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Representing knowledge about the user of a web application by decision trees can offer remarkable 
information regarding a dataset. We have designed and developed an E-Learning platform that has 
built in the capability of monitoring and storing user traffic. A model of analysis of user traffic by 
building decision trees from gathered data is proposed. The analysis has two outcomes. Firstly, decision 
tree structure can give an objective measure of the interestingness and quality of the data. In this 
analysis we may see whether or not the data is representative or not and whether we may obtain sound 
knowledge. Secondly, the analysis may reveal the learner’s behaviour in the continuous learning 
environment. The possible outcomes of this analysis are the learner’s proficiency, accumulated 
knowledge, or learning curve. 
Povzetek: Analiziran je vpliv uporabe spleta na hitrost učenja. 

 

1 Introduction 
During last decade it has been possible to observe the 
quick growth of interest in Web-based education. The 
purpose of the paper is to present a method of analysing 
data gathered from an e-Learning platform. The platform 
itself is a web application used by secretaries, professors, 
students and an administrator in a collaborative manner 
to accomplish a learning process. Each of these four roles 
has assigned a set of allowed actions. All users have to 
authenticate with a username and password and then the 
role and the set of allowed actions are determined.  
The administrator, secretaries and professors have mainly 
management duties that set up the platform (i.e. sections, 
disciplines, course materials, tests, exams, etc.). The 
students, on the other hand, download course materials, 
communicate with secretaries and professors, and take 
tests and exams. All student activities are monitored and 
saved for off-line analysis. The goal is to employ 
different analysis methods on monitored data in order to 
accomplish user modelling and characterization. In this 
connection we present a method of building decision 
trees from gathered data. 
The goal of the platform is to guide students in the 
educational process. The enforced educational 
technologies have two main outcomes. Firstly, the 
student benefits from the continuous learning 
environment in the way that his/her creativity and mental 
outlook skills are supported and even improved. On the 
other hand, this process is monitored with the purpose of 
obtaining performance assessments. The platform itself is 

a complex system with many capabilities that are at 
student’s disposal. Monitoring user traffic and building 
decision trees represents a way of analysing data 
gathered from our e-learning platform with the aim of 
measuring how efficient was the learning process. 

2 The E-Learning Platform 
The main goal of the platform is to give students the 
possibility to download course materials, take tests or 
pass final examinations and communicate with all 
involved parties. To accomplish this, four different roles 
were defined for the platform: sysadmin, secretary, 
professor and student. 
The main task of sysadmin users is to manage 
secretaries. A sysadmin user may add or delete 
secretaries, or change their password. He may also view 
the actions performed by all other users of the platform. 
All actions performed by users are logged. In this way 
the sysadmin may check the activity that takes place on 
the application. The logging facility has some benefits. 
An audit may be performed for the application with the 
logs as witness. Security breaches may also be 
discovered.  
Secretary users manage sections, professors, disciplines 
and students. On any of these a secretary may perform 
actions like add, delete or update. These actions will 
finally set up the application such that professors and 
students may use it. As conclusion, the secretary 
manages a list of sections, a list of professors and a list of 
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students. Each discipline is assigned to a section and has 
as attributes a name, a short name, the year of study and 
semester when it is studied and the list of professors that 
teach the discipline which may be maximum three. A 
student may be enrolled to one or more sections. 
The secretaries have also the task to set up the structure 
of academic years for all sections. The structure of an 
academic year is made of a list of periods. All periods 
that define the academic year are disjunctive in time and 
are characterized by a name, start date and end date. For 
each period there are also set up the exams that may be 
taken and the grants that are needed. For example, in 
winter examining session there may be taken only exams 
from the first semester and there is no need for grant 
from either professor or secretary. This way of defining 
what the student can do and when proved to be very 
flexible and easy to understand and use. 
The main task of a professor is to manage the assigned 
disciplines while s discipline is made up of chapters. The 
professor sets up chapters by specifying the name and the 
course document. Only students enrolled in a section in 
which a discipline is studied may download the course 
document and take tests or examinations. Besides setting 
up the course document for each chapter, the professor 
manages test and exam questions. For each chapter the 
professor has to define two pools of questions, one used 
for testing and one used for exams. He specifies the 
number of questions that will be randomly extracted to 
create a test or an exam. Let us suppose that for a chapter 
the professor created 50 test questions and 60 exam 
questions and he has set to 5 the number of test questions 
and to 10 the number of exam questions that are to be 
randomly withdrawn. It means that when a student takes 
a test from this chapter 5 questions from the pool of test 
question are randomly withdrawn. When the student 
takes the final examination at the discipline from which 
the chapter is part, 15 questions are randomly withdrawn: 
5 from the pool of test question and 10 from the pool of 
exam question. This manner of creating tests and exams 
is intended to be flexible enough for the professor. 
All tests and exams are taken under time constraints. For 
each chapter the professor sets up a number of seconds 
necessary to answer questions that chapter. When a test 
or exam is taken all the seconds are summed thus 
obtaining a maximal interval of time in which the student 
has to finish the test. The elapsed and remaining time are 
managed on server side and presented to the student after 
each answered question. 
Tesys application offers students the possibility to 
download course materials, take tests and exams and 
communicate with other involved parties like professors 
and secretaries.  
Students may download only course materials for the 
disciplines that belong to sections where they are 
enrolled. They can take tests and exams with constraints 
that were set up by the secretary through the year 
structure facility.  
Students have access to personal data and can modify it 
as needed. A feedback form is also available. It is 
composed of questions that check aspects regarding the 

