https://doi.org/10.31449/inf.v49i14.11284

Informatica 49 (2025) 351-364 351

Conditioned Denoising Diffusion with Spatial Attention for Controllable
3D Scene Layout Generation and Editing

Kaiwen Zhu*, Houmin Wu, Bin Xiao

School of Information Engineering, Guangzhou Vocational College of Technology & Business, Guangzhou 511442,

Guangdong, China
E-mail: impgee31@163.com

Student paper

Keywords: Diffusion model, spatial attention mechanism, three-dimensional scene layout, controllable generation

Received: August 30, 2025

Efficient and controllable 3D scene layout generation and editing are of great significance to virtual reality,
architectural visualization, and intelligent interaction systems. They not only enhance the efficiency of
spatial design but also improve user experience. This paper proposes a generation framework that
combines the diffusion model with the spatial attention mechanism: The diffusion model approximates the
true distribution through a step-by-step denoising process, ensuring the stability and diversity of the global
layout; The spatial attention mechanism dynamically focuses on key areas in object relationship modeling,
thereby enhancing the accuracy and consistency of local editing. In the experimental section, the model
was systematically evaluated based on public datasets and a self-built scene library. Performance metrics
such as layout accuracy (89.3%), intersection over union (loU) (0.76), Fréchet Inception Distance (FID)
(31.2), and editing consistency score (0.84) were used for performance measurement. The results show that
this method maintains high precision while having good inference efficiency: The average generation time
per scene on the GPU platformis 1.3 s, and about 5.9 s on embedded devices, which is superior to baseline
methods. This framework demonstrates clear advantages in cross-platform deployment and multi-scenario
adaptability, providing a new technical path for the intelligent generation and industrial application of 3D
content. The evaluation was conducted on the 3D-FRONT and SUNCG datasets together with a 300-scene
supplementary dataset. Layout Accuracy was defined as correct placement within 0.20 m translation error
and 15 ° rotation error., loU was computed on 1283 voxel grids, FID was calculated from five rendered
views per scene using Inception-v3 features, and the Editing Consistency Score was defined as the ratio of
satisfied spatial constraints while preserving overall structural similarity.

Povzetek: Clanek predstavi pogojeni difuzijski model s prostorsko pozornostjo za nadzorovano generiranje
in urejanje 3D postavitev. Sistem omogoca hitro, stabilno in prilagodljivo vecplatformno generiranje

prizorov.

1 Introduction

With the rapid development of technologies such as virtual
reality (VR), augmented reality (AR), smart home and
human-computer interaction, the generation of 3D scene
layout has gradually become an important part of digital
content production and intelligent design [1]. Compared
with the traditional manual modeling method, the
automated layout generation can not only significantly
reduce labor costs, but also improve design efficiency and
space utilization. However, how to ensure the rationality of
the spatial structure, the accuracy of the geometric
relationship, and the controllability of the user's editing
operation simultaneously during the generation process
remains a prominent challenge faced by current research
[2].

Most of the existing methods are based on Generative
Adversarial Networks (GANSs), Variational Autoencoders
(VAEs), or Transformer architectures. These methods have
demonstrated certain generation capabilities in specific

scenarios, but they also have obvious shortcomings: GAN
methods are prone to pattern collapse and have difficulty
maintaining scene diversity; The VAE model is superior in
generation efficiency, but often sacrifices the authenticity
of details. The Transformer model can capture long-range
dependencies but performs poorly in terms of
computational complexity and inference latency [3]. More
crucially, the above-mentioned methods often lack refined
support when dealing with the controllable constraints
proposed by users (such as "bed against the wall" and "table
in the center"), resulting in layout results that are difficult
to meet the actual design requirements.

However, despite the progress of GAN-, VAE-, and
Transformer-based methods, none of these approaches can
simultaneously guarantee global layout stability and local
controllability under real-time constraints. GANs often
suffer from mode collapse and weak semantic consistency;
VAEs trade off geometric fidelity for speed; Transformers
achieve global coherence but incur high computational
latency. Diffusion models improve diversity but lack
explicit mechanisms for fine-grained spatial editing. This
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gap motivates the need for a unified framework that can
combine global stability with local controllability while
remaining computationally efficient.

In response to the above problems, this paper proposes
a controllable generation and editing framework for 3D
scene layout that combines diffusion models and spatial
attention mechanisms. The diffusion model, through a step-
by-step denoising generation process, can stably approach
the true distribution, thereby enhancing the rationality of
the global layout and the diversity of generation. The
spatial attention mechanism introduces dynamic weighting
in the modeling of inter-object relationships, highlighting
the constraint relationship between key furniture and space,
effectively enhancing the controllability and semantic
consistency of the generated results. The combination of
the two enables the model to not only have the ability to
model global distribution but also to respond flexibly to
local editing requirements.

The proposed framework provides substantial value
for applications such as virtual reality interaction,
architectural visualization, smart home systems, and robot
navigation. High-precision scene generation accelerates
creative design and engineering implementation while
supporting human-computer collaboration and immersive
interaction [4].

The structure of this article is arranged as follows:
Chapter Two reviews the relevant research work in the field
of 3D scene generation; Chapter Three elaborates on the
technical framework and key mechanisms of the proposed
method; Chapter Four presents the experimental data and
performance evaluation results; Chapter Five conducts an
in-depth discussion from aspects such as model comparison,
computational complexity, scalability, and practical
application value. Chapter Six summarizes and looks
forward to the entire text.

2 Related work

The generation and editing of 3D scene layout, as a core
link in virtual reality, architectural visualization and
intelligent interaction systems, has always been an
important research direction in computer vision and
graphics. However, this task still faces significant
challenges: Firstly, the relationships among objects in the
three-dimensional scene are complex and the spatial
semantic constraints are strong, which leads to the
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generation results being prone to overlap and conflict;
Secondly, users often need controllable local editing in
practical applications, but existing methods perform poorly
in terms of constraint response and fine-grained operations
[5].

