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Efficient and controllable 3D scene layout generation and editing are of great significance to virtual reality, 

architectural visualization, and intelligent interaction systems. They not only enhance the efficiency of 

spatial design but also improve user experience. This paper proposes a generation framework that 

combines the diffusion model with the spatial attention mechanism: The diffusion model approximates the 

true distribution through a step-by-step denoising process, ensuring the stability and diversity of the global 

layout; The spatial attention mechanism dynamically focuses on key areas in object relationship modeling, 

thereby enhancing the accuracy and consistency of local editing. In the experimental section, the model 

was systematically evaluated based on public datasets and a self-built scene library. Performance metrics 

such as layout accuracy (89.3%), intersection over union (IoU) (0.76), Fréchet Inception Distance (FID) 

(31.2), and editing consistency score (0.84) were used for performance measurement. The results show that 

this method maintains high precision while having good inference efficiency: The average generation time 

per scene on the GPU platform is 1.3 s, and about 5.9 s on embedded devices, which is superior to baseline 

methods. This framework demonstrates clear advantages in cross-platform deployment and multi-scenario 

adaptability, providing a new technical path for the intelligent generation and industrial application of 3D 

content. The evaluation was conducted on the 3D-FRONT and SUNCG datasets together with a 300-scene 

supplementary dataset. Layout Accuracy was defined as correct placement within 0.20 m translation error 

and 15 ° rotation error., IoU was computed on 128³ voxel grids, FID was calculated from five rendered 

views per scene using Inception-v3 features, and the Editing Consistency Score was defined as the ratio of 

satisfied spatial constraints while preserving overall structural similarity.  

Povzetek:Članek predstavi pogojeni difuzijski model s prostorsko pozornostjo za nadzorovano generiranje 

in urejanje 3D postavitev. Sistem omogoča hitro, stabilno in prilagodljivo večplatformno generiranje 

prizorov. 

 

1  Introduction 

With the rapid development of technologies such as virtual 

reality (VR), augmented reality (AR), smart home and 

human-computer interaction, the generation of 3D scene 

layout has gradually become an important part of digital 

content production and intelligent design [1]. Compared 

with the traditional manual modeling method, the 

automated layout generation can not only significantly 

reduce labor costs, but also improve design efficiency and 

space utilization. However, how to ensure the rationality of 

the spatial structure, the accuracy of the geometric 

relationship, and the controllability of the user's editing 

operation simultaneously during the generation process 

remains a prominent challenge faced by current research 

[2]. 

Most of the existing methods are based on Generative 

Adversarial Networks (GANs), Variational Autoencoders 

(VAEs), or Transformer architectures. These methods have 

demonstrated certain generation capabilities in specific 

scenarios, but they also have obvious shortcomings: GAN 

methods are prone to pattern collapse and have difficulty 

maintaining scene diversity; The VAE model is superior in 

generation efficiency, but often sacrifices the authenticity 

of details. The Transformer model can capture long-range 

dependencies but performs poorly in terms of 

computational complexity and inference latency [3]. More 

crucially, the above-mentioned methods often lack refined 

support when dealing with the controllable constraints 

proposed by users (such as "bed against the wall" and "table 

in the center"), resulting in layout results that are difficult 

to meet the actual design requirements. 

However, despite the progress of GAN-, VAE-, and 

Transformer-based methods, none of these approaches can 

simultaneously guarantee global layout stability and local 

controllability under real-time constraints. GANs often 

suffer from mode collapse and weak semantic consistency; 

VAEs trade off geometric fidelity for speed; Transformers 

achieve global coherence but incur high computational 

latency. Diffusion models improve diversity but lack 

explicit mechanisms for fine-grained spatial editing. This 



352 Informatica 49 (2025) 351–364 K. Zhu et al. 

 
 

gap motivates the need for a unified framework that can 

combine global stability with local controllability while 

remaining computationally efficient. 

In response to the above problems, this paper proposes 

a controllable generation and editing framework for 3D 

scene layout that combines diffusion models and spatial 

attention mechanisms. The diffusion model, through a step-

by-step denoising generation process, can stably approach 

the true distribution, thereby enhancing the rationality of 

the global layout and the diversity of generation. The 

spatial attention mechanism introduces dynamic weighting 

in the modeling of inter-object relationships, highlighting 

the constraint relationship between key furniture and space, 

effectively enhancing the controllability and semantic 

consistency of the generated results. The combination of 

the two enables the model to not only have the ability to 

model global distribution but also to respond flexibly to 

local editing requirements. 

The proposed framework provides substantial value 

for applications such as virtual reality interaction, 

architectural visualization, smart home systems, and robot 

navigation. High-precision scene generation accelerates 

creative design and engineering implementation while 

supporting human-computer collaboration and immersive 

interaction [4]. 

The structure of this article is arranged as follows: 

Chapter Two reviews the relevant research work in the field 

of 3D scene generation; Chapter Three elaborates on the 

technical framework and key mechanisms of the proposed 

method; Chapter Four presents the experimental data and 

performance evaluation results; Chapter Five conducts an 

in-depth discussion from aspects such as model comparison, 

computational complexity, scalability, and practical 

application value. Chapter Six summarizes and looks 

forward to the entire text. 

2  Related work 

The generation and editing of 3D scene layout, as a core 

link in virtual reality, architectural visualization and 

intelligent interaction systems, has always been an 

important research direction in computer vision and 

graphics. However, this task still faces significant 

challenges: Firstly, the relationships among objects in the 

three-dimensional scene are complex and the spatial 

semantic constraints are strong, which leads to the 

generation results being prone to overlap and conflict; 

Secondly, users often need controllable local editing in 

practical applications, but existing methods perform poorly 

in terms of constraint response and fine-grained operations 

[5]. 

In the early research stage, rule-based and probabilistic 

graphical model-based methods were widely used, such as 

Markov random fields and geometric constraint 

optimization methods. They can ensure basic rationality in 

small-scale scenarios, but have obvious limitations in 

complex layouts and cross-scenario generalization. With 

the development of deep learning, generative adversarial 

networks (GAN) and variational autoencoders (VAE) have 

gradually been introduced into 3D layout tasks. GAN has 

an advantage in detail capture, but the training process is 

prone to pattern crashes. VAE performs well in inference 

speed, but often at the expense of geometric accuracy and 

layout diversity [6]. 

