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For many decades, numerous organizations have launched software reuse initiatives to improve their 

productivity. Software product lines (SPL) addressed this problem by organizing software development 

around a set of features that are shared by a set of products. In order to exploit existing software 

products for building a new SPL, features composing each of the used products must be specified in the 

first place. In this paper we analyze the effectiveness of overlapping clustering based technique to mine 

functional features from object-oriented (OO) source code of existing systems. The evaluation of the 

proposed approach using two different Java open-source applications, i.e. “Mobile media” and 

“Drawing Shapes”, has revealed encouraging results. 

Povzetek: Prispevek vpelje novo metodo generiranja spremenljivk za ponovno uporabo objektno 

usmerjenih sistemov. 

1 Introduction 
A software product line, also known as software family, 

is “a set of software-intensive systems sharing a 

common, managed set of features that satisfy the specific 

needs of a particular market segment or mission and that 

are developed from a common set of core assets in a 

prescribed way”  [6]. A feature represents a prominent or 

distinct aspect that is visible to the user, a quality, or a 

system characteristic [16]. There are two types of 

features: (1) the commonalities, that must be included in 

all products, and (2) the variabilites, which are shared by 

only some of them. A feature model (FM) provides a 

detailed description of the commonalities and 

variabilities, specifying all the valid feature 

configurations. Driven by the software industrial 

requirements, i.e. cost and time-to-market, several 

organizations have therefore chosen to convert to a SPL 

solution. Such a migration can be achieved using one of 

three major adoption strategies: proactive, reactive, 

extractive [19]. Using a proactive approach, the 

organization analyzes, designs and implements a SPL to 

support all anticipated products (which are within the 

scope of the SPL). With the reactive approach, 

organizations develop their SPLs in an incremental 

manner. This strategy is appropriate when the 

requirements of new products in the SPL are somehow 

unpredictable. The extractive approach is used to 

capitalize on existing software systems by extracting 

their commonalities and variabilities. Since the proactive 

strategy is the most expensive and exposed to risks [19], 

most researchers are now interested in reengineering 

commonalities and variabilities from existing systems.  

On this matter, the type of artifacts to be used in the 

SPL reengineering process seems of great importance, 

since it strongly impacts the quality of the results, as well 

as the level of user involvement in this process. Most of 

the existing SPL extractive approaches use various types 

of artifacts such as FMs of existing systems, 

requirements documents or other additional data. 

However, most of the requirement documents are written 

in natural language and, therefore, suffer from several 

problems such as scalability, heterogeneity and 

ambiguity [21, 26]. The software documentation on the 

other hand may be obsolete after making several changes 

to the code without updating its documentation. In 

addition, it happens that some systems are not yet 

equipped with a FM, knowing that it is indispensable 

throughout the entire SPL development cycle. In order to 

obtain a FM of an old system, commonalities and 

variabilities that characterize such a system must be 

identified and documented. The manual construction of a 

FM is an expensive and greedy task [33]. Hence, 

assisting this process would be of great help. 

In this article, we propose a new approach which 

mines features from Java source code of an existing 

system for disentangling stakeholder goals. Compared to 

the existing approaches that mine features, the novelty of 
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the proposed approach is that it provides a generic and 

reusable features catalogue for a software variant instead 

of generating a single FM which is specific to a set of 

product variants. We use an overlapping clustering 

algorithm in order to minimize the information loss. In 

the proposed approach, Java programs’ elements 

constitute the initial search space. By conducting a static 

analysis on the target system, we define a similarity 

measure that enables to proceed through a clustering 

process. The result is subgroups of elements each of 

which represents a feature implementation. The number 

of clusters is automatically calculated during the mining 

process which decreases the expert involvement.   

The remainder of this paper is structured as follows: 

Section 2 presents the state of the art and motivates our 

work. Section 3 describes, step by step, our proposed 

approach for features reengineering using Java source 

code of existing systems. Section 4 reports the 

experimentation and discusses threats to the validity of 

the proposed approach. Finally, Section 5 concludes and 

provides perspectives for this work. 