In the early research stage, rule-based and probabilistic
graphical model-based methods were widely used, such as
Markov random fields and geometric constraint
optimization methods. They can ensure basic rationality in
small-scale scenarios, but have obvious limitations in
complex layouts and cross-scenario generalization. With
the development of deep learning, generative adversarial
networks (GAN) and variational autoencoders (VAE) have
gradually been introduced into 3D layout tasks. GAN has
an advantage in detail capture, but the training process is
prone to pattern crashes. VAE performs well in inference
speed, but often at the expense of geometric accuracy and
layout diversity [6].

In recent years, the Transformer architecture has
gradually become a research hotspot due to its global
dependency modeling capability. Its representative
methods can capture long-range relationships across
objects and demonstrate good semantic consistency in
large-scale scene generation. However, such models
usually have large parameter scales and long inference
times, which limits their application on edge devices [7].

The introduction of the diffusion model has brought a
new breakthrough to the generation of 3D scenes. Its
stepwise denoising generation process can stably approach
the true distribution, enhancing global rationality while
ensuring diversity. The Scene Diffusion proposed by Han
et al. can drive the generation of 3D scenes through text
conditions [8]; The iControl3D developed by Li et al. has
achieved controllable layout interaction [9]; The Attention
Warping proposed by Gomel and Wolf utilizes the attention
mechanism in the diffusion model to enhance the
consistency of 3D editing [10]. Meanwhile, the latest
review research also indicates that diffusion models have
gradually become the core framework in the field of 3D
generation and have demonstrated broad application
prospects in virtual reality and interaction design [4]. The
following table provides a quantitative comparison of
representative 3D scene layout generation methods,
including datasets, supervision type, evaluation metrics,
and reported results, which highlight their relative
strengths and limitations.

Table 1: Quantitative comparison of representative 3d scene layout generation methods

Method Representative - .
Type Work Dataset Supervision Metrics (Reported Results)
GAN-based LayoutGAN SUNCG Supervised LA: 78.5%, loU: 0.65, FID: 47.9
(baseline)
VAE-based VAE-Layout 3D-FRONT Supervised LA: 80.2%, loU: 0.63, FID: 44.6
(baseline)
Transformer Scenngrmer 3D-FRONT Supervised LA: 84.7%, loU: 0.70, FID: 36.8
(baseline)
Diffusion DiffuScene [1] 3D-FRONT Supervised LA: 86.5%, loU: 0.74, FID: 33.5




Conditioned Denoising Diffusion with Spatial Attention...

Informatica 49 (2025) 351-364 353

3D-
DiffInDScene [2] FRONT/SUNC Supervised LA: 87.2%, loU: 0.75, FID: 32.8
G
DORSal [5] Synthetic Weak sup. 1 Object placement accuracy, ECS 1
LAW-Diffusion [17] 3D-FRONT Supervised LA: 85.9%, loU: 0.72, FID: 34.0
Diffusion+ . SUNCG/3D- . ) ) )
Attn iControl3D [9] FRONT Supervised ECS: 0.82, IoU: 0.73, FID: 34.2
Attentl(E;O\gVarplng SUNCG Supervised Improved editing stability, ECS 1
Scene CommonScenes [6] SUNCG Supervised loU: 0.73, ECS: 0.80
Graph+Diff P o T
GraphDreamer [14] 3D-FRONT Supervised loU: 0.74, FID: 33.0
Graph . . .
Networks SceneHGN [15] 3D-FRONT Supervised Fine-grained geometry accuracy 1
Proposed e FRONT + . i 0 ) i )
(Ours) Diffusion + SpAttn SUNCG Supervised LA: 89.3%, loU: 0.76, FID: 31.2, ECS: 0.84

This article highlights several key areas that require
further research to enhance the performance of 3D scene
layout generation and editing.

Most of the existing methods rely on synthetic datasets
of limited scale, often focusing on single rooms or
standardized scenarios. This type of dataset lacks sufficient
complexity and diversity, making it difficult to cover the
multi-object combinations and irregular layouts that occur
in real environments, thereby limiting the generalization
ability of the model.

Many models rely solely on a single architecture
during feature processing, such as directly inputting the
extracted geometric or semantic features into the fully
connected layer, lacking in-depth optimization for spatial
relationships and local editing consistency. Some studies
have introduced the attention mechanism, but most of them
are limited to a single dimension, either emphasizing
spatial structure or highlighting semantic constraints, and
have not yet formed a comprehensive modeling of the
unique global-local coupling characteristics of three-
dimensional scenes.

The current experimental evaluations are mostly
focused on single-platform or offline scenarios, lacking
systematic verification of cross-platform deployment and
real-time interaction scenarios. This makes the model still
uncertain in practical applications such as virtual reality,
smart home or robot navigation.

Filling these gaps is of great significance for
promoting the development of intelligent generation of 3D
content, enhancing the accuracy, controllability and
scalability of layout results. To guide the research of this
paper, we reformulate the following research questions into
testable hypotheses:

Hypothesis H1: The proposed diffusion—spatial
attention framework achieves significantly higher accuracy
(Layout Accuracy and loU) and controllability (Editing
Consistency Score) than traditional single deep learning
methods such as GAN, VAE, and Transformer baselines.

Hypothesis H2: Integrating spatial attention into the
reverse steps of the diffusion process improves both global
structural consistency and local editing flexibility
compared with diffusion-only or attention-only variants.

The main contributions of this paper can be
summarized as follows:

A unified controllable generation framework that
integrates diffusion models with spatial attention, ensuring
both global stability and local controllability in 3D scene
layout.

A spatial attention—guided feature optimization
mechanism that dynamically models key object
relationships, enhancing geometric rationality and
semantic consistency.

Extensive experiments on public and self-built datasets,
demonstrating superior performance in layout accuracy,
loU, FID, and editing consistency, as well as strong cross-
platform adaptability.

3 Methodology

3.1 Design of 3D scene layout generation
framework

In the current task of automatically generating 3D scenes,
there are generally two types of problems: First, the
rationality of the layout is insufficient, which is prone to
defects such as overlapping objects, uncoordinated scale
proportions, and missing spatial semantic relationships;
Second, there is a lack of flexible response to user demands,
making it difficult to achieve interactive and controllable
layout generation. In response to these limitations, this
study designs a three-dimensional scene layout generation
framework based on diffusion models and spatial attention
mechanisms, striving to balance diversity, rationality and
controllability during the generation process.

The overall structure of the framework adopts a multi-
level path design of "conditional input - diffusion
generation - spatial attention - result output”. Firstly,
introduce scene condition constraints at the input end,
which can be user-preset room floor plans, object category
lists, or some existing layout information, as the prior
control signals for the generation process. Subsequently,
the diffusion model gradually transforms high-dimensional
random noise into a three-dimensional scene layout that
conforms to semantic and spatial constraints through step-
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by-step denoising. Compared with traditional generative
models, diffusion models have higher stability and
interpretability when dealing with complex distributions
and can effectively avoid the phenomenon of pattern
collapse.

To further strengthen the spatial dependency
relationship between objects in the layout, this framework
introduces a spatial attention module at the key stage of the
diffusion process. This module highlights the interaction
between functional areas and key objects in the room
through a dynamic weight distribution mechanism. For
instance, in the living room scene, it emphasizes the
relative positions of the sofa and coffee table, while in the
bedroom scene, it highlights the placement relationship
between the bed and the wardrobe. Spatial attention not
only ensures the geometric rationality of the layout but also
enhances the semantic consistency of the global scene.
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At the result output end, the framework offers two
generation modes: one is the global generation mode,
which is suitable for building a complete scene from
scratch; Another type is the local editing mode, which
allows for additions, deletions, and modifications to the
existing layout, such as replacing furniture, adjusting
angles, or rearranging objects. The two modes share the
underlying diffusion and attention mechanisms, thereby
achieving the unification of scene generation and editing in
the same system.

The overall information flow of the framework is
shown in Figure 1: The condition input is normalized and
semantically parsed through the preprocessing module,
then enters the diffusion generation channel to complete the
initial layout, and then the spatial attention module
performs spatial dependency optimization. Finally, a three-
dimensional scene result that meets the controllability
requirements is output.

Condition input (floor plan/Object
category/partial layout)

Preprocessing and feature analysis
module

Diftusion generation process
(stepwise denoising)

Output a controllable 3D scene
layout

Global generation mode (complete
layout)

A

Partial editing mode (Add, Delete,
modify)

Spatial attention mechanism
(Relational Modeling)

Figure 1: Schematic diagram of the 3D scene layout generation framework

3.2 Controllable generation mechanism of
diffusion model

The diffusion model is essentially a generation framework
based on stepwise denoising. It achieves the generation
from random noise to the target sample by simulating the
"forward diffusion" process from the data distribution to
the Gaussian noise distribution and the corresponding
"reverse denoising" process. In 3D scene layout tasks, this
mechanism is particularly suitable for modeling complex
and diverse spatial distributions, as there are highly
nonlinear correlations among object categories, positions,
orientations, etc. in the scene, and traditional generative
models often find it difficult to capture them stably.

In the forward process, the real layout sample Xo is

gradually added with noise, resulting in a series of
intermediate states STRSIRERS &
can be expressed as:

q(xtl Xt-l): N(\/l-BtXt-I’BtI) (1)
PoXd Xp ©) =N py(X,tC)otl) (2

Its evolution process

Here, Bt represents the noise intensity at step t. After

a sufficient number of iterations, Xy approximately
follows the standard Gaussian distribution.

During the reverse generation process, the model
learns a conditional probability distribution of

Po (thl X"C) , where c represents the control signal. The
source of control signals can be user-preset scene

constraints (such as room structure, object category list),
semantic labels, or existing partial layouts. By introducing
conditional variables, the diffusion model can not only
generate diverse three-dimensional layouts but also ensure
that the results meet the expected semantic and geometric
constraints. Its core objective function is:

L=, [le-<, (R LOF]

Among them, € is the real noise, and €0 is the model
prediction noise. The loss function drives the parameter
update by minimizing the difference between the two. To
enhance controllability, this study introduces Condition
Embedding at each stage of reverse denoising, mapping
external constraint signals into the latent space and fusing
them with noise features. In this way, different condition
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inputs can directly affect the generated trajectory. For
instance, when the user specifies the constraint of "the desk
is close to the window", the model will assign a higher
weight to the relevant spatial relationship during the
generation process, thereby presenting a reasonable local
layout in the final result. At the same time, for 3D scene
editing tasks, diffusion models have inherent flexibility. By
re-adding noise to some areas of the existing scene and then
performing denoising generation under certain constraints,
local addition, deletion and modification operations can be
achieved without completely rebuilding the scene. This
"conditional diffusion - local sampling" mode ensures the
coherence of editing and the overall consistency of the
scene.

3.3 Introduction and optimization of spatial
attention mechanism

In the process of generating 3D scene layout, there are not
only semantic associations among objects, but also strict
geometric constraints and spatial dependencies. For
instance, beds are usually placed against the wall, there is
a fixed functional distance between sofas and coffee tables,
and desks are often close to Windows. If these spatial
relationships are not effectively modeled, the generated
results are prone to unreasonable placement, weakening the
realism and practicality of the scene. Therefore, relying
solely on the gradual denoising of the diffusion process is
difficult to ensure the spatial consistency of the layout. It is
necessary to introduce a spatial attention mechanism into
the model.

The core idea of the spatial attention mechanism is to
dynamically highlight the features of key areas and related
objects in the scene through a weighting strategy, thereby
achieving a balanced modeling of the relationship between
the local and the global. In mathematical expression, the

. Nxd

input feature can be represented as FER , Where N
represents the number of objects or spatial units in the
scene and d represents the feature dimension. By
calculating three sets of vectors: query (Q), key (K), and
value (V), the attention distribution can be obtained:

QKT
\/_

In this study, Q,K and V are respectively obtalned by
object position encoding, category embedding and
geometric feature mapping, enabling the attention
mechanism to simultaneously capture the dual constraints
of semantics and space. For instance, in a living room
scenario, the position encoding of the sofa will generate a
high-weight match with the geometric features of the
coffee table, thereby guiding the generation result to
maintain a reasonable relative distance.

To further enhance the model's efficiency and
generalization, this study designed two optimizations in the
spatial attention mechanism:

(1) Local-global combination strategy. Within a local
range, the attention module focuses on modeling the
interaction between adjacent objects to ensure a reasonable
microscopic arrangement. At the global level, the overall

Attention( Q, K, V) = Softmax(
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semantic consistency of core functional areas (such as
bedrooms and living rooms) is strengthened through a
sparse attention matrix.

(2) Multi-scale spatial embedding. For spatial
relationships at different scales, fine-grained (object level)
and coarse-grained (region level) feature maps are
respectively constructed, and the two are integrated
through a multi-scale fusion layer, thereby achieving
unified modeling from individual furniture to the entire
room.

Meanwhile, the spatial attention module does not exist
in isolation but is embedded in the reverse generation step
of the diffusion model. At each step of the denoising
process, the model dynamically adjusts the attention
distribution based on the conditional signals and the current
scene state to ensure that the layout generation is consistent
with the user's requirements. This iterative embedding
approach enables spatial constraints to remain in effect
throughout the entire generated trajectory, rather than being
corrected only at the result stage.

3.4 Model training process and
hyperparameter settings

To ensure that the generation of 3D scene layout achieves
the expected results in terms of spatial rationality and
controllable editability, this study has constructed a
systematic training mechanism and parameter optimization
strategy based on the diffusion model and the spatial
attention module. The training process covers data input,
diffusion generation, spatial relationship modeling, and
result decoding, ensuring that the model has stable
generation capabilities in various scenarios.

The system structure mainly consists of four parts:
diffusion generation path, conditional embedding fusion,
spatial attention optimization and layout decoder. The
diffusion path is set with a step-by-step denoising step
number of 1000. In each round of iteration, the scene layout
is reconstructed under the combined effect of the
conditional signal and the attention mechanism.
Conditional embedding is used to introduce user-set
geometric constraints and semantic priors, while the spatial
attention module dynamically adjusts the spatial weights
between objects to strengthen the relative positional
relationships of key objects such as furniture, walls, and
doors and Windows.

In terms of the training mechanism, the loss function
adopts a weighted combination form, consisting of two
parts: the noise prediction error and the scene relationship
constraint error. This not only ensures the denoising
accuracy of the diffusion model but also maintains the
consistency of spatial semantics. The optimizer selects
AdamW, with the initial learning rate set to 0.0005. The
momentum parameters B1=0.9, 2=0.999, are dynamically
adjusted in combination with the cosine annealing
scheduling strategy. The Early Stopping mechanism is
introduced during training, tolerating 15 rounds and a
maximum of 200 training rounds to effectively prevent
overfitting. The selection of hyperparameters is
accomplished through grid search. The diffusion steps were
compared among the three groups of 500, 750, and 1000.
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The conditional embedding dimensions were set to 128,
256, and 512 respectively. The spatial attention module
attempted single-layer and double-layer structures, and the
batch sizes were set to 8, 16, and 24. The experimental
results show that when the diffusion steps are set to 1000,
the embedding dimension is 256, and a double-layer spatial
attention structure is adopted, the model achieves the best

balance between layout rationality and generation diversity.

To further enhance the generalization ability, a five-fold
cross-validation was adopted during the training process.
Comprehensively evaluate the Fréchet Inception Distance
(FID) (FID), Layout Accuracy (Layout Accuracy), loU
(Intersection over Union), and editing consistency
indicators. By combining round-by-round error screening
and stability optimization, unreasonable samples are
eliminated and high-confidence features are strengthened,
enabling the model to maintain stable performance in
various scenarios such as bedrooms, living rooms, and
office Spaces.

Algorithm 1. Training pipeline for controllable 3D
scene layout generation

1: Input dataset D with scene graphs and voxel grids

2: Initialize diffusion model parameters 6

3: for each epoch do

4:  Sample mini-batch from D

5. Add noise to obtain x_t according to Eq. (1)

6: Embed conditions (layout constraints) into latent
space

7:  Apply spatial attention module to refine Q, K, V
(Ea. (3))

8: Predict noise € 0 and compute loss Z (Eq. (2))

9: Update 6 using AdamW optimizer

10: end for

The architecture consists of 12 denoising layers with

residual connections, each coupled with a two-layer spatial
attention block. Conditional embeddings of dimension 256
are fused at every step. Dataset splits follow an 8:1:1
train/validation/test ratio. Metrics are defined in Section
4.3, and code will be made available upon acceptance.

4 Experiments and results

This paper presents the experimental results of 3D scene
layout generation and controllable editing. The
experiments are designed to test the two hypotheses
formulated in Section 2. Specifically, ablation studies on
conditional control and spatial attention directly evaluate
H2, while the comparative experiments with GAN, VAE,
and Transformer baselines evaluate H1. We adopted a
multi-source three-dimensional dataset including furniture
categories, room structures and spatial relationships to
conduct a comprehensive evaluation of the proposed
diffusion generation framework and spatial attention
mechanism. The contribution of different modules was
verified through ablation experiments, and a comparison
was made with mainstream methods in the discussion
section to reveal the advantages of the method proposed in
this paper in terms of spatial rationality, controllability and
cross-scenario adaptability.
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4.1 Dataset and scene sample construction

This study mainly used two public indoor layout datasets,
3D-FRONT and SUNCG, and constructed a small-scale
supplementary sample set in combination with actual
design cases.

The 3D-Front dataset contains over 20,000 indoor 3D
scenes, covering various functional Spaces such as
bedrooms, living rooms, studies, and dining rooms. This
dataset provides complete information on room geometry
and furniture examples. Each object is labeled with
category, three-dimensional position, rotation Angle and
size parameters, which can support the modeling of spatial
dependency relationships. The SUNCG dataset includes
approximately 40,000 synthetic indoor scenes, with diverse
sources and significant differences in layout styles. Its
characteristic lies in the inclusion of a large number of user-
modeled variants, which can better reflect different design
preferences and scene complexities, and is valuable for
testing the generalization ability of the model. The
supplementary sample set consists of 300 interior design
schemes for actual residential and office Spaces. The data
is uniformly preprocessed and transformed into a structured
representation based on scene graphs, which is used to test
the performance of the model in real applications.

It should be pointed out that although the above-
mentioned dataset covers multiple types of Spaces, it still
has limitations. The scenes of 3D-FRONT are mostly
designed in a regular way, and some samples have idealized
processing in terms of materials and geometric details.
SUNCG contains a certain proportion of user-generated
data, which varies in quality and may result in semantic
inconsistencies or distorted furniture proportions. The scale
of the supplementary sample set is limited and it is difficult
to fully cover the diversity of large-scale actual scenarios.
Despite this, these datasets still possess high spatial
resolution and rich object annotation information, making
them an ideal choice for developing and verifying 3D scene
generation models. All experiments were conducted on a
workstation equipped with an NVIDIA RTX 3090 GPU (24
GB memory), Intel Xeon Gold 6230 CPU, and 256 GB
RAM, running Ubuntu 20.04 with CUDA 12.1 and
PyTorch 2.1. Each model was trained for up to 200 epochs
with early stopping after 15 non-improving epochs, and
random seeds were fixed across all runs to ensure
reproducibility. On the 3D-FRONT dataset, training took
approximately 46 hours, while on SUNCG it required about
58 hours with batch size 16. Average inference speed was
measured over 500 test scenes. Baseline models
(LayoutGAN, VAE-Layout, SceneFormer) were re-trained
under the same environment with their officially released
code, and hyperparameters were tuned via grid search to
ensure fairness. Dataset splits followed an 8:1:1 ratio for
training, validation, and test sets.

4.2 Data preprocessing and feature
representation

To enhance the stability and effectiveness of 3D scene data
during the model training process, this study has
constructed a systematic preprocessing and feature
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expression process for multi-source indoor layout samples
to increase the convergence speed of the model, improve
the accuracy of spatial relationship modeling, and reduce
the risk of overfitting caused by data differences.

In terms of geometric preprocessing, all scenes are
unified to the standard coordinate system, and the room
side lengths are scaled to the [0,1] interval through scale
normalization to ensure the comparability of samples from
different sources at the spatial scale. To reduce unnecessary
noise, low-frequency and redundant objects (such as small
decorative pieces) have been eliminated, and only objects
that have a decisive impact on the space function, such as
beds, sofas, tables and chairs, and cabinets, are retained.
For partially missing object labels (accounting for
approximately 1.5%), a proximity constraint interpolation
strategy is adopted, and corrections are made based on
typical positions in similar scenes to ensure the integrity of
the scene relationship graph.

In terms of feature expression, a dual feature system
was constructed: the first one is voxelization representation,
which discretizes the three-dimensional space into a fixed-
resolution voxel mesh to support the generation process of
stepwise denoising of the diffusion model; The second is
the scene representation based on graph structure, taking
each furniture instance as a node. The node features include
category, three-dimensional position and size information,
while the edge features describe the relative distance and
orientation between objects. Numerical features are
normalized from minimum to maximum, and categorical
features are encoded with single heat, thereby ensuring that
different modal features maintain numerical stability and
trainability during fusion.

In terms of data partitioning, the principle of "scene
independence" is followed. The training set, validation set
and test set are divided in an 8:1:1 ratio to ensure that the
test set includes unseen combinations of house types and
furniture matching methods. The training set maintains
balanced coverage in spatial functional categories (such as
bedrooms, living rooms, studies, office areas, etc.) to
prevent the model from overfitting a single spatial type.
The validation set is used to adjust hyperparameters, while
the test set is used for the final performance evaluation to
ensure the reliability and generalization performance of the
generated results.

4.3 Evaluation indicators and performance
metrics

To comprehensively evaluate the performance of 3D scene
layout generation and controllable editing, this study
adopts four indicators: FID, layout accuracy, intersection
and union ratio, and Editing Consistency Score (ECS).
These indicators cover the perceptual quality, geometric
rationality and controllable editing effect of the generated
scene, and can reflect the overall performance of the model
from different perspectives.

First, FID, as a commonly used quality assessment
index in the field of image generation, has been introduced
into the distribution comparison of 3D layout rendering
results. It reflects the authenticity and diversity of the
generated scene by measuring the distribution differences
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between the generated samples and the real samples in the
feature space. A lower FID value indicates that the
generated layout is closer to the true distribution in overall
perception, but it is insensitive to a small amount of
geometric error and needs to be used in combination with
other metrics. The Fréchet Inception Distance (FID) is
formally defined as:

FID=llw, -p, I +Tr(zr+zg-2(zrzg)g) (5)

where p,Xr, and pg,Xg,denote the mean and covariance
of real and generated sample distributions.

Second, layout accuracy (LA) is used to measure the
degree of match between the generated results and the
actual annotations in terms of object categories and
positions. The calculation method is the ratio of the number
of correctly placed objects in the generated scene to the
total number of target objects:

N correct

total (6)

LA=

Among them, correct represents the number of

objects with correct categories and positions, and Nmta'
represents the total number of target objects. This indicator
can visually reflect the rationality of the scene at the
geometric and semantic levels.

Thirdly, loU is used to measure the degree of overlap
between the generated object and the real object in three-
dimensional space

Vpred nV gt
VpredUV gt

loU=
(7)

Among them, Vp’ed and 9 respectively represent
the voxel volumes of the predicted object and the real
object. loU is extremely sensitive to the scale and relative
positions of objects in the layout, and thus is suitable for
detecting the geometric accuracy of models at the fine-
grained level. Finally, the Editing Consistency Score (ECS)
is used to evaluate the coherence of local editing tasks. It
measures whether the overall geometric structure and
semantic function of the scene remain consistent after the
operations of adding, deleting and modifying. The higher
the ECS value, the more it indicates that the model can
maintain the stability of the global layout while responding
to local constraints. Formally, the Editing Consistency
Score (ECS) is defined as the ratio of satisfied spatial
constraints to the total number of applied constraints:

ECS = Nconstrain _ts satisfied -
Nconstrain ts total

4.4 Ablation experiment and analysis of key
factors

To verify the independent contribution and synergy of each
module in the 3D scene layout generation framework
proposed in this paper, a systematic ablation experiment
was designed and implemented. Meanwhile, the proposed
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method is compared horizontally with mainstream 3D
generation models to comprehensively evaluate the
accuracy, stability and controllable editing ability of the
proposed model.

In the ablation experiment section, the main focus was
on the stripping test of the diffusion generation mechanism
and the role of the spatial attention module, and the
following model variants were constructed: (1) Basic
model: Only the diffusion model was adopted, without
introducing spatial attention and conditional constraints;
(2 Diffusion + conditional control model: Conditional
embedding is added to the basic model, but the spatial
attention mechanism is not used; (3) Diffusion + Spatial
Attention model: Introduce the spatial attention mechanism
into the basic model, but do not perform conditional control;
(4) Complete model: It simultaneously incorporates
diffusion generation, conditional control, and spatial
attention mechanisms.

Full Model 4

Diffusion + Spatial Attention ,

Diffusion + Conditional Control ,

Baseline Model ,

HMECS mloU
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The experimental results show that the layout accuracy
(LA) of the basic model on the test set is only 74.2%, and
the FID is 48.7. There are obvious phenomena of object
overlap and unreasonable layout. After adding conditional
control, the accuracy rate increased to 81.6% and the FID
decreased to 39.4, indicating that the conditional signal can
effectively guide the global layout. After further
introducing the spatial attention mechanism, the accuracy
rate reached 85.8%, the average loU increased from 0.62 to
0.71, and the relative position relationship of objects in the
scene was significantly optimized. The complete model
performed the best, with an accuracy rate of 89.3%, the FID
dropped to 31.2, the average loU increased to 0.76, and
achieved an edit consistency score (ECS) of 0.84 in the
local editing experiment, proving that the combination of
the three can achieve the unity of spatial rationality and
user controllability.

100

FID ' M Layout Accuracy (%)

Figure 2: Ablation study of different model variants on the 3D-FRONT test set. Metrics reported include Layout
Accuracy, loU, and FID. The results demonstrate the contribution of conditional embedding, diffusion process, and spatial
attention module

In the horizontal comparison experiment, the
performance of the method proposed in this paper was
compared with three mainstream models: GAN-based
LayoutNet, VAE-Layout, and Transformer-SceneGen. The
results show that the traditional generative adversarial
network method performs averagely in terms of diversity,
with the FID value remaining above 45. The VAE model
has a fast generation speed, but geometric distortion often
occurs in the scene, with an loU of only 0.63. The

Transformer-based method has an advantage in capturing
global dependencies, with an accuracy rate of 84.7%, but
its reasoning speed is relatively slow, with an average
generation time of 2.1 seconds per scene. In contrast, the
model proposed in this paper achieved the best
performance in terms of accuracy (89.3%), FID (31.2), and
generation speed (1.3 seconds per scene), verifying the
balanced advantage of the proposed method between
performance and efficiency.
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Figure 3: Comparison of our proposed Diffusion+SAM model against LayoutGAN, VAE-Layout, and SceneFormer on the
3D-FRONT dataset. Reported metrics include Layout Accuracy, FID, loU, and generation speed

In conclusion, through modular ablation and horizontal
comparison experiments, it can be found that conditional
control can significantly enhance the global semantic
rationality, the spatial attention mechanism effectively
optimizes the relative positions between objects, and the
diffusion process ensures the diversity and stability of the
overall generation. Under the synergistic effect of the three,
the complete model proposed in this paper has achieved
superior performance compared to mainstream methods in
terms of generation quality, controllable editability and
cross-scenario stability, and has strong application value
and promotion potential.

5 Discussion

5.1 Comparison with existing 3D scene
generation methods

To evaluate the application potential of the diffusion-
attention framework proposed in this paper in the

generation of 3D scene layout, three representative
mainstream methods were selected for comparison: Models
based on Generative adversarial networks (GAN) (such as
LayoutGAN), models based on variational autoencoders
(VAE) (such as VAE-Layout), and 3D generation methods
based on Transformer that have emerged in recent years
(such as SceneFormer).Compared with GAN-based
methods, our framework avoids mode collapse through the
progressive denoising process of diffusion models. Unlike
VAE-based approaches that often trade accuracy for speed,
our method preserves fine-grained geometry while
maintaining  efficient inference. Compared  with
Transformer-based models, which have high computational
overhead due to global attention, our framework achieves
a better balance of accuracy and latency by combining
diffusion with sparse spatial attention. However, we also
note that the diffusion process requires longer training time,
and model compression or distillation will be necessary for
lightweight deployment. The comparison dimensions cover
layout rationality, geometric accuracy, controllability and
generation efficiency. The relevant performance data are
shown in Table 2.

Table 2: Performance comparison of GAN-based, VAE-based, Transformer-based, and our proposed Diffusion+SAM
model on the 3D-FRONT dataset. Metrics include Layout Accuracy (%), Fréchet Inception Distance (FID), Intersection
over Union (loU), and average generation time per scene (s).

Model Type Layout Accuracy (%) FID | loU Avg. G(Z?:Cr:;gn Time
GAN-based (LayoutGAN) 78.5 47.9 0.65 1.8
VAE-based (VAE-Layout) 80.2 44.6 0.63 1.1
Transformer (SceneFormer) 84.7 36.8 0.70 2.1
Ours (Diffusion + SpAttn) 89.3 31.2 0.76 1.3

From the perspective of generation accuracy and
spatial rationality, GAN and VAE methods have limitations
in overall distribution learning, and problems such as
object overlap and proportion imbalance often occur. The
Transformer method performs well in capturing global
dependencies, but it still lacks detailed characterization of
local geometric relationships. In contrast, the method

proposed in this paper ensures the stability of the global
distribution through the diffusion process and combines the
spatial attention mechanism to dynamically model the
relationships between objects, thereby increasing the
layout accuracy to 89.3% and achieving an loU of 0.76,
which is significantly better than the comparison
methods.Compared with LayoutGAN (78.5%) and VAE-
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Layout (80.2%), our model achieves a relative
improvement of +13.8% and +11.4% in Layout Accuracy,
respectively. For loU, the gain is +16.9% over GAN-based
and +20.6% over VAE-based methods. The reduction in
FID from 47.9 (GAN) and 44.6 (VAE) to 31.2 corresponds
to a relative improvement of approximately 34.9% and
30.1%, respectively.

In terms of generation efficiency, the VAE model has
a relatively fast reasoning speed, but the geometric
authenticity of the scene is insufficient. The Transformer
model has a relatively high accuracy rate, but its average
generation time is 2.1 seconds, which is difficult to meet
the requirements of some real-time application scenarios.
The model in this paper achieves a good balance between
accuracy and speed, with an average generation time of
approximately 1.3 seconds per scene, making it suitable for
deployment in interactive applications.

In terms of controllability, most GAN and VAE
methods rely on implicit variable regulation and lack
explicit conditional constraints, making it difficult for users
to directly specify the object category or relative position.
The Transformer method has been improved in conditional
guidance, but the control granularity is limited. The model
in this paper, through the joint guidance of conditional
embedding and spatial attention mechanism, supports users
to flexibly intervene in the way of "furniture category +
spatial constraint”, and can maintain the semantic
consistency and stability of the overall layout.

To assess stability, we repeated each experiment five
times with different random seeds. The standard deviation
of Layout Accuracy across runs was within +0.7%, loU
within +0.5%, and FID within +1.2, indicating that the
improvements are statistically robust.

It should be pointed out that although the method
proposed in this paper shows obvious advantages in terms
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of spatial rationality and controllability, its generation
speed is still slightly lower than that of the lightweight
VAE method. In the future, model distillation and
accelerated reasoning technologies can be combined to
further enhance reasoning efficiency, thereby better
adapting to the demands of large-scale virtual reality and
interactive design platforms.

5.2 Analysis of model computational
complexity and operational efficiency

In the task of generating and editing 3D scene layouts,
computational efficiency directly determines whether the
system can be applied to real-time interaction and virtual
reality environments. To this end, this paper assesses the
time complexity of the model by measuring the inference
time required for a single scene generation or local editing.
Inference time is defined as the time consumed for one
forward propagation from conditional input to the final
layout output. This metric is particularly crucial for
interactive design and edge device deployment.

To comprehensively examine the operational
efficiency of the model, this paper conducts comparative
experiments on three typical hardware platforms: High-
performance GPU platform (NVIDIA RTX 3090), general-
purpose CPU platform (Intel Xeon Gold 6230), and
resource-constrained embedded devices (NVIDIA Jetson
Xavier NX). The comparison objects include three
mainstream methods: LayoutGAN, VAE-Layout, and
SceneFormer. All results are measured in seconds per scene
to ensure comparability. Table 3 summarizes the average
inference time of different models on three types of
hardware platforms.

Table 3: Comparison of inference time of different models on multiple platforms

Model Type GPU (RTX 3090) CPU (Xeon) Embedded (Jetson NX)
LayoutGAN (GAN-based) 1.65 3.82 6.94
VAE-Layout (VAE-based) 0.97 2.64 5.33
SceneFormer (Transformer) 2.10 4.96 9.81

Proposed (Diffusion + SpAttn) 1.32 3.05 5.87

It can be seen from the table that the VAE model has
the most obvious speed advantage on GPU and CPU, but
the generated results often have geometric distortion and
insufficient semantic constraints. The Transformer model
is strong in capturing global dependencies, but it has the
highest inference latency, exceeding 9 seconds on
embedded devices, which is difficult to meet the real-time
requirements. The GAN method is moderately efficient on
the GPU platform, but it has obvious operational
bottlenecks on the CPU and edge terminals. In contrast, the
inference time of the model in this paper on GPU is only
1.32 seconds, 3.05 seconds in CPU environment, and 5.87

seconds on embedded devices. Overall, it outperforms
GAN and Transformer, achieving a balance between speed
and generation quality.

This efficiency is attributed to the lightweight design
of the diffusion model in the multi-step denoising process
and the sparse modeling of key relationships by the spatial
attention module. Despite this, the response time of the
model on edge devices is still slightly higher than that of
the lightweight VAE method. In the future, model
compression, distillation and parallel acceleration
strategies can be further combined to reduce latency and
improve energy consumption, thereby enhancing its
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applicability in resource-constrained environments. In
particular, the main computational bottleneck comes from
the large number of denoising steps (typically 1000) and
the quadratic complexity of the attention mechanism when
modeling dense spatial relationships. To mitigate this,
techniques such as step reduction through knowledge
distillation, low-rank approximation of attention, and
parallel diffusion sampling can be applied. These
approaches can potentially reduce inference latency by 30—
50% without significant degradation in accuracy, making
the framework more suitable for real-time VR and robotics
applications.

5.3 Scalability and cross-platform
deployment considerations

The proposed controllable generation framework for 3D
scene layout based on diffusion model and spatial attention
mechanism is of great significance for virtual reality design,
interactive editing and applications in resource-constrained
environments in terms of scalability and deployment
feasibility. According to experimental statistics, the
parameter scale of the complete model is approximately
48.9M, and the memory occupation is about 180MB. This
scale can run without pressure on mainstream GPU
platforms and can also run stably on embedded devices
with 8GB of memory (such as Jetson Xavier NX). The
reasoning time is controlled within 5.9 seconds (see Table
3), demonstrating its potential for cross-platform
deployment.

In large-scale application scenarios, such as cloud
virtual simulations that require the simultaneous generation
of hundreds of indoor Spaces, the parallel diffusion
structure of the model proposed in this paper can achieve
efficient batch processing, thereby reducing the overall
computing cost. Compared with the sequential generation
method, the diffusion-attention collaborative mechanism is
more suitable for distributed architectures and can shorten
the response time while ensuring accuracy.

