

Table 9: ANOVA results based on Optimization

Source of Variation SS df MS F P-value F crit
Rows 8844974 49 180509.7 3.14 7.18 1.48
Columns 2132012 2 1066006 18.56 1.46 3.08
Error 5627039 98 57418.77 - - -

Total 16604025 149 - - - -

Table 10: ANOVA Result Of Execution Time/ Duration

Source of Variation SS df MS F P-value F crit
Rows 88715082 49 1810512 4.52 1.08 1.48
Columns 57403410 2 28701705 71.74 6.43 3.08
Error 39204947 98 400050.5 - - -

Total 185000000 149 - - - -

Table 11: ANOVA Result Of Iteration

Source of Variation SS df MS F P-value F crit
Rows 1160.181 49 23.67 3.88 5.7 1.48
Columns 1386.396 2 693.19 113.63 2.96 3.08
Error 597.8448 98 6.1 - - -

Total 3144.421 149 - - - -

Table 12: ANOVA Result Of Cyclomatic Complexity

An Effective Meta-Heuristic Cuckoo Search Algorithm for. . . Informatica 41 (2017) 363–377 375

- FA HC CA
Mean 120.3 144.86 57.12
Standard Er-
ror

36.80852 36.27629 18.16194

Median 14.5 44 7
Mode 6 16 4
Standard De-
viation

260.2755 256.5121 128.4243

Minimum 1 6 1
Maximum 994 1000 509
Sum 6015 7243 2856
Count 50 50 50

Table 13: Descriptive Statistics For The Result Of Opti-
mized Test data

- FA HC CA
Mean 225.26 308.78 24.68
Standard Er-
ror

42.72953 62.64793 12.50474

Median 95.5 147.5 4.5
Mode 2 93 2
Standard De-
viation

302.1434 442.9877 88.42186

Minimum 2 2 1
Maximum 1130 1729 620
Sum 11263 15439 1234
Count 50 50 50

Table 14: Descriptive Statistics For The Duration Of Test
data

- FA HC CA
Mean 733.86 1887.24 459.44
Standard Er-
ror

127.2218 170.9619 82.45547

Median 173.5 2750 183
Mode 164 3000 187
Standard De-
viation

899.5941 1208.883 583.0482

Minimum 12 162 24
Maximum 2975 3000 2300
Sum 36693 94362 22972
Count 50 50 50

Table 15: Descriptive Statistics For The Iteration

- FA HC CA
Mean 6.3526 9.2098 1.8256
Standard Er-
ror

0.466785 0.705869 0.037717

Median 5.355 7.375 1.75
Mode 2.43 14.48 1.62
Standard De-
viation

3.300668 4.991246 0.266697

Minimum 2.12 3.25 1.5
Maximum 17.01 28 2.78
Sum 317.63 460.49 91.28
Count 50 50 50

Table 16: Descriptive Statistics For Complexity

[4] Ramamoorthy, C. V., and Ho, S. B. F. (1975) Test-
ing large software with automated software evalua-
tion systems, In ACM SIGPLAN Notices, ACM, pp.
382-394.

[5] Miller, W., and Spooner, D. L. (1976) Automatic gen-
eration of floating-point test data, IEEE Transactions
on Software Engineering, IEEE, pp. 223.

[6] Clarke, L. A. (1976) A system to generate test data
and symbolically execute programs, IEEE Transac-
tions on Software Engineering, IEEE, pp. 215-222.

[7] Prather, R. E., and Myers Jr, J. P. (1987) The path
prefix software testing strategy, IEEE Transactions on
Software Engineering, IEEE, pp. 761-766.

[8] Korel, B. (1990) The path prefix software testing
strategy, IEEE Transactions on Software Engineer-
ing, IEEE, pp. 870-879.

[9] Ferguson, R., and Korel, B. (1996) The chaining ap-
proach for software test data generation, IACM Trans-
actions on Software Engineering and Methodology
(TOSEM), ACM, pp. 63-86.

[10] Korel, B., and Al-Yami, A. M. (1996) Assertion-
oriented automated test data generation, 18th inter-
national conference on Software engineering, IEEE,
pp. 71-80.

[11] Fröhlich, P., and Link, J. (2000) Automated test case
generation from dynamic models, In ECOOP 2000
Object-Oriented Programming, Springer Berlin Hei-
delberg, pp. 472-491.