In recent years, the Transformer architecture has 

gradually become a research hotspot due to its global 

dependency modeling capability. Its representative 

methods can capture long-range relationships across 

objects and demonstrate good semantic consistency in 

large-scale scene generation. However, such models 

usually have large parameter scales and long inference 

times, which limits their application on edge devices [7].  

The introduction of the diffusion model has brought a 

new breakthrough to the generation of 3D scenes. Its 

stepwise denoising generation process can stably approach 

the true distribution, enhancing global rationality while 

ensuring diversity. The Scene Diffusion proposed by Han 

et al. can drive the generation of 3D scenes through text 

conditions [8]; The iControl3D developed by Li et al. has 

achieved controllable layout interaction [9]; The Attention 

Warping proposed by Gomel and Wolf utilizes the attention 

mechanism in the diffusion model to enhance the 

consistency of 3D editing [10]. Meanwhile, the latest 

review research also indicates that diffusion models have 

gradually become the core framework in the field of 3D 

generation and have demonstrated broad application 

prospects in virtual reality and interaction design [4]. The 

following table provides a quantitative comparison of 

representative 3D scene layout generation methods, 

including datasets, supervision type, evaluation metrics, 

and reported results, which highlight their relative 

strengths and limitations.

 

Table 1: Quantitative comparison of representative 3d scene layout generation methods 

 

Method 

Type 

Representative 

Work 
Dataset Supervision Metrics (Reported Results) 

GAN-based 
LayoutGAN 

(baseline) 
SUNCG Supervised LA: 78.5%, IoU: 0.65, FID: 47.9 

VAE-based 
VAE-Layout 

(baseline) 
3D-FRONT Supervised LA: 80.2%, IoU: 0.63, FID: 44.6 

Transformer 
SceneFormer 

(baseline) 
3D-FRONT Supervised LA: 84.7%, IoU: 0.70, FID: 36.8 

Diffusion DiffuScene [1] 3D-FRONT Supervised LA: 86.5%, IoU: 0.74, FID: 33.5 
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 DiffInDScene [2] 

3D-

FRONT/SUNC

G 

Supervised LA: 87.2%, IoU: 0.75, FID: 32.8 

 DORSal [5] Synthetic Weak sup. ↑ Object placement accuracy, ECS ↑ 

 LAW-Diffusion [17] 3D-FRONT Supervised LA: 85.9%, IoU: 0.72, FID: 34.0 

Diffusion+

Attn 
iControl3D [9] 

SUNCG/3D-

FRONT 
Supervised ECS: 0.82, IoU: 0.73, FID: 34.2 

 
Attention Warping 

[10] 
SUNCG Supervised Improved editing stability, ECS ↑ 

Scene 

Graph+Diff 
CommonScenes [6] SUNCG Supervised IoU: 0.73, ECS: 0.80 

 GraphDreamer [14] 3D-FRONT Supervised IoU: 0.74, FID: 33.0 

Graph 

Networks 
SceneHGN [15] 3D-FRONT Supervised Fine-grained geometry accuracy ↑ 

Proposed 

(Ours) 
Diffusion + SpAttn 

FRONT + 

SUNCG 
Supervised LA: 89.3%, IoU: 0.76, FID: 31.2, ECS: 0.84 

This article highlights several key areas that require 

further research to enhance the performance of 3D scene 

layout generation and editing. 

Most of the existing methods rely on synthetic datasets 

of limited scale, often focusing on single rooms or 

standardized scenarios. This type of dataset lacks sufficient 

complexity and diversity, making it difficult to cover the 

multi-object combinations and irregular layouts that occur 

in real environments, thereby limiting the generalization 

ability of the model. 

Many models rely solely on a single architecture 

during feature processing, such as directly inputting the 

extracted geometric or semantic features into the fully 

connected layer, lacking in-depth optimization for spatial 

relationships and local editing consistency. Some studies 

have introduced the attention mechanism, but most of them 

are limited to a single dimension, either emphasizing 

spatial structure or highlighting semantic constraints, and 

have not yet formed a comprehensive modeling of the 

unique global-local coupling characteristics of three-

dimensional scenes. 

The current experimental evaluations are mostly 

focused on single-platform or offline scenarios, lacking 

systematic verification of cross-platform deployment and 

real-time interaction scenarios. This makes the model still 

uncertain in practical applications such as virtual reality, 

smart home or robot navigation. 

Filling these gaps is of great significance for 

promoting the development of intelligent generation of 3D 

content, enhancing the accuracy, controllability and 

scalability of layout results. To guide the research of this 

paper, we reformulate the following research questions into 

testable hypotheses: 

Hypothesis H1: The proposed diffusion–spatial 

attention framework achieves significantly higher accuracy 

(Layout Accuracy and IoU) and controllability (Editing 

Consistency Score) than traditional single deep learning 

methods such as GAN, VAE, and Transformer baselines. 

Hypothesis H2: Integrating spatial attention into the 

reverse steps of the diffusion process improves both global 

structural consistency and local editing flexibility 

compared with diffusion-only or attention-only variants. 

The main contributions of this paper can be 

summarized as follows: 

A unified controllable generation framework that 

integrates diffusion models with spatial attention, ensuring 

both global stability and local controllability in 3D scene 

layout. 

A spatial attention–guided feature optimization 

mechanism that dynamically models key object 

relationships, enhancing geometric rationality and 

semantic consistency. 

Extensive experiments on public and self-built datasets, 

demonstrating superior performance in layout accuracy, 

IoU, FID, and editing consistency, as well as strong cross-

platform adaptability. 

3  Methodology 

3.1  Design of 3D scene layout generation 
framework 

In the current task of automatically generating 3D scenes, 

there are generally two types of problems: First, the 

rationality of the layout is insufficient, which is prone to 

defects such as overlapping objects, uncoordinated scale 

proportions, and missing spatial semantic relationships; 

Second, there is a lack of flexible response to user demands, 

making it difficult to achieve interactive and controllable 

layout generation. In response to these limitations, this 

study designs a three-dimensional scene layout generation 

framework based on diffusion models and spatial attention 

mechanisms, striving to balance diversity, rationality and 

controllability during the generation process. 

The overall structure of the framework adopts a multi-

level path design of "conditional input - diffusion 

generation - spatial attention - result output". Firstly, 

introduce scene condition constraints at the input end, 

which can be user-preset room floor plans, object category 

lists, or some existing layout information, as the prior 

control signals for the generation process. Subsequently, 

the diffusion model gradually transforms high-dimensional 

random noise into a three-dimensional scene layout that 

conforms to semantic and spatial constraints through step-
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by-step denoising. Compared with traditional generative 

models, diffusion models have higher stability and 

interpretability when dealing with complex distributions 

and can effectively avoid the phenomenon of pattern 

collapse. 

To further strengthen the spatial dependency 

relationship between objects in the layout, this framework 

introduces a spatial attention module at the key stage of the 

diffusion process. This module highlights the interaction 

between functional areas and key objects in the room 

through a dynamic weight distribution mechanism. For 

instance, in the living room scene, it emphasizes the 

relative positions of the sofa and coffee table, while in the 

bedroom scene, it highlights the placement relationship 

between the bed and the wardrobe. Spatial attention not 

only ensures the geometric rationality of the layout but also 

enhances the semantic consistency of the global scene. 

At the result output end, the framework offers two 

generation modes: one is the global generation mode, 

which is suitable for building a complete scene from 

scratch; Another type is the local editing mode, which 

allows for additions, deletions, and modifications to the 

existing layout, such as replacing furniture, adjusting 

angles, or rearranging objects. The two modes share the 

underlying diffusion and attention mechanisms, thereby 

achieving the unification of scene generation and editing in 

the same system. 

The overall information flow of the framework is 

shown in Figure 1: The condition input is normalized and 

semantically parsed through the preprocessing module, 

then enters the diffusion generation channel to complete the 

initial layout, and then the spatial attention module 

performs spatial dependency optimization. Finally, a three-

dimensional scene result that meets the controllability 

requirements is output.

 

 
 

Figure 1: Schematic diagram of the 3D scene layout generation framework 

3.2  Controllable generation mechanism of 
diffusion model 

The diffusion model is essentially a generation framework 

based on stepwise denoising. It achieves the generation 

from random noise to the target sample by simulating the 

"forward diffusion" process from the data distribution to 

the Gaussian noise distribution and the corresponding 

"reverse denoising" process. In 3D scene layout tasks, this 

mechanism is particularly suitable for modeling complex 

and diverse spatial distributions, as there are highly 

nonlinear correlations among object categories, positions, 

orientations, etc. in the scene, and traditional generative 

models often find it difficult to capture them stably. 

In the forward process, the real layout sample 0x
 is 

gradually added with noise, resulting in a series of 

intermediate states T21 x,…,x,x
. Its evolution process 

can be expressed as: 

I)β,xβ-1N(=)x∣q(x t1-tt1-tt （1） 

I)σc),t,,(xμN(x=c)x∣(xp 2

ttθ1-tt1-t ；，
（2） 

Here, tβ  represents the noise intensity at step t. After 

a sufficient number of iterations, Tx
 approximately 

follows the standard Gaussian distribution. 

During the reverse generation process, the model 

learns a conditional probability distribution of  

 

)∣( 1 ,cxxp tt-θ , where c represents the control signal. The 

source of control signals can be user-preset scene  

 

constraints (such as room structure, object category list), 

semantic labels, or existing partial layouts. By introducing 

conditional variables, the diffusion model can not only 

generate diverse three-dimensional layouts but also ensure 

that the results meet the expected semantic and geometric 

constraints. Its core objective function is: 

]∥)([∥ 2

0
,t,cx-L=E tθ,t,x    （3） 

Among them, ϵ is the real noise, and θ  is the model 

prediction noise. The loss function drives the parameter 

update by minimizing the difference between the two. To 

enhance controllability, this study introduces Condition 

Embedding at each stage of reverse denoising, mapping 

external constraint signals into the latent space and fusing 

them with noise features. In this way, different condition 

Condition input (floor plan/Object 

category/partial layout) 

Preprocessing and feature analysis 

module 

Diffusion generation process 

(stepwise denoising) 

Spatial attention mechanism 

(Relational Modeling) 

Global generation mode (complete 

layout) 

Partial editing mode (Add, Delete, 

modify) 

Output a controllable 3D scene 

layout 
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inputs can directly affect the generated trajectory. For 

instance, when the user specifies the constraint of "the desk 

is close to the window", the model will assign a higher 

weight to the relevant spatial relationship during the 

generation process, thereby presenting a reasonable local 

layout in the final result. At the same time, for 3D scene 

editing tasks, diffusion models have inherent flexibility. By 

re-adding noise to some areas of the existing scene and then 

performing denoising generation under certain constraints, 

local addition, deletion and modification operations can be 

achieved without completely rebuilding the scene. This 

"conditional diffusion - local sampling" mode ensures the 

coherence of editing and the overall consistency of the 

scene. 

3.3  Introduction and optimization of spatial 
attention mechanism 

In the process of generating 3D scene layout, there are not 

only semantic associations among objects, but also strict 

geometric constraints and spatial dependencies. For 

instance, beds are usually placed against the wall, there is 

a fixed functional distance between sofas and coffee tables, 

and desks are often close to Windows. If these spatial 

relationships are not effectively modeled, the generated 

results are prone to unreasonable placement, weakening the 

realism and practicality of the scene. Therefore, relying 

solely on the gradual denoising of the diffusion process is 

difficult to ensure the spatial consistency of the layout. It is 

necessary to introduce a spatial attention mechanism into 

the model. 

The core idea of the spatial attention mechanism is to 

dynamically highlight the features of key areas and related 

objects in the scene through a weighting strategy, thereby 

achieving a balanced modeling of the relationship between 

the local and the global. In mathematical expression, the 

input feature can be represented as 
d×NR∈F , where N 

represents the number of objects or spatial units in the 

scene and d represents the feature dimension. By 

calculating three sets of vectors: query (Q), key (K), and 

value (V), the attention distribution can be obtained: 

)V
d

QK
Softmax(=V)K,Q,Attention(

T

（4） 

In this study, Q,K and V are respectively obtained by 

object position encoding, category embedding and 

geometric feature mapping, enabling the attention 

mechanism to simultaneously capture the dual constraints 

of semantics and space. For instance, in a living room 

scenario, the position encoding of the sofa will generate a 

high-weight match with the geometric features of the 

coffee table, thereby guiding the generation result to 

maintain a reasonable relative distance. 

To further enhance the model's efficiency and 

generalization, this study designed two optimizations in the 

spatial attention mechanism: 

(1) Local-global combination strategy. Within a local 

range, the attention module focuses on modeling the 

interaction between adjacent objects to ensure a reasonable 

microscopic arrangement. At the global level, the overall 

semantic consistency of core functional areas (such as 

bedrooms and living rooms) is strengthened through a 

sparse attention matrix. 

(2) Multi-scale spatial embedding. For spatial 

relationships at different scales, fine-grained (object level) 

and coarse-grained (region level) feature maps are 

respectively constructed, and the two are integrated 

through a multi-scale fusion layer, thereby achieving 

unified modeling from individual furniture to the entire 

room. 

Meanwhile, the spatial attention module does not exist 

in isolation but is embedded in the reverse generation step 

of the diffusion model. At each step of the denoising 

process, the model dynamically adjusts the attention 

distribution based on the conditional signals and the current 

scene state to ensure that the layout generation is consistent 

with the user's requirements. This iterative embedding 

approach enables spatial constraints to remain in effect 

throughout the entire generated trajectory, rather than being 

corrected only at the result stage. 

3.4  Model training process and 
hyperparameter settings 

To ensure that the generation of 3D scene layout achieves 

the expected results in terms of spatial rationality and 

controllable editability, this study has constructed a 

systematic training mechanism and parameter optimization 

strategy based on the diffusion model and the spatial 

attention module. The training process covers data input, 

diffusion generation, spatial relationship modeling, and 

result decoding, ensuring that the model has stable 

generation capabilities in various scenarios. 

The system structure mainly consists of four parts: 

diffusion generation path, conditional embedding fusion, 

spatial attention optimization and layout decoder. The 

diffusion path is set with a step-by-step denoising step 

number of 1000. In each round of iteration, the scene layout 

is reconstructed under the combined effect of the 

conditional signal and the attention mechanism. 

Conditional embedding is used to introduce user-set 

geometric constraints and semantic priors, while the spatial 

attention module dynamically adjusts the spatial weights 

between objects to strengthen the relative positional 

relationships of key objects such as furniture, walls, and 

doors and Windows. 

In terms of the training mechanism, the loss function 

adopts a weighted combination form, consisting of two 

parts: the noise prediction error and the scene relationship 

constraint error. This not only ensures the denoising 

accuracy of the diffusion model but also maintains the 

consistency of spatial semantics. The optimizer selects 

AdamW, with the initial learning rate set to 0.0005. The 

momentum parameters β1=0.9, β2=0.999, are dynamically 

adjusted in combination with the cosine annealing 

scheduling strategy. The Early Stopping mechanism is 

introduced during training, tolerating 15 rounds and a 

maximum of 200 training rounds to effectively prevent 

overfitting. The selection of hyperparameters is 

accomplished through grid search. The diffusion steps were 

compared among the three groups of 500, 750, and 1000. 
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The conditional embedding dimensions were set to 128, 

256, and 512 respectively. The spatial attention module 

attempted single-layer and double-layer structures, and the 

batch sizes were set to 8, 16, and 24. The experimental 

results show that when the diffusion steps are set to 1000, 

the embedding dimension is 256, and a double-layer spatial 

attention structure is adopted, the model achieves the best 

balance between layout rationality and generation diversity. 

To further enhance the generalization ability, a five-fold 

cross-validation was adopted during the training process. 

Comprehensively evaluate the Fréchet Inception Distance 

(FID) (FID), Layout Accuracy (Layout Accuracy), IoU 

(Intersection over Union), and editing consistency 

indicators. By combining round-by-round error screening 

and stability optimization, unreasonable samples are 

eliminated and high-confidence features are strengthened, 

enabling the model to maintain stable performance in 

various scenarios such as bedrooms, living rooms, and 

office Spaces. 

Algorithm 1. Training pipeline for controllable 3D 

scene layout generation 

1: Input dataset D with scene graphs and voxel grids 

2: Initialize diffusion model parameters θ 

3: for each epoch do 

4: Sample mini-batch from D 

5: Add noise to obtain x_t according to Eq. (1) 

6: Embed conditions (layout constraints) into latent 

space 

7: Apply spatial attention module to refine Q, K, V 

(Eq. (3)) 

8: Predict noise ε_θ and compute loss ℒ (Eq. (2)) 

9: Update θ using AdamW optimizer 

10: end for 

The architecture consists of 12 denoising layers with 

residual connections, each coupled with a two-layer spatial 

attention block. Conditional embeddings of dimension 256 

are fused at every step. Dataset splits follow an 8:1:1 

train/validation/test ratio. Metrics are defined in Section 

4.3, and code will be made available upon acceptance. 

4  Experiments and results 

This paper presents the experimental results of 3D scene 

layout generation and controllable editing. The 

experiments are designed to test the two hypotheses 

formulated in Section 2. Specifically, ablation studies on 

conditional control and spatial attention directly evaluate 

H2, while the comparative experiments with GAN, VAE, 

and Transformer baselines evaluate H1. We adopted a 

multi-source three-dimensional dataset including furniture 

categories, room structures and spatial relationships to 

conduct a comprehensive evaluation of the proposed 

diffusion generation framework and spatial attention 

mechanism. The contribution of different modules was 

verified through ablation experiments, and a comparison 

was made with mainstream methods in the discussion 

section to reveal the advantages of the method proposed in 

this paper in terms of spatial rationality, controllability and 

cross-scenario adaptability. 

4.1  Dataset and scene sample construction 

This study mainly used two public indoor layout datasets, 

3D-FRONT and SUNCG, and constructed a small-scale 

supplementary sample set in combination with actual 

design cases. 

The 3D-Front dataset contains over 20,000 indoor 3D 

scenes, covering various functional Spaces such as 

bedrooms, living rooms, studies, and dining rooms. This 

dataset provides complete information on room geometry 

and furniture examples. Each object is labeled with 

category, three-dimensional position, rotation Angle and 

size parameters, which can support the modeling of spatial 

dependency relationships. The SUNCG dataset includes 

approximately 40,000 synthetic indoor scenes, with diverse 

sources and significant differences in layout styles. Its 

characteristic lies in the inclusion of a large number of user-

modeled variants, which can better reflect different design 

preferences and scene complexities, and is valuable for 

testing the generalization ability of the model. The 

supplementary sample set consists of 300 interior design 

schemes for actual residential and office Spaces. The data 

is uniformly preprocessed and transformed into a structured 

representation based on scene graphs, which is used to test 

the performance of the model in real applications. 

It should be pointed out that although the above-

mentioned dataset covers multiple types of Spaces, it still 

has limitations. The scenes of 3D-FRONT are mostly 

designed in a regular way, and some samples have idealized 

processing in terms of materials and geometric details. 

SUNCG contains a certain proportion of user-generated 

data, which varies in quality and may result in semantic 

inconsistencies or distorted furniture proportions. The scale 

of the supplementary sample set is limited and it is difficult 

to fully cover the diversity of large-scale actual scenarios. 

Despite this, these datasets still possess high spatial 

resolution and rich object annotation information, making 

them an ideal choice for developing and verifying 3D scene 

generation models. All experiments were conducted on a 

workstation equipped with an NVIDIA RTX 3090 GPU (24 

GB memory), Intel Xeon Gold 6230 CPU, and 256 GB 

RAM, running Ubuntu 20.04 with CUDA 12.1 and 

PyTorch 2.1. Each model was trained for up to 200 epochs 

with early stopping after 15 non-improving epochs, and 

random seeds were fixed across all runs to ensure 

reproducibility. On the 3D-FRONT dataset, training took 

approximately 46 hours, while on SUNCG it required about 

58 hours with batch size 16. Average inference speed was 

measured over 500 test scenes. Baseline models 

(LayoutGAN, VAE-Layout, SceneFormer) were re-trained 

under the same environment with their officially released 

code, and hyperparameters were tuned via grid search to 

ensure fairness. Dataset splits followed an 8:1:1 ratio for 

training, validation, and test sets. 

4.2  Data preprocessing and feature 
representation 

To enhance the stability and effectiveness of 3D scene data 

during the model training process, this study has 

constructed a systematic preprocessing and feature 
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expression process for multi-source indoor layout samples 

to increase the convergence speed of the model, improve 

the accuracy of spatial relationship modeling, and reduce 

the risk of overfitting caused by data differences. 

In terms of geometric preprocessing, all scenes are 

unified to the standard coordinate system, and the room 

side lengths are scaled to the [0,1] interval through scale 

normalization to ensure the comparability of samples from 

different sources at the spatial scale. To reduce unnecessary 

noise, low-frequency and redundant objects (such as small 

decorative pieces) have been eliminated, and only objects 

that have a decisive impact on the space function, such as 

beds, sofas, tables and chairs, and cabinets, are retained. 

For partially missing object labels (accounting for 

approximately 1.5%), a proximity constraint interpolation 

strategy is adopted, and corrections are made based on 

typical positions in similar scenes to ensure the integrity of 

the scene relationship graph. 

In terms of feature expression, a dual feature system 

was constructed: the first one is voxelization representation, 

which discretizes the three-dimensional space into a fixed-

resolution voxel mesh to support the generation process of 

stepwise denoising of the diffusion model; The second is 

the scene representation based on graph structure, taking 

each furniture instance as a node. The node features include 

category, three-dimensional position and size information, 

while the edge features describe the relative distance and 

orientation between objects. Numerical features are 

normalized from minimum to maximum, and categorical 

features are encoded with single heat, thereby ensuring that 

different modal features maintain numerical stability and 

trainability during fusion. 

In terms of data partitioning, the principle of "scene 

independence" is followed. The training set, validation set 

and test set are divided in an 8:1:1 ratio to ensure that the 

test set includes unseen combinations of house types and 

furniture matching methods. The training set maintains 

balanced coverage in spatial functional categories (such as 

bedrooms, living rooms, studies, office areas, etc.) to 

prevent the model from overfitting a single spatial type. 

The validation set is used to adjust hyperparameters, while 

the test set is used for the final performance evaluation to 

ensure the reliability and generalization performance of the 

generated results. 

4.3  Evaluation indicators and performance 
metrics 

To comprehensively evaluate the performance of 3D scene 

layout generation and controllable editing, this study 

adopts four indicators: FID, layout accuracy, intersection 

and union ratio, and Editing Consistency Score (ECS). 

These indicators cover the perceptual quality, geometric 

rationality and controllable editing effect of the generated 

scene, and can reflect the overall performance of the model 

from different perspectives. 

First, FID, as a commonly used quality assessment 

index in the field of image generation, has been introduced 

into the distribution comparison of 3D layout rendering 

results. It reflects the authenticity and diversity of the 

generated scene by measuring the distribution differences 

between the generated samples and the real samples in the 

feature space. A lower FID value indicates that the 

generated layout is closer to the true distribution in overall 

perception, but it is insensitive to a small amount of 

geometric error and needs to be used in combination with 

other metrics. The Fréchet Inception Distance (FID) is 

formally defined as: 

))(2-++Tr(∥μ-μ∥=FID 2

1

r ggr

2

2gr   （5） 

where μr,Σr, and μg,Σg,denote the mean and covariance 

of real and generated sample distributions. 

Second, layout accuracy (LA) is used to measure the 

degree of match between the generated results and the 

actual annotations in terms of object categories and 

positions. The calculation method is the ratio of the number 

of correctly placed objects in the generated scene to the 

total number of target objects: 

total

correct

N

N
LA=

     （6） 

Among them, correctN
 represents the number of 

objects with correct categories and positions, and totalN
 

represents the total number of target objects. This indicator 

can visually reflect the rationality of the scene at the 

geometric and semantic levels. 

Thirdly, IoU is used to measure the degree of overlap 

between the generated object and the real object in three-

dimensional space 

gtpred

gtpred

∪VV

∩VV
IoU=

     （7） 

Among them, predV
 and gtV

respectively represent 

the voxel volumes of the predicted object and the real 

object. IoU is extremely sensitive to the scale and relative 

positions of objects in the layout, and thus is suitable for 

detecting the geometric accuracy of models at the fine-

grained level. Finally, the Editing Consistency Score (ECS) 

is used to evaluate the coherence of local editing tasks. It 

measures whether the overall geometric structure and 

semantic function of the scene remain consistent after the 

operations of adding, deleting and modifying. The higher 

the ECS value, the more it indicates that the model can 

maintain the stability of the global layout while responding 

to local constraints. Formally, the Editing Consistency 

Score (ECS) is defined as the ratio of satisfied spatial 

constraints to the total number of applied constraints: 

 totaltsNconstrain

satisfied tsNconstrain
=ECS （8） 

4.4  Ablation experiment and analysis of key 
factors 

To verify the independent contribution and synergy of each 

module in the 3D scene layout generation framework 

proposed in this paper, a systematic ablation experiment 

was designed and implemented. Meanwhile, the proposed 
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method is compared horizontally with mainstream 3D 

generation models to comprehensively evaluate the 

accuracy, stability and controllable editing ability of the 

proposed model. 

In the ablation experiment section, the main focus was 

on the stripping test of the diffusion generation mechanism 

and the role of the spatial attention module, and the 

following model variants were constructed: ① Basic 

model: Only the diffusion model was adopted, without 

introducing spatial attention and conditional constraints; 

② Diffusion + conditional control model: Conditional 

embedding is added to the basic model, but the spatial 

attention mechanism is not used; ③ Diffusion + Spatial 

Attention model: Introduce the spatial attention mechanism 

into the basic model, but do not perform conditional control; 

④ Complete model: It simultaneously incorporates 

diffusion generation, conditional control, and spatial 

attention mechanisms. 

The experimental results show that the layout accuracy 

(LA) of the basic model on the test set is only 74.2%, and 

the FID is 48.7. There are obvious phenomena of object 

overlap and unreasonable layout. After adding conditional 

control, the accuracy rate increased to 81.6% and the FID 

decreased to 39.4, indicating that the conditional signal can 

effectively guide the global layout. After further 

introducing the spatial attention mechanism, the accuracy 

rate reached 85.8%, the average IoU increased from 0.62 to 

0.71, and the relative position relationship of objects in the 

scene was significantly optimized. The complete model 

performed the best, with an accuracy rate of 89.3%, the FID 

dropped to 31.2, the average IoU increased to 0.76, and 

achieved an edit consistency score (ECS) of 0.84 in the 

local editing experiment, proving that the combination of 

the three can achieve the unity of spatial rationality and 

user controllability.

 
Figure 2: Ablation study of different model variants on the 3D-FRONT test set. Metrics reported include Layout 

Accuracy, IoU, and FID. The results demonstrate the contribution of conditional embedding, diffusion process, and spatial 

attention module 

 

In the horizontal comparison experiment, the 

performance of the method proposed in this paper was 

compared with three mainstream models: GAN-based 

LayoutNet, VAE-Layout, and Transformer-SceneGen. The 

results show that the traditional generative adversarial 

network method performs averagely in terms of diversity, 

with the FID value remaining above 45. The VAE model 

has a fast generation speed, but geometric distortion often 

occurs in the scene, with an IoU of only 0.63. The 

Transformer-based method has an advantage in capturing 

global dependencies, with an accuracy rate of 84.7%, but 

its reasoning speed is relatively slow, with an average 

generation time of 2.1 seconds per scene. In contrast, the 

model proposed in this paper achieved the best 

performance in terms of accuracy (89.3%), FID (31.2), and 

generation speed (1.3 seconds per scene), verifying the 

balanced advantage of the proposed method between 

performance and efficiency.
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.  

Figure 3: Comparison of our proposed Diffusion+SAM model against LayoutGAN, VAE-Layout, and SceneFormer on the 

3D-FRONT dataset. Reported metrics include Layout Accuracy, FID, IoU, and generation speed 

 

In conclusion, through modular ablation and horizontal 

comparison experiments, it can be found that conditional 

control can significantly enhance the global semantic 

rationality, the spatial attention mechanism effectively 

optimizes the relative positions between objects, and the 

diffusion process ensures the diversity and stability of the 

overall generation. Under the synergistic effect of the three, 

the complete model proposed in this paper has achieved 

superior performance compared to mainstream methods in 

terms of generation quality, controllable editability and 

cross-scenario stability, and has strong application value 

and promotion potential. 

5  Discussion 

5.1  Comparison with existing 3D scene 
generation methods 

To evaluate the application potential of the diffusion-

attention framework proposed in this paper in the 

generation of 3D scene layout, three representative 

mainstream methods were selected for comparison: Models 

based on Generative adversarial networks (GAN) (such as 

LayoutGAN), models based on variational autoencoders 

(VAE) (such as VAE-Layout), and 3D generation methods 

based on Transformer that have emerged in recent years 

(such as SceneFormer).Compared with GAN-based 

methods, our framework avoids mode collapse through the 

progressive denoising process of diffusion models. Unlike 

VAE-based approaches that often trade accuracy for speed, 

our method preserves fine-grained geometry while 

maintaining efficient inference. Compared with 

Transformer-based models, which have high computational 

overhead due to global attention, our framework achieves 

a better balance of accuracy and latency by combining 

diffusion with sparse spatial attention. However, we also 

note that the diffusion process requires longer training time, 

and model compression or distillation will be necessary for 

lightweight deployment. The comparison dimensions cover 

layout rationality, geometric accuracy, controllability and 

generation efficiency. The relevant performance data are 

shown in Table 2.

Table 2: Performance comparison of GAN-based, VAE-based, Transformer-based, and our proposed Diffusion+SAM 

model on the 3D-FRONT dataset. Metrics include Layout Accuracy (%), Fréchet Inception Distance (FID), Intersection 

over Union (IoU), and average generation time per scene (s). 

 

Model Type Layout Accuracy (%) FID ↓ IoU 
Avg. Generation Time 

(s/scene) 

GAN-based (LayoutGAN) 78.5 47.9 0.65 1.8 

VAE-based (VAE-Layout) 80.2 44.6 0.63 1.1 

Transformer (SceneFormer) 84.7 36.8 0.70 2.1 

Ours (Diffusion + SpAttn) 89.3 31.2 0.76 1.3 

From the perspective of generation accuracy and 

spatial rationality, GAN and VAE methods have limitations 

in overall distribution learning, and problems such as 

object overlap and proportion imbalance often occur. The 

Transformer method performs well in capturing global 

dependencies, but it still lacks detailed characterization of 

local geometric relationships. In contrast, the method 

proposed in this paper ensures the stability of the global 

distribution through the diffusion process and combines the 

spatial attention mechanism to dynamically model the 

relationships between objects, thereby increasing the 

layout accuracy to 89.3% and achieving an IoU of 0.76, 

which is significantly better than the comparison 

methods.Compared with LayoutGAN (78.5%) and VAE-
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Layout (80.2%), our model achieves a relative 

improvement of +13.8% and +11.4% in Layout Accuracy, 

respectively. For IoU, the gain is +16.9% over GAN-based 

and +20.6% over VAE-based methods. The reduction in 

FID from 47.9 (GAN) and 44.6 (VAE) to 31.2 corresponds 

to a relative improvement of approximately 34.9% and 

30.1%, respectively. 

In terms of generation efficiency, the VAE model has 

a relatively fast reasoning speed, but the geometric 

authenticity of the scene is insufficient. The Transformer 

model has a relatively high accuracy rate, but its average 

generation time is 2.1 seconds, which is difficult to meet 

the requirements of some real-time application scenarios. 

The model in this paper achieves a good balance between 

accuracy and speed, with an average generation time of 

approximately 1.3 seconds per scene, making it suitable for 

deployment in interactive applications. 

In terms of controllability, most GAN and VAE 

methods rely on implicit variable regulation and lack 

explicit conditional constraints, making it difficult for users 

to directly specify the object category or relative position. 

The Transformer method has been improved in conditional 

guidance, but the control granularity is limited. The model 

in this paper, through the joint guidance of conditional 

embedding and spatial attention mechanism, supports users 

to flexibly intervene in the way of "furniture category + 

spatial constraint", and can maintain the semantic 

consistency and stability of the overall layout. 

To assess stability, we repeated each experiment five 

times with different random seeds. The standard deviation 

of Layout Accuracy across runs was within ±0.7%, IoU 

within ±0.5%, and FID within ±1.2, indicating that the 

improvements are statistically robust.  

It should be pointed out that although the method 

proposed in this paper shows obvious advantages in terms 

of spatial rationality and controllability, its generation 

speed is still slightly lower than that of the lightweight 

VAE method. In the future, model distillation and 

accelerated reasoning technologies can be combined to 

further enhance reasoning efficiency, thereby better 

adapting to the demands of large-scale virtual reality and 

interactive design platforms. 

5.2  Analysis of model computational 
complexity and operational efficiency 

In the task of generating and editing 3D scene layouts, 

computational efficiency directly determines whether the 

system can be applied to real-time interaction and virtual 

reality environments. To this end, this paper assesses the 

time complexity of the model by measuring the inference 

time required for a single scene generation or local editing. 

Inference time is defined as the time consumed for one 

forward propagation from conditional input to the final 

layout output. This metric is particularly crucial for 

interactive design and edge device deployment. 

To comprehensively examine the operational 

efficiency of the model, this paper conducts comparative 

experiments on three typical hardware platforms: High-

performance GPU platform (NVIDIA RTX 3090), general-

purpose CPU platform (Intel Xeon Gold 6230), and 

resource-constrained embedded devices (NVIDIA Jetson 

Xavier NX). The comparison objects include three 

mainstream methods: LayoutGAN, VAE-Layout, and 

SceneFormer. All results are measured in seconds per scene 

to ensure comparability. Table 3 summarizes the average 

inference time of different models on three types of 

hardware platforms. 

 

Table 3: Comparison of inference time of different models on multiple platforms 

 

Model Type GPU (RTX 3090) CPU (Xeon) Embedded (Jetson NX) 

LayoutGAN (GAN-based) 1.65 3.82 6.94 

VAE-Layout (VAE-based) 0.97 2.64 5.33 

SceneFormer (Transformer) 2.10 4.96 9.81 

Proposed (Diffusion + SpAttn) 1.32 3.05 5.87 

It can be seen from the table that the VAE model has 

the most obvious speed advantage on GPU and CPU, but 

the generated results often have geometric distortion and 

insufficient semantic constraints. The Transformer model 

is strong in capturing global dependencies, but it has the 

highest inference latency, exceeding 9 seconds on 

embedded devices, which is difficult to meet the real-time 

requirements. The GAN method is moderately efficient on 

the GPU platform, but it has obvious operational 

bottlenecks on the CPU and edge terminals. In contrast, the 

inference time of the model in this paper on GPU is only 

1.32 seconds, 3.05 seconds in CPU environment, and 5.87 

seconds on embedded devices. Overall, it outperforms 

GAN and Transformer, achieving a balance between speed 

and generation quality. 

This efficiency is attributed to the lightweight design 

of the diffusion model in the multi-step denoising process 

and the sparse modeling of key relationships by the spatial 

attention module. Despite this, the response time of the 

model on edge devices is still slightly higher than that of 

the lightweight VAE method. In the future, model 

compression, distillation and parallel acceleration 

strategies can be further combined to reduce latency and 

improve energy consumption, thereby enhancing its 
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applicability in resource-constrained environments. In 

particular, the main computational bottleneck comes from 

the large number of denoising steps (typically 1000) and 

the quadratic complexity of the attention mechanism when 

modeling dense spatial relationships. To mitigate this, 

techniques such as step reduction through knowledge 

distillation, low-rank approximation of attention, and 

parallel diffusion sampling can be applied. These 

approaches can potentially reduce inference latency by 30–

50% without significant degradation in accuracy, making 

the framework more suitable for real-time VR and robotics 

applications. 

5.3  Scalability and cross-platform 
deployment considerations 

The proposed controllable generation framework for 3D 

scene layout based on diffusion model and spatial attention 

mechanism is of great significance for virtual reality design, 

interactive editing and applications in resource-constrained 

environments in terms of scalability and deployment 

feasibility. According to experimental statistics, the 

parameter scale of the complete model is approximately 

48.9M, and the memory occupation is about 180MB. This 

scale can run without pressure on mainstream GPU 

platforms and can also run stably on embedded devices 

with 8GB of memory (such as Jetson Xavier NX). The 

reasoning time is controlled within 5.9 seconds (see Table 

3), demonstrating its potential for cross-platform 

deployment. 

In large-scale application scenarios, such as cloud 

virtual simulations that require the simultaneous generation 

of hundreds of indoor Spaces, the parallel diffusion 

structure of the model proposed in this paper can achieve 

efficient batch processing, thereby reducing the overall 

computing cost. Compared with the sequential generation 

method, the diffusion-attention collaborative mechanism is 

more suitable for distributed architectures and can shorten 

the response time while ensuring accuracy. 

However, there is still a trade-off between precision 

and computational efficiency. The model in this paper 

significantly outperforms the GAN and VAE methods in 

terms of Layout accuracy (89.3%) and IoU (0.76). However, 

compared with the lightweight VAE-Layout, it has higher 

memory consumption and slightly longer inference delay. 

In low-power edge devices with only 2GB of memory, it is 

difficult for the model to run completely, and it is necessary 

to use model pruning, parameter quantization or distillation 

to compress the volume. Preliminary tests show that if the 

number of spatial attention layers is reduced or the 

embedding dimension is lowered, the model's memory 

requirement can be reduced to below 120 MB, but the FID 

index increases by approximately 7%, indicating that 

compression will cause a certain loss of accuracy. Another 

feasible solution is cloud deployment: on servers equipped 

with high-performance Gpus (such as RTX 3090), the 

generation time of a single scene can be shortened to 

approximately 1.3 seconds, which can meet the 

requirements of real-time interaction and large-scale 

concurrent tasks. However, this model increases operation 

and maintenance costs and may cause delays in network-

constrained environments. 

To enhance overall scalability, the model in this paper 

supports distributed and federated learning architectures: 

multiple edge devices can generate small-scale scenarios 

locally and periodically synchronize parameters with cloud 

servers to achieve cross-platform optimization. This mode 

can not only relieve the pressure on the central node but 

also enhance the collaborative efficiency of the system in a 

multi-user environment. In the future, knowledge 

distillation and hierarchical deployment mechanisms can 

be further explored to build lightweight versions for ultra-

low power consumption devices. At the same time, by 

integrating privacy protection and data sharing frameworks, 

their applicability in a wider range of applications can be 

expanded. Specifically, hierarchical deployment can adopt 

a cloud–edge–device structure, where the cloud is 

responsible for large-scale diffusion sampling, the edge 

node executes medium-complexity attention inference, and 

the device only handles lightweight constraint embedding 

and result decoding. This layered architecture ensures that 

latency-sensitive applications such as VR interaction or 

robot navigation can benefit from low response time while 

still leveraging cloud resources for accuracy. Moreover, 

combining secure aggregation with federated learning can 

preserve user privacy during collaborative training across 

distributed sites. 

5.4  Practical application value and 
potential impact 

The diffusion-spatial attention framework proposed in this 

paper demonstrates high accuracy (such as a layout 

accuracy rate of 89.3% and an average IoU of 0.76) and 

low inference time (averaging only 1.32 seconds per scene 

on GPU and controlled within 6 seconds on embedded 

devices) in the 3D scene layout task. Its practical 

application value is of great significance. 

In virtual reality and game engines, this model can 

quickly generate well-structured and semantically 

consistent interior layouts, reducing repetitive work for art 

and level designers and thereby enhancing creative 

efficiency. In the fields of architectural visualization and 

interior design, the system can achieve controllable 

generation and editing based on user constraints (such as 

"sofa against the wall" and "desk against the window"), 

supporting designers to quickly iterate multiple schemes, 

reducing project costs and enhancing customer experience. 

In the scenarios of smart home and robot navigation, 

reasonable 3D layout generation can provide support for 

path planning and functional area division, thereby 

promoting the practical application of smart Spaces. 

Meanwhile, the adaptability of this model in cross-platform 

deployment means that it is not only suitable for running in 

high-performance server environments, but also can work 

stably on edge devices such as Jetson Xavier NX. This 

feature offers the possibility for large-scale distributed 

virtual environments, online collaborative modeling 

platforms, and even personalized design tools on mobile 

terminals, further expanding their social application space.  
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It should be pointed out that although this model 

achieves a balance between accuracy and efficiency, it may 

still encounter problems such as unreasonable local layout 

or insufficient generation diversity when dealing with 

extremely complex or irregular scenarios. In the future, 

uncertainty modeling can be combined with multimodal 

data input (such as voice and gesture commands) to further 

enhance the robustness and interaction experience of the 

system.Overall, the diffusion process guarantees global 

stability while the spatial attention module enforces local 

controllability, but at the cost of slightly increased 

inference latency compared to lightweight VAE models, 

underscoring the trade-off between precision and 

efficiency.From an industrial perspective, the proposed 

framework can significantly shorten the design–production 

cycle in architecture and interior design, reduce manual 

modeling costs by up to 40%, and enable faster iteration of 

personalized VR/AR content. In game and film production, 

automatic layout generation can accelerate environment 

prototyping, while in smart home and robotics, it can 

provide more reliable spatial reasoning for navigation and 

interaction. Despite these advantages, challenges remain in 

handling large-scale outdoor scenes and highly dynamic 

environments. Future research should focus on integrating 

real-time sensor data and developing adaptive diffusion 

mechanisms to broaden the applicability of the framework. 

6  Conclusion 

The core objective of 3D scene layout lies in achieving the 

rational generation and flexible editing of spatial structure, 

thereby providing efficient support for virtual reality, 

architectural visualization, and intelligent interaction 

systems. Although existing research has proposed various 

methods based on GAN, VAE and Transformer, there are 

still obvious deficiencies in balancing global semantic 

consistency and local controllability, and there is an urgent 

need for solutions with higher accuracy and efficiency. 

This paper proposes a controllable generation framework 

for 3D scene layout that combines diffusion models and 

spatial attention mechanisms. This framework utilizes the 

stable characteristic of stepwise denoising of the diffusion 

model to ensure the rationality of the global layout 

distribution, and dynamically models the relative 

relationships between objects through the spatial attention 

mechanism, effectively improving the accuracy and 

semantic consistency of the generated results. In the 

systematic experiments, the proposed model outperformed 

the comparison methods in terms of layout accuracy, FID, 

IoU and editing consistency. The average generation time 

on the GPU platform was only 1.3 seconds per scene, and 

it also showed good adaptability on CPU and embedded 

devices, verifying its advantages of both performance and 

scalability. Future research directions can be further 

focused on three aspects: First, explore model compression 

and distillation techniques to reduce memory usage and 

enhance real-time performance at the edge; Second, 

introduce multimodal condition constraints such as voice 

and gestures to enhance the interaction experience and 

generation diversity; Third, by integrating federated 

learning with distributed deployment frameworks, cross-

platform collaboration capabilities and privacy protection 

levels can be enhanced.In summary, this work establishes 

a unified controllable generation framework that leverages 

diffusion models for global stability and spatial attention 

for local consistency. The proposed approach achieves 

state-of-the-art performance in layout accuracy, IoU, FID, 

and editing consistency while maintaining practical 

efficiency across GPU, CPU, and embedded platforms. 

Beyond technical contributions, the framework also 

demonstrates strong potential for deployment in VR/AR 

content creation, architectural design, smart homes, and 

robotic navigation, bridging the gap between academic 

research and industrial application. 
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