
 Informatica 30 (2006) 433–438 433

How Learner's Proficiency May Be Increased Using Knowledge
about Users within an E-Learning Platform
Dumitru Dan Burdescu and Marian Cristian Mihăescu
University of Craiova, Craiova, Romania
Faculty of Automatics, Computers and Electronics
Software Engineering Department
E-mail: burdescu@software.ucv.ro, http://software.ucv.ro/~burdescu_dumitru/
E-mail: mihaescu@software.ucv.ro, http://software.ucv.ro/~mihaescu_cristian

Keywords: e-Learning, learning proficiency, knowledge acquisition

Received: July 24, 2006

Representing knowledge about the user of a web application by decision trees can offer remarkable
information regarding a dataset. We have designed and developed an E-Learning platform that has
built in the capability of monitoring and storing user traffic. A model of analysis of user traffic by
building decision trees from gathered data is proposed. The analysis has two outcomes. Firstly, decision
tree structure can give an objective measure of the interestingness and quality of the data. In this
analysis we may see whether or not the data is representative or not and whether we may obtain sound
knowledge. Secondly, the analysis may reveal the learner’s behaviour in the continuous learning
environment. The possible outcomes of this analysis are the learner’s proficiency, accumulated
knowledge, or learning curve.
Povzetek: Analiziran je vpliv uporabe spleta na hitrost učenja.

1 Introduction
During last decade it has been possible to observe the
quick growth of interest in Web-based education. The
purpose of the paper is to present a method of analysing
data gathered from an e-Learning platform. The platform
itself is a web application used by secretaries, professors,
students and an administrator in a collaborative manner
to accomplish a learning process. Each of these four roles
has assigned a set of allowed actions. All users have to
authenticate with a username and password and then the
role and the set of allowed actions are determined.
The administrator, secretaries and professors have mainly
management duties that set up the platform (i.e. sections,
disciplines, course materials, tests, exams, etc.). The
students, on the other hand, download course materials,
communicate with secretaries and professors, and take
tests and exams. All student activities are monitored and
saved for off-line analysis. The goal is to employ
different analysis methods on monitored data in order to
accomplish user modelling and characterization. In this
connection we present a method of building decision
trees from gathered data.
The goal of the platform is to guide students in the
educational process. The enforced educational
technologies have two main outcomes. Firstly, the
student benefits from the continuous learning
environment in the way that his/her creativity and mental
outlook skills are supported and even improved. On the
other hand, this process is monitored with the purpose of
obtaining performance assessments. The platform itself is

a complex system with many capabilities that are at
student’s disposal. Monitoring user traffic and building
decision trees represents a way of analysing data
gathered from our e-learning platform with the aim of
measuring how efficient was the learning process.

2 The E-Learning Platform
The main goal of the platform is to give students the
possibility to download course materials, take tests or
pass final examinations and communicate with all
involved parties. To accomplish this, four different roles
were defined for the platform: sysadmin, secretary,
professor and student.
The main task of sysadmin users is to manage
secretaries. A sysadmin user may add or delete
secretaries, or change their password. He may also view
the actions performed by all other users of the platform.
All actions performed by users are logged. In this way
the sysadmin may check the activity that takes place on
the application. The logging facility has some benefits.
An audit may be performed for the application with the
logs as witness. Security breaches may also be
discovered.
Secretary users manage sections, professors, disciplines
and students. On any of these a secretary may perform
actions like add, delete or update. These actions will
finally set up the application such that professors and
students may use it. As conclusion, the secretary
manages a list of sections, a list of professors and a list of

434 Informatica 30 (2006) 433–438 D.D. Burdescu et al.

 434

students. Each discipline is assigned to a section and has
as attributes a name, a short name, the year of study and
semester when it is studied and the list of professors that
teach the discipline which may be maximum three. A
student may be enrolled to one or more sections.
The secretaries have also the task to set up the structure
of academic years for all sections. The structure of an
academic year is made of a list of periods. All periods
that define the academic year are disjunctive in time and
are characterized by a name, start date and end date. For
each period there are also set up the exams that may be
taken and the grants that are needed. For example, in
winter examining session there may be taken only exams
from the first semester and there is no need for grant
from either professor or secretary. This way of defining
what the student can do and when proved to be very
flexible and easy to understand and use.
The main task of a professor is to manage the assigned
disciplines while s discipline is made up of chapters. The
professor sets up chapters by specifying the name and the
course document. Only students enrolled in a section in
which a discipline is studied may download the course
document and take tests or examinations. Besides setting
up the course document for each chapter, the professor
manages test and exam questions. For each chapter the
professor has to define two pools of questions, one used
for testing and one used for exams. He specifies the
number of questions that will be randomly extracted to
create a test or an exam. Let us suppose that for a chapter
the professor created 50 test questions and 60 exam
questions and he has set to 5 the number of test questions
and to 10 the number of exam questions that are to be
randomly withdrawn. It means that when a student takes
a test from this chapter 5 questions from the pool of test
question are randomly withdrawn. When the student
takes the final examination at the discipline from which
the chapter is part, 15 questions are randomly withdrawn:
5 from the pool of test question and 10 from the pool of
exam question. This manner of creating tests and exams
is intended to be flexible enough for the professor.
All tests and exams are taken under time constraints. For
each chapter the professor sets up a number of seconds
necessary to answer questions that chapter. When a test
or exam is taken all the seconds are summed thus
obtaining a maximal interval of time in which the student
has to finish the test. The elapsed and remaining time are
managed on server side and presented to the student after
each answered question.
Tesys application offers students the possibility to
download course materials, take tests and exams and
communicate with other involved parties like professors
and secretaries.
Students may download only course materials for the
disciplines that belong to sections where they are
enrolled. They can take tests and exams with constraints
that were set up by the secretary through the year
structure facility.
Students have access to personal data and can modify it
as needed. A feedback form is also available. It is
composed of questions that check aspects regarding the

usability, efficiency and productivity of the application
with respect to the student’s needs.

3 How and What Data are
Monitored

The platform has two methods of monitoring user
activity. First one is through a log file which records each
executed action. Each action has a resulting row in the
log file.
Since the business logic of the platform is Java based,
log4j utility package was employed as a logging facility
and is called whenever needed within the logic of the
application. The utility is easy to use; logging process is
managed by log4j.properties file. The next lines present
how the utility was set up.
 log4j.appender.R.File=D:/devel/Tomcat/idd.log
 log4j.appender.R.MaxFileSize=1000KB
 log4j.appender.R.MaxBackupIndex=5
These lines state that all the logging process will be done
in idd.log file and will have a maximum file size of
100KB in maximum five files.
The main drawback of this technique is that the data
from the file is in a semi structured form. This makes the
information retrieval to be not so easy task to
accomplish. On the advantages, logging activity may be
very helpful in auditing the platform or even finding
security breaches. This logging facility is also very
helpful when debugging during development or when
analysing peculiar behaviour during deployment.
To overcome the semi structured shape of logged activity
a structured way of gathering activity information was
enforced. The activity table was added in the database
and all actions were recorded in the manner of one record
per action. In the next table the structure of activity table
is presented.

Field Description
id primary key
userid identifies the user who performed the

action
date stores the date when the action was

performed
action stores a tag that identifies the action
details stores details about performed action
level specifies the importance of the action

Table 1: Structure of activity table

After five months of deployment, the activity table

contains more than 50,000 records and we suppose that
until the end of the learning cycle there will be close to
100,000 records. All this logged activity may also be
very helpful in an audit process of the platform. The
records from the activity table represent the raw data that
will be further analysed.

The activity of a student may be seen as a sequence
of sessions. A session starts when the student logs in and
finishes when the student logs out. A session may be
seen as a sequence of actions. The next figure presents

HOW LEARNER'S PROFICIENCY MAY BE... Informatica 30 (2006) 433–438 435

 435

the activity diagram from platform point of view. Within
the platform each student has an associated activity
diagram.

Figure 1: The activity diagram for platform users

In the diagram it may be seen the activity of all s

users (U1,, U2, …, Us). The activity of each user is
composed of a number of sessions. User Us in the
diagram has ms associated sessions. At finest level, a
session is composed of a number of actions, session Sms
has mn associated actions. In a session, the first action is
to login and the last one is logout. After one hour of
inactivity the user is automatically logged out such that
user sessions can be precisely determined.

4 Building Decision Tree from Data
Choosing between two learning algorithms given a single
dataset is not a trivial task [4]. From all these
representations we think decision trees are a very good
start in the process of data analysis. Decision trees, as
structures, may give a very conclusive idea regarding the
“goodness” of data we try to analyse. Starting an
analysing process with shaping the data in the form of
decision trees gives a very good idea whether or not the
data that we have may lead to conclusive or important
results. Still, the whole process is much more than
choosing an algorithm. Many learning schemes have
various parameters, and suitable values must be chosen
for these. In most cases, results can be improved
markedly by a suitable choice of parameter values, and
the appropriate choice depends on the data at hand. For
example, decision trees can be pruned or unpruned and,
in the former case, a pruning parameter may have to be
chosen. More generally, the learning scheme itself will
have to be chosen from a range of available schemes. In
all cases, the right choices depend on the data itself [1].

A decision tree is a flow-like-chart tree structure where
each internal node denotes a test on an attribute, each
branch represents an outcome of the test and leaf nodes
represent classes [1]. So, the first step is to define a list of
attributes that may be representative for modelling and
characterizing student’s activity. Among the attributes
there may be:

• the number of logins,
• the number of taken tests,
• the average grade for taken tests,
• the exam results
• the number of messages sent to professors.
The basic algorithm for decision tree induction is a
greedy algorithm that constructs decision trees in a top-
down recursive divide-and-conquer manner. The basic
strategy is as follows. The tree starts as a single node
representing the training samples. If the samples are all
of the same class, then the node becomes a leaf and is
labeled with that class. Otherwise, an entropy-based
measure known as information gain is used for selecting
the attribute that will best separate the samples into
individual classes. This attribute becomes the “test” or
“decision” attribute at the node. A branch is created for
each known value of the test attribute, and the samples
are partitioned accordingly. The algorithm uses the same
process recursively to form the decision tree. Once an
attribute has occurred at a node, it need not be considered
in any of the node’s descendents. The recursive
partitioning stops only when one of the following
conditions is true. All samples for a given node belong to
the same class. There are no remaining attributes on
which the samples may be further partitioned. This
involves converting the given node into a leaf and
labeling it with the class in majority among samples [1].
Impurity measures are an important parameter regarding
the quality of the decision tree. Many different measures
of impurity have been studied. Some algorithms measure
“impurity” instead of “goodness” the difference being
that goodness should be maximized while impurity
should be minimized [5, 6, and 7].
The first step is to create a set of instances that hold the
attributes. In the database there are 20 tables that hold the
necessary data. Each student will represent an instance
and each instance will be defined by its own attributes.
The next step effectively builds the decision tree. The
computational cost of building the tree is O(mn log n)[2].
It is assumed that for n instances the depth of the tree is
in order of log n, which means the tree is not degenerated
into few long branches.
The information gain measure is used to select the test
attribute at each node in the tree. We refer to such a
measure an attribute selection measure or a measure of
goodness of split. The algorithm computes the
information gain of each attribute. The attribute with the
highest information gain is chosen as the test attribute for
the given set [1].

5 Results
In the study the relations that contain needed data are:
 activity – here there are stored all actions
performed by users;
 test_results – here there are stored the results of
all tests passed by all students;
 messages – here there are stored all the
messages sent or received by all users of the platform;
The next important step is attribute definition. In this
study each student represents an instance we have to set

436 Informatica 30 (2006) 433–438 D.D. Burdescu et al.

 436

up the attributes that define each instance. From our
relations there may be defined a large number of
attributes which may have more or less importance
regarding overall predictive power. In this study each
instance is defined by four attributes:
 nLogings – number of loggings of the user. This
number may be associated also with the number of
sessions;
 nTests – number of taken tests passed by the
student;
 avgTests – average of grades for passed tests;
 nSentMessages – number of messages sent by
the students.
We developed a dedicated application called
DatabaseRetriever for querying the database and creating
an arff file.

Figure 2: The functionality of DatabaseRetriver

application

A system called Weka [3], which implements the
decision tree building algorithm, uses arff format. In the
next figure it is presented how the activity.arrff file is
loaded into Weka workbench.

Figure 3: Loading the activity.arff file

In Figure 4 it is presented how J48 algorithm runs in
Weka workbench after the arff file has been loaded.
The activity.arff file has a standard format which is
composed of two sections. In the first one there is
defined the name of the relation and the attributes. For
each attribute there is defined the set of nominal values it

may have. In the next lines it is presented the first section
of the file.

Figure 4: Running J48 algorithm

Here is a sample of the arff file.

@relation activity
@attribute nLogings {<10,<50,<70,<100,>100}
@attribute nTests {<10,<20,<30,<50,>50}
@attribute avgTests {<3,<6,<10}
@attribute nSentMessages {<10,<20,<30,<50,>50}

In this section of the file all attributes are defined. An
important decision that is needed is to establish the
granularity for each attribute which is represented by the
number of nominal values it may take. As it can be seen
from the above presented lines we consider five intervals
for nLogings parameter: less than ten, less than fifty, less
than seventy, less than one hundred and greater than one
hundred. In the same way there is defined the set of
possible values for each of the attributes.
The second section of the activity.arff file is represented
by the data itself. Here are all the instances that will enter
the classification process. In the next lines there are
presented few instances that may be found in this section.

@data
<50,<20,<3,<10,
<50,>50,<6,<20,
<10,<20,<3,<10,
<50,<10,<3,<10,
<100,<50,<10,<50,

Each row represents an instance. For example, the first
row represents an instance (a student) which entered the
platform less than fifty times, took less than twenty tests,
obtained an average of grades for taken tests less than
three and sent less than ten messages to professors. In the
same way there can be interpreted all other instances.
 The activity.arff has 375 instances, each one
corresponding to a student.
After running the algorithm the obtained tree had 17
leaves (which represent in fact classes) and 25 nodes.
The time to build the model was 0.13 seconds.
The decisionTreeModel.txt file contents the obtained
decision tree. Figure 4 presents the obtained model.

HOW LEARNER'S PROFICIENCY MAY BE... Informatica 30 (2006) 433–438 437

 437

Figure 4: The decision tree in graphical form

=== Run information ===

Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: activity
Instances: 375
Attributes: 4
 nLogings
 nTests
 avgTests
 nSentMessages
Test mode: 10-fold cross-validation

=== Classifier model (full training set) ===

J48 pruned tree

nLogings = <10: (25/2)
nLogings = <50
| avgTests = <3 (20/1)
| avgTests = <6
| | nSentMessages= <10
| | | nTests = <10 (10/3)
| | | nTests = <20 (27/10)
| | | nTests = <30 (7/2)
| | | nTests = <50 (5/1)
| | nSentMessages= <20
| | | nTests = <10 (20/6)
| | | nTests = <30 (13/4)
| | nSentMessages= <30 (7/1)
| | nSentMessages= <50 (5/0)
| avgTests = <10 (113/6)
nLogings = <70
| avgTests = <6 (11/3)

| avgTests = <10
| | nSentMessages= < 20 (17/4)
| | nSentMessages= < 30 (29/3)
| | nSentMessages= < 50 (35/4)
nLogings = <100 (21/2)
nLogings = >100 (12/2)

Number of Leaves : 17

Size of the tree : 25

Time taken to build model: 0.13 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 321 85.6 %
Incorrectly Classified Instances 54 14.4 %
Kappa statistic 0.7085
Mean absolute error 0.0664
Root mean squared error 0.1994
Relative absolute error 40.9 %
Root relative squared error 70.4213 %
Total Number of Instances 375

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class
 0 0 0 0 0 0
 0.844 0.09 0.938 0.844 0.888 <10
 0.9 0.166 0.764 0.9 0.826 <20
 0 0.005 0 0 0 <30
 0 0 0 0 0 <50
 0 0 0 0 0 >50

438 Informatica 30 (2006) 433–438 D.D. Burdescu et al.

 438

=== Confusion Matrix ===

 a b c 1 d e f <-- classified as
45 1 0 2 0 0 | a = 0
 1 80 10 7 4 1 | b = <10
 0 0 12 0 0 1 | c = <20
 0 2 2 13 0 2 | d = <30
 7 7 1 0 92 0 | e = <50
 2 0 1 0 1 93 | f = >50

The most important part is the data analysis, which
ensures that the model is valid and provides solid
knowledge. The stratified cross-validation evaluation
technique revealed that 321 (85.6 %) instances were
correctly classified and 54 (14.4%) were incorrectly
classified. The confusion matrix showed exactly the
distribution of incorrectly classified instances among
classes.

6 Conclusion
An e-Learning platform is currently deployed and used
by almost 400 students and 15 professors. The platform
embeds mechanisms for monitoring and storing user’s
activity. The platform’s architecture is based on MVC
(Model-View-Controller) paradigm ensuring
application’s scalability in development process. There
are two implemented ways of monitoring activity:
through log files and into relations that represent the
model of the platform.
This platform has implemented capabilities of
monitoring and saving user activities. An off-line
application creates a data file in arff format that is used
as input data for classification algorithms implemented in
Weka system.
The results of running classification algorithms on
recorded data showed that student’s activity may be
successfully classified as a function of specific activities.
This may be the first step in modelling user activity and
characterizing his/her learning proficiency based on past
activity.
We may say that we have implemented an e-Learning
platform that implements specific functionalities but
which also benefits from the knowledge obtained in
presented analysis process. The final outcome of the
analysis module is that it may be regarded as a decision
support system that feedbacks knowledge into the
original e-Learning system in order to achieve certain
goals. This approach may be a great benefit for students
of the platform since their activity may be guided and
coordinated in order to achieve pedagogical or
psychological goals.
The next step may involve performance evaluation of the
algorithm but with another set of attributes or even
running other algorithms on data obtained from the
current e-Learning platform. The final goal is to obtain a
robust, scalable and accurate activity characterization
model from which student’s behavioural patterns may be
extracted.

References
[1] Jiawei Han, Micheline Kamber “Data Mining –
Concepts and Techniques” Morgan Kaufmann
Publishers, 2001.

[2] Ian H. Witten, Eibe Frank “Data Mining – Practical
Machine Learning Tools and Techniques with Java
Implementations” Morgan Kaufmann Publishers, 2000.

[3] www.cs.waikato.ac.nz/ml/weka

[4] Salzberg, S. “On Comparing Classifiers: Pitfalls to
Avoid and a Recommended Approach” Data Mining and
Knowledge Discovery 1:3 (1997), 317-327.

[5] Fayyad, U.M. & Irani, K.B. “The attribute
specification problem in decision tree generation”. In
Proceedings of the Tenth National Conference on
Artificial Inteligence, pp. 104-110, San Jose, CA, AAAI
Press, 1992.

[6] Quinlan, J.R. “Induction of decision trees” Machine
Learning, 1, 1986, 81-106.

[7] Buntine, W., & Nibblet T. “A further comparison of
splitting rules for decision-tree induction” Machine
Learning, 8, 1992, 75-85.