[12] Kim, S., Clark, J. A., and McDermid, J. A. (2000)
Class mutation: Mutation testing for object-oriented
programs, Proc. Net. ObjectDays, Citeseer, pp. 9-12.

[13] Xiao, M., El-Attar, M., Reformat, M., and Miller,
J. (2007) Empirical evaluation of optimization algo-
rithms when used in goal-oriented automated test data
generation techniques, Empirical Software Engineer-
ing, Springer, pp. 183–239.

376 Informatica 41 (2017) 363–377 M. Khari et al.

[14] Harman, M. (2007) The current state and future of
search based software engineering, Future of Soft-
ware Engineering, IEEE, pp. 342-357.

[15] Ernst, M. D., Cockrell, J., Griswold, W. G., and
Notkin, D. (2001) The current state and future of
search based software engineering, IEEE Transac-
tions on Software Engineering, IEEE, pp. 99-123.

[16] Papadakis, M., and Malevris, N. (2010) Automatic
mutation test case generation via dynamic symbolic
execution, IEEE 21st international symposium on
Software reliability engineering (ISSRE), IEEE, pp.
121-130.

[17] Fraser, G., and Arcuri, A. (2011) Evolutionary gener-
ation of whole test suites, 11th International Confer-
ence on Quality Software (QSIC), IEEE, pp. 31-40.

[18] Sofokleous, A. A., and Andreou, A. S. (2008) Auto-
matic, evolutionary test data generation for dynamic
software testing, Journal of Systems and Software,
IEEE, pp. 1883-1898.

[19] Fraser, G., and Arcuri, A. (2011) Evosuite: automatic
test suite generation for object-oriented software, In
Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of
software engineering, ACM, pp. 416-419.

[20] McMinn, P. (2004) Search-based software test data
generation: A survey, Software Testing Verification
and Reliability, Wiley, pp. 105-156.

[21] Wappler, S., and Wegener, J. (2006) Evolutionary unit
testing of object-oriented software using strongly-
typed genetic programming, In Proceedings of the 8th
annual conference on Genetic and evolutionary com-
putation, ACM, pp. 1925-1932.

[22] Ribeiro, J. C. B. (2008) Search-based test case gener-
ation for object-oriented java software using strongly-
typed genetic programming, In Proceedings of the
10th annual conference companion on Genetic and
evolutionary computation, ACM, pp. 1819-1822.

[23] Tonella, P. (2005) Reverse engineering of object ori-
ented code, In Proceedings of the 27th international
conference on Software engineering, ACM, pp. 724-
725.

[24] Lakhotia, K., Harman, M., and McMinn, P. (2007)
A multi-objective approach to search-based test data
generation, In Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation,
ACM, pp. 1098-1105.

[25] Yang, X. S., and Deb, S. (2010) Engineering op-
timisation by cuckoo search, International Journal
of Mathematical Modelling and Numerical Optimisa-
tion, Inderscience, pp. 330-343.

[26] Rajabioun, R. (2011) Cuckoo optimization algorithm,
Applied soft computing, Elsevier, pp. 5508-5518.

[27] Walton, S., Hassan, O., Morgan, K., and Brown,
M. R. (2011) Modified cuckoo search: a new gradi-
ent free optimisation algorithm, Chaos, Solitons and
Fractals, Elsevier, pp. 710-718.

[28] Yildiz, A. R. (2013) Cuckoo search algorithm for the
selection of optimal machining parameters in milling
operations, The International Journal of Advanced
Manufacturing Technology, Springer, pp. 55-61.

[29] Valian, E., Mohanna, S., and Tavakoli, S. (2011) Im-
proved cuckoo search algorithm for feedforward neu-
ral network training, International Journal of Artifi-
cial Intelligence and Applications, Elsevier, pp. 36-
43.

[30] Civicioglu, P., and Besdok, E. (2013) A concep-
tual comparison of the Cuckoo-search, particle swarm
optimization, differential evolution and artificial bee
colony algorithms, Artificial Intelligence Review,
Springer, pp. 315-346.

[31] Gandomi, A. H., Talatahari, S., Yang, X. S., and Deb,
S. (2013) Design optimization of truss structures us-
ing cuckoo search algorithm, The Structural Design
of Tall and Special Buildings, Wiley, pp. 1330-1349.