2 State of the art 
This section carries out a survey of leading papers 

describing the work carried out so far which are related 

to reverse engineering feature models. Depending on the 

type of artifacts used as input, one can distinguish two 

main subgroups of studies that aim to extract FMs: (1) 

documentation-based approaches and (2) source code-

based approaches. 

2.1 Documentation-based techniques 

Extraction of FMs from legacy systems can benefit from 

the existing experience in reverse engineering works. 

The approach proposed by Graaf et al. [14] consists in 

migrating an existing architecture to a SPL using 

automatic model transformations. The transformation 

rules used are defined using ATL (Atlas Transformation 

Language). Thus, migration can only be possible if the 

variability is defined by a meta-model. 

Niu et al. [22] present a new approach based on 

clustering, information theory, and natural language 

processing (NLP) to extract features by analyzing 

functional requirements. They use an overlapping 

clustering algorithm. NLP technique is used to define the 

similarity between the attributes of FRP (functional 

requirement profiles); FRPs are abstractions of functional 

requirements. However, the FRPs and their attributes 

must be prepared manually which implies a considerable 

human effort. 

Rashid et al. [26] propose a technique based on NLP 

and clustering for automatic construction of FM from 

heterogeneous requirements documents. However, the 

FM generated by their approach was of great size 

compared with a manually created FM. Hence, the 

intervention of an expert is always needed to perform pre 

and/or post-processing. The authors explain that this 

problem is caused by the used clustering algorithm and 

irrelevant information contained in the inputs. 

Haslinger et al. [15] present an algorithm that reverse 

engineers a FM for a given SPL from feature sets which 

describe the characteristics each product variant 

provides. The features used were obtained by 

decomposing FMs retrieved from an online repository. 

Experiments have shown that the basic FMs calculated 

by this algorithm are identical to the initial models 

retrieved from the repository. 

Ziadi et al. [33] propose an automatic approach to 

identify features for a set of product variants. They 

assume that all product variants use the same vocabulary 

to name the program elements. However, given that their 

approach uses UML class diagrams as inputs, it doesn’t 

consider the method body. In addition, their approach 

identifies all common features as a single mandatory 

feature (a maximal set), that is shared by all the product 

variants.  

Ryssel et al. [27] present a technique based on 

formal concept analysis (FCA) that analyzes incidence 

matrices containing matching relations as input and 

creates FMs as output. The matrix describes parts of a set 

of function-block-oriented models. Compared to other 

FCA-based approaches, their approach uses optimization 

techniques to generate the lattices and FMs in a 

reasonable time. 

2.2 Source code-based techniques 

There exist very few studies that have addressed the 

problem of reverse engineering FMs using the source 

code as a starting point. Kästner et al. [17] propose a 

tool, Colored IDE (currently known as the CIDE tool), to 

identify and mark code fragments that correspond to 

features. However, the process is still manual and it 

depends on the experience of the tool user. The CIDE 

tool seems to be more useful in feature-oriented 

refactoring tasks. 

Loesch et al. [20] propose a new approach for 

restructuring an existing SPL. Their FCA-based approach 

consists in analyzing real products configuration files 

used in a given SPL, and building a lattice that provides a 

classification of variable features usage in product 

variants. This classification can be used as a formal basis 

in interactive tools in order to restructure the variabilities. 

Paskevicius et al. [23] propose a framework for an 

automated generation of FM from Java source code using 

static analysis and conceptual clustering. The approach 

uses as input the dependency graph (DG) of a targeted 

software system. The DG is transformed into a distance 

matrix that must be analyzed using the CobWeb 

algorithm [12] in order to create a features hierarchy. 

This latter is used to generate the final FM as Feature 

Description Language (FDL) descriptors and as Prolog 

rules. Their approach may be useful during the partial 

configuration of a given system, for example, to derive a 

light version of a system. 

Al-Msie’deen et al. [25] propose an approach for 

generating FMs from Java source code of a set of 

existing systems. They suppose that the analyzed systems 

use the same vocabulary to name the program elements, 

i.e. product variants belonging to the same SPL. First, 
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they explore candidate systems to extract OO building 

elements (OBE). These items are then analyzed 

combining FCA analysis, Latent Semantic Indexing 

(LSI), and structural similarity to identify features. Their 

approach has given good results. However, the analyzed 

systems may not use the same vocabulary to name OBEs, 

which means that the used lexical similarity cannot be 

always reliable. 