usability, efficiency and productivity of the application 
with respect to the student’s needs. 

3 How and What Data are 
Monitored 

The platform has two methods of monitoring user 
activity. First one is through a log file which records each 
executed action. Each action has a resulting row in the 
log file.  
Since the business logic of the platform is Java based, 
log4j utility package was employed as a logging facility 
and is called whenever needed within the logic of the 
application. The utility is easy to use; logging process is 
managed by log4j.properties file. The next lines present 
how the utility was set up. 
 log4j.appender.R.File=D:/devel/Tomcat/idd.log 
 log4j.appender.R.MaxFileSize=1000KB 
 log4j.appender.R.MaxBackupIndex=5 
These lines state that all the logging process will be done 
in idd.log file and will have a maximum file size of 
100KB in maximum five files.  
The main drawback of this technique is that the data 
from the file is in a semi structured form. This makes the 
information retrieval to be not so easy task to 
accomplish. On the advantages, logging activity may be 
very helpful in auditing the platform or even finding 
security breaches. This logging facility is also very 
helpful when debugging during development or when 
analysing peculiar behaviour during deployment. 
To overcome the semi structured shape of logged activity 
a structured way of gathering activity information was 
enforced. The activity table was added in the database 
and all actions were recorded in the manner of one record 
per action. In the next table the structure of activity table 
is presented. 

 
Field Description 
id primary key  
userid identifies the user who performed the 

action 
date stores the date when the action was 

performed 
action stores a tag that identifies the action 
details stores details about performed action 
level specifies the importance of the action 
 

Table 1:  Structure of activity table 
 
After five months of deployment, the activity table 

contains more than 50,000 records and we suppose that 
until the end of the learning cycle there will be close to 
100,000 records. All this logged activity may also be 
very helpful in an audit process of the platform. The 
records from the activity table represent the raw data that 
will be further analysed. 

The activity of a student may be seen as a sequence 
of sessions. A session starts when the student logs in and 
finishes when the student logs out. A session may be 
seen as a sequence of actions. The next figure presents 
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the activity diagram from platform point of view. Within 
the platform each student has an associated activity 
diagram.  

 

 
Figure 1: The activity diagram for platform users  
 
In the diagram it may be seen the activity of all s 

users (U1,, U2, …, Us). The activity of each user is 
composed of a number of sessions. User Us in the 
diagram has ms associated sessions. At finest level, a 
session is composed of a number of actions, session Sms 
has mn associated actions. In a session, the first action is 
to login and the last one is logout. After one hour of 
inactivity the user is automatically logged out such that 
user sessions can be precisely determined. 

4 Building Decision Tree from Data 
Choosing between two learning algorithms given a single 
dataset is not a trivial task [4]. From all these 
representations we think decision trees are a very good 
start in the process of data analysis. Decision trees, as 
structures, may give a very conclusive idea regarding the 
“goodness” of data we try to analyse. Starting an 
analysing process with shaping the data in the form of 
decision trees gives a very good idea whether or not the 
data that we have may lead to conclusive or important 
results. Still, the whole process is much more than 
choosing an algorithm. Many learning schemes have 
various parameters, and suitable values must be chosen 
for these. In most cases, results can be improved 
markedly by a suitable choice of parameter values, and 
the appropriate choice depends on the data at hand. For 
example, decision trees can be pruned or unpruned and, 
in the former case, a pruning parameter may have to be 
chosen. More generally, the learning scheme itself will 
have to be chosen from a range of available schemes. In 
all cases, the right choices depend on the data itself [1]. 
 