[32] Bulatovic, R. R., Ðordevic, S. R., and Ðordevic, V. S.
(2013) Cuckoo search algorithm: a metaheuristic ap-
proach to solving the problem of optimum synthesis
of a six-bar double dwell linkagem, Mechanism and
Machine Theory, Elsevier, pp. 1-13.

[33] Sur, C., and Shukla, A. (2014) Discrete Cuckoo
Search Optimization Algorithm for Combinatorial
Optimization of Vehicle Route in Graph Based Road
Network, In Proceedings of the Third International
Conference on Soft Computing for Problem Solving,
Springer, pp. 307-320.

[34] Swain, K. B., Solanki, S. S., and Mahakula, A. K.
(2014) Bio inspired cuckoo search algorithm based
neural network and its application to noise cancella-
tion, International Conference on Signal Processing
and Integrated Networks, IEEE, pp. 632-635.

[35] Prakash, M., Saranya, R., Jothi, K. R., and Vignesh-
waran, A. (2012) An optimal job scheduling in grid
using cuckoo algorithm, International Journal Com-
puter Science Telecomm, pp. 65-69.

[36] Wang, G. G., Gandomi, A. H., Zhao, X., and Chu,
H. C. E. (2016) Hybridizing harmony search algo-
rithm with cuckoo search for global numerical opti-
mization, Soft Computing, Springer, pp. 273-285.

[37] Bhandari, A. K., Singh, V. K., Kumar, A., and Singh,
G. K. (2014) Cuckoo search algorithm and wind

An Effective Meta-Heuristic Cuckoo Search Algorithm for. . . Informatica 41 (2017) 363–377 377

driven optimization based study of satellite image
segmentation for multilevel thresholding using Ka-
pur’s entropy, Expert Systems with Applications, El-
sevier, pp. 3538-3560.

[38] Mala, D. J., and Mohan, V. (2010) Quality improve-
ment and optimization of test cases: a hybrid genetic
algorithm based approach, ACM SIGSOFT Software
Engineering Notes, ACM, pp. 1-14.

[39] Lotem, A., Nakamura, H., and Zahavi, A. (1992) Re-
jection of cuckoo eggs in relation to host age: a pos-
sible evolutionary equilibrium, Behavioral Ecology,
ISBE, pp. 128-132.

[40] Yildiz, A. R. (2009) An effective hybrid immune-
hill climbing optimization approach for solving de-
sign and manufacturing optimization problems in in-
dustry, Journal of Materials Processing Technology,
Elsevier, pp. 2773-2780.

[41] Devadas, S., Ma, H. K. T., Newton, A. R., and
Sangiovanni-Vincentelli, A. (1988) Synthesis and op-
timization procedures for fully and easily testable se-
quential machines, In International Conference on
New Frontiers in Testing, IEEE, pp. 621-630.

[42] Chun, J. S., Jung, H. K., and Hahn, S. Y. (1998) A
study on comparison of optimization performances
between immune algorithm and other heuristic algo-
rithms, IEEE Transactions on Magnetics, IEEE, pp.
2972-2975.

[43] Ahmed, B. S., Abdulsamad, T. S., and Potrus, M. Y.
(2015) Achievement of minimized combinatorial test
suite for configuration-aware software functional test-
ing using the Cuckoo search algorithm, Information
and Software Technology, Elsevier, pp. 13-29.

[44] Gandomi, A. H., Yang, X. S., and Alavi, A. H. (2013)
Cuckoo search algorithm: a metaheuristic approach
to solve structural optimization problems, Engineer-
ing with computers, Springer, pp. 17-35.

[45] Elazim, S. A., and Ali, E. S. (2016) Optimal Power
System Stabilizers design via Cuckoo Search algo-
rithm, International Journal of Electrical Power and
Energy Systems, Elsevier, pp. 99-107.

[46] Papadakis, M., and Malevris, N. (2012) Mutation
based test case generation via a path selection strat-
egy, Information and Software Technology, 54(9), pp.
915-932.

[47] Papadakis, M., and Malevris, N. (2011) Automati-
cally performing weak mutation with the aid of sym-
bolic execution, concolic testing and search-based
testing, Software Quality Journal, 19(4), pp. 691-723.

[48] Papadakis, M., and Malevris, N. (2013) Search-
ing and generating test inputs for mutation testing,
SpringerPlus, 2(1), pp. 1.

378 Informatica 41 (2017) 363–377 M. Khari et al.