However, there is still a trade-off between precision
and computational efficiency. The model in this paper
significantly outperforms the GAN and VAE methods in
terms of Layout accuracy (89.3%) and loU (0.76). However,
compared with the lightweight VAE-Layout, it has higher
memory consumption and slightly longer inference delay.
In low-power edge devices with only 2GB of memory, it is
difficult for the model to run completely, and it is necessary
to use model pruning, parameter quantization or distillation
to compress the volume. Preliminary tests show that if the
number of spatial attention layers is reduced or the
embedding dimension is lowered, the model's memory
requirement can be reduced to below 120 MB, but the FID
index increases by approximately 7%, indicating that
compression will cause a certain loss of accuracy. Another
feasible solution is cloud deployment: on servers equipped
with high-performance Gpus (such as RTX 3090), the
generation time of a single scene can be shortened to
approximately 1.3 seconds, which can meet the
requirements of real-time interaction and large-scale
concurrent tasks. However, this model increases operation
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and maintenance costs and may cause delays in network-
constrained environments.

To enhance overall scalability, the model in this paper
supports distributed and federated learning architectures:
multiple edge devices can generate small-scale scenarios
locally and periodically synchronize parameters with cloud
servers to achieve cross-platform optimization. This mode
can not only relieve the pressure on the central node but
also enhance the collaborative efficiency of the system in a
multi-user environment. In the future, knowledge
distillation and hierarchical deployment mechanisms can
be further explored to build lightweight versions for ultra-
low power consumption devices. At the same time, by
integrating privacy protection and data sharing frameworks,
their applicability in a wider range of applications can be
expanded. Specifically, hierarchical deployment can adopt
a cloud—edge—device structure, where the cloud is
responsible for large-scale diffusion sampling, the edge
node executes medium-complexity attention inference, and
the device only handles lightweight constraint embedding
and result decoding. This layered architecture ensures that
latency-sensitive applications such as VR interaction or
robot navigation can benefit from low response time while
still leveraging cloud resources for accuracy. Moreover,
combining secure aggregation with federated learning can
preserve user privacy during collaborative training across
distributed sites.

5.4 Practical application value and
potential impact

The diffusion-spatial attention framework proposed in this
paper demonstrates high accuracy (such as a layout
accuracy rate of 89.3% and an average loU of 0.76) and
low inference time (averaging only 1.32 seconds per scene
on GPU and controlled within 6 seconds on embedded
devices) in the 3D scene layout task. Its practical
application value is of great significance.

In virtual reality and game engines, this model can
quickly generate well-structured and semantically
consistent interior layouts, reducing repetitive work for art
and level designers and thereby enhancing creative
efficiency. In the fields of architectural visualization and
interior design, the system can achieve controllable
generation and editing based on user constraints (such as
"sofa against the wall" and "desk against the window"),
supporting designers to quickly iterate multiple schemes,
reducing project costs and enhancing customer experience.
In the scenarios of smart home and robot navigation,
reasonable 3D layout generation can provide support for
path planning and functional area division, thereby
promoting the practical application of smart Spaces.
Meanwhile, the adaptability of this model in cross-platform
deployment means that it is not only suitable for running in
high-performance server environments, but also can work
stably on edge devices such as Jetson Xavier NX. This
feature offers the possibility for large-scale distributed
virtual environments, online collaborative modeling
platforms, and even personalized design tools on mobile
terminals, further expanding their social application space.
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It should be pointed out that although this model
achieves a balance between accuracy and efficiency, it may
still encounter problems such as unreasonable local layout
or insufficient generation diversity when dealing with
extremely complex or irregular scenarios. In the future,
uncertainty modeling can be combined with multimodal
data input (such as voice and gesture commands) to further
enhance the robustness and interaction experience of the
system.Overall, the diffusion process guarantees global
stability while the spatial attention module enforces local
controllability, but at the cost of slightly increased
inference latency compared to lightweight VAE models,
underscoring the trade-off between precision and
efficiency.From an industrial perspective, the proposed
framework can significantly shorten the design—production
cycle in architecture and interior design, reduce manual
modeling costs by up to 40%, and enable faster iteration of
personalized VR/AR content. In game and film production,
automatic layout generation can accelerate environment
prototyping, while in smart home and robotics, it can
provide more reliable spatial reasoning for navigation and
interaction. Despite these advantages, challenges remain in
handling large-scale outdoor scenes and highly dynamic
environments. Future research should focus on integrating
real-time sensor data and developing adaptive diffusion
mechanisms to broaden the applicability of the framework.

6 Conclusion

The core objective of 3D scene layout lies in achieving the
rational generation and flexible editing of spatial structure,
thereby providing efficient support for virtual reality,
architectural visualization, and intelligent interaction
systems. Although existing research has proposed various
methods based on GAN, VAE and Transformer, there are
still obvious deficiencies in balancing global semantic
consistency and local controllability, and there is an urgent
need for solutions with higher accuracy and efficiency.
This paper proposes a controllable generation framework
for 3D scene layout that combines diffusion models and
spatial attention mechanisms. This framework utilizes the
stable characteristic of stepwise denoising of the diffusion
model to ensure the rationality of the global layout
distribution, and dynamically models the relative
relationships between objects through the spatial attention
mechanism, effectively improving the accuracy and
semantic consistency of the generated results. In the
systematic experiments, the proposed model outperformed
the comparison methods in terms of layout accuracy, FID,
loU and editing consistency. The average generation time
on the GPU platform was only 1.3 seconds per scene, and
it also showed good adaptability on CPU and embedded
devices, verifying its advantages of both performance and
scalability. Future research directions can be further
focused on three aspects: First, explore model compression
and distillation techniques to reduce memory usage and
enhance real-time performance at the edge; Second,
introduce multimodal condition constraints such as voice
and gestures to enhance the interaction experience and
generation diversity; Third, by integrating federated
learning with distributed deployment frameworks, cross-
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platform collaboration capabilities and privacy protection
levels can be enhanced.In summary, this work establishes
a unified controllable generation framework that leverages
diffusion models for global stability and spatial attention
for local consistency. The proposed approach achieves
state-of-the-art performance in layout accuracy, loU, FID,
and editing consistency while maintaining practical
efficiency across GPU, CPU, and embedded platforms.
Beyond technical contributions, the framework also
demonstrates strong potential for deployment in VR/AR
content creation, architectural design, smart homes, and
robotic navigation, bridging the gap between academic
research and industrial application.
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