A decision tree is a flow-like-chart tree structure where 
each internal node denotes a test on an attribute, each 
branch represents an outcome of the test and leaf nodes 
represent classes [1]. So, the first step is to define a list of 
attributes that may be representative for modelling and 
characterizing student’s activity. Among the attributes 
there may be: 

• the number of logins, 
• the number of taken tests,  
• the average grade for taken tests,  
• the exam results  
• the number of messages sent to professors.  
The basic algorithm for decision tree induction is a 
greedy algorithm that constructs decision trees in a top-
down recursive divide-and-conquer manner. The basic 
strategy is as follows. The tree starts as a single node 
representing the training samples. If the samples are all 
of the same class, then the node becomes a leaf and is 
labeled with that class. Otherwise, an entropy-based 
measure known as information gain is used for selecting 
the attribute that will best separate the samples into 
individual classes. This attribute becomes the “test” or 
“decision” attribute at the node. A branch is created for 
each known value of the test attribute, and the samples 
are partitioned accordingly. The algorithm uses the same 
process recursively to form the decision tree. Once an 
attribute has occurred at a node, it need not be considered 
in any of the node’s descendents. The recursive 
partitioning stops only when one of the following 
conditions is true. All samples for a given node belong to 
the same class. There are no remaining attributes on 
which the samples may be further partitioned. This 
involves converting the given node into a leaf and 
labeling it with the class in majority among samples [1]. 
Impurity measures are an important parameter regarding 
the quality of the decision tree. Many different measures 
of impurity have been studied. Some algorithms measure 
“impurity” instead of “goodness” the difference being 
that goodness should be maximized while impurity 
should be minimized [5, 6, and 7]. 
The first step is to create a set of instances that hold the 
attributes. In the database there are 20 tables that hold the 
necessary data. Each student will represent an instance 
and each instance will be defined by its own attributes.  
The next step effectively builds the decision tree. The 
computational cost of building the tree is O(mn log n)[2]. 
It is assumed that for n instances the depth of the tree is 
in order of log n, which means the tree is not degenerated 
into few long branches. 
The information gain measure is used to select the test 
attribute at each node in the tree. We refer to such a 
measure an attribute selection measure or a measure of 
goodness of split. The algorithm computes the 
information gain of each attribute. The attribute with the 
highest information gain is chosen as the test attribute for 
the given set [1]. 

5 Results 
In the study the relations that contain needed data are: 
 activity – here there are stored all actions 
performed by users; 
 test_results – here there are stored the results of 
all tests passed by all students; 
  messages – here there are stored all the 
messages sent or received by all users of the platform; 
The next important step is attribute definition. In this 
study each student represents an instance we have to set 
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up the attributes that define each instance. From our 
relations there may be defined a large number of 
attributes which may have more or less importance 
regarding overall predictive power. In this study each 
instance is defined by four attributes:  
 nLogings – number of loggings of the user. This 
number may be associated also with the number of 
sessions; 
 nTests – number of taken tests passed by the 
student; 
 avgTests – average of grades for passed tests; 
 nSentMessages – number of messages sent by 
the students. 
We developed a dedicated application called 
DatabaseRetriever for querying the database and creating 
an arff file.   

 

 
 
Figure 2: The functionality of DatabaseRetriver 

application 
 
A system called Weka [3], which implements the 
decision tree building algorithm, uses arff format. In the 
next figure it is presented how the activity.arrff file is 
loaded into Weka workbench. 

 

 
 
Figure 3: Loading the activity.arff file 
 

In Figure 4 it is presented how J48 algorithm runs in 
Weka workbench after the arff file has been loaded. 
The activity.arff file has a standard format which is 
composed of two sections. In the first one there is 
defined the name of the relation and the attributes. For 
each attribute there is defined the set of nominal values it 

may have. In the next lines it is presented the first section 
of the file. 

 

 
 
Figure 4: Running J48 algorithm 

 
Here is a sample of the arff file. 

 
@relation activity 
@attribute nLogings {<10,<50,<70,<100,>100} 
@attribute nTests {<10,<20,<30,<50,>50} 
@attribute avgTests {<3,<6,<10} 
@attribute nSentMessages {<10,<20,<30,<50,>50} 
 
In this section of the file all attributes are defined. An 
important decision that is needed is to establish the 
granularity for each attribute which is represented by the 
number of nominal values it may take. As it can be seen 
from the above presented lines we consider five intervals 
for nLogings parameter: less than ten, less than fifty, less 
than seventy, less than one hundred and greater than one 
hundred. In the same way there is defined the set of 
possible values for each of the attributes. 
The second section of the activity.arff file is represented 
by the data itself. Here are all the instances that will enter 
the classification process. In the next lines there are 
presented few instances that may be found in this section. 
 
@data 
<50,<20,<3,<10, 
<50,>50,<6,<20, 
<10,<20,<3,<10, 
<50,<10,<3,<10, 
<100,<50,<10,<50, 
 
Each row represents an instance. For example, the first 
row represents an instance (a student) which entered the 
platform less than fifty times, took less than twenty tests, 
obtained an average of grades for taken tests less than 
three and sent less than ten messages to professors. In the 
same way there can be interpreted all other instances.  
 The activity.arff has 375 instances, each one 
corresponding to a student.  
After running the algorithm the obtained tree had 17 
leaves (which represent in fact classes) and 25 nodes. 
The time to build the model was 0.13 seconds. 
The decisionTreeModel.txt file contents the obtained 
decision tree. Figure 4 presents the obtained model. 
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Figure 4: The decision tree in graphical form 

 
=== Run information === 
 
Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 
Relation:     activity 
Instances:    375 
Attributes:   4 
              nLogings 
              nTests 
              avgTests 
     nSentMessages 
Test mode:    10-fold cross-validation 
 
=== Classifier model (full training set) === 
 
J48 pruned tree 
------------------ 
 
nLogings = <10: (25/2) 
nLogings = <50 
|   avgTests = <3 (20/1) 
|   avgTests = <6 
|   |   nSentMessages= <10 
|   |   | nTests = <10 (10/3) 
|   |   | nTests = <20 (27/10) 
|   |   | nTests = <30 (7/2) 
|   |   | nTests = <50 (5/1) 
|   |   nSentMessages= <20 
|   |   |   nTests = <10 (20/6) 
|   |   |   nTests = <30 (13/4) 
|   |   nSentMessages= <30 (7/1) 
|   |   nSentMessages= <50 (5/0) 
|   avgTests = <10 (113/6) 
nLogings = <70 
|   avgTests = <6 (11/3) 

|   avgTests = <10  
|    |   nSentMessages= < 20 (17/4) 
|    |   nSentMessages= < 30 (29/3) 
|    |   nSentMessages= < 50 (35/4) 
nLogings = <100 (21/2) 
nLogings = >100 (12/2) 
 
Number of Leaves  :  17 
 
Size of the tree :  25 
 
Time taken to build model: 0.13 seconds 
 
=== Stratified cross-validation === 
=== Summary === 
 
Correctly Classified Instances         321               85.6    % 
Incorrectly Classified Instances        54               14.4    % 
Kappa statistic                          0.7085 
Mean absolute error                      0.0664 
Root mean squared error                  0.1994 
Relative absolute error                 40.9    % 
Root relative squared error             70.4213 % 
Total Number of Instances              375      
 
=== Detailed Accuracy By Class === 
 
TP Rate   FP Rate   Precision   Recall  F-Measure   Class 
  0         0          0         0         0        0 
  0.844     0.09       0.938     0.844     0.888    <10 
  0.9       0.166      0.764     0.9       0.826    <20 
  0         0.005      0         0         0        <30 
  0         0          0         0         0        <50 
  0         0          0         0         0        >50 
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=== Confusion Matrix === 
 
   a b c 1 d e f    <-- classified as 
45 1 0 2 0 0 |   a = 0 
   1 80 10 7 4 1 |   b = <10 
   0 0 12 0 0 1 |   c = <20 
   0 2 2 13 0 2 |   d = <30 
   7 7 1 0 92 0 |   e = <50 
   2 0 1 0 1 93 |   f = >50 

 
The most important part is the data analysis, which 
ensures that the model is valid and provides solid 
knowledge. The stratified cross-validation evaluation 
technique revealed that 321 (85.6 %) instances were 
correctly classified and 54 (14.4%) were incorrectly 
classified. The confusion matrix showed exactly the 
distribution of incorrectly classified instances among 
classes. 

6 Conclusion 
An e-Learning platform is currently deployed and used 
by almost 400 students and 15 professors. The platform 
embeds mechanisms for monitoring and storing user’s 
activity. The platform’s architecture is based on MVC 
(Model-View-Controller) paradigm ensuring 
application’s scalability in development process. There 
are two implemented ways of monitoring activity: 
through log files and into relations that represent the 
model of the platform.  
This platform has implemented capabilities of 
monitoring and saving user activities. An off-line 
application creates a data file in arff format that is used 
as input data for classification algorithms implemented in 
Weka system.  
The results of running classification algorithms on 
recorded data showed that student’s activity may be 
successfully classified as a function of specific activities. 
This may be the first step in modelling user activity and 
characterizing his/her learning proficiency based on past 
activity. 
We may say that we have implemented an e-Learning 
platform that implements specific functionalities but 
which also benefits from the knowledge obtained in 
presented analysis process. The final outcome of the 
analysis module is that it may be regarded as a decision 
support system that feedbacks knowledge into the 
original e-Learning system in order to achieve certain 
goals. This approach may be a great benefit for students 
of the platform since their activity may be guided and 
coordinated in order to achieve pedagogical or 
psychological goals. 
The next step may involve performance evaluation of the 
algorithm but with another set of attributes or even 
running other algorithms on data obtained from the 
current e-Learning platform. The final goal is to obtain a 
robust, scalable and accurate activity characterization 
model from which student’s behavioural patterns may be 
extracted. 
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