2.3 Synthesis 

As we can see from the preceding sections, most of the 

existing approaches that address the problem of reverse 

engineering FMs from existing systems are semi-

automatic, and use the documentation and textual 

descriptions as inputs. However, such a practice involves 

several challenges. Although the input data type in a 

given approach is strongly linked to its purpose and 

usage type, the abstraction level and formalization of 

such data must also be considered. Ziadi et al. [33] use as 

input the parts of UML class diagram, which is likely to 

omit many details related to the variability in the 

program implementation. FM generated from 

requirements in [26] was imprecise and very large. The 

authors justified their finding by the heterogeneous and 

especially textual nature of the inputs. These latter are 

likely to be filled with imprecise language commonly 

used in conversations. Besides the ambiguity, scalability 

is a problem in the context of SPL. Indeed, we can find a 

significant number of documents associated with a given 

product variant, each of which is very large in terms of 

size. Other works such that given by Haslinger et al. [15] 

use a set of FM of existing systems in order to derive the 

SPL’ feature model. However, existing systems do not 

always have a FM, and even if exists it may not be up to 

date and, therefore, does not truly reflect the variabilities 

of these systems.  

Regarding the used technique, the majority of 

approaches use classification, since it is the most suitable 

for the problem of FM generation. Some approaches 

have used a clustering technique to generate FMs. 

Paskevicius et al. [23] consider the hierarchy generated 

by the Cobweb algorithm as a FM, while there is simply 

not enough information in the input data in order to 

decide one preferred hierarchy. Moreover, the use of a 

simple clustering algorithm to generate disjoint groups of 

program elements can cause information loss, since a 

program element can be part of more than one feature 

(crosscutting concerns). Niu et al. [22], address the 

overlapping problem using an overlapping partitioning 

algorithm called OPC [5]. Nevertheless, the OPC 

algorithm requires four parameters to be specified by the 

user, which significantly minimizes the automation of the 

task.  

Besides clustering, many researchers have used FCA 

analysis to extract FMs while taking into account the 

overlap problem. However, there is a limit in the use of 

FCA. Indeed, not only FCA does not assure that the 

generated features (formal concepts) are disjoint and 

cover the entire set of entities [30], but it is also exposed 

to the information loss problem. For example, in [25], 

cosine similarity matrices are transformed into a (binary) 

formal context using a fixed threshold. The information 

loss caused by such a sharp threshold usage may affect 

the quality of the result, as claimed by the authors in [2]. 

The REVPLINE approach proposed by Al-Msie’Deen et 

al.  [2, 25] generates SPL features using as inputs the 

source code of product variants. They suppose that 

analyzed products are developed with copy-paste 

technique, i.e. they use the same vocabulary. However, if 

this assumption does not hold, it is therefore essential to 

have a separate FM for each product variant in order to 

generate the SPL feature model. 

3 A tool support for automatic 

extraction of features 
This section presents the main concepts, hypotheses and 

techniques used in the proposed approach for mining 

features from source code. 

3.1 Goal and core assumptions 

The overall aim of the proposed method is to identify all 

feature implementations for a given software product, 

based on static analysis of source code. In fact, We 

recognize that it is essential to have, for every software, a 

FM which is up to date and reflects the changes that were 

made to the source code over time. The generated 

features can be used for documenting a given system as 

well as for reverse engineering a FM for a SPL. We 

adhere to the classification given by [16] which 

distinguishes three categories of features: functional, 

operational and presentation features. In this article we 

focus on the identification of functional features; 

functional features express how users can interact with a 

software system. 

The functional features are implemented using OO 

program elements (PEs), such as packages, classes, class 

attributes, methods or elements of method bodies. We 

also consider that the PEs can be classified in two 

categories: (1) atomic program elements (APE), and (2) 

composite program elements (CPE). An APE is a basic 

construction element in the program (a variable or a 

method). A CPE is a composition of atomic and/or 

composite PEs (i.e. a class or a package). A dependency 

is a relation between two PEs. An element 𝐴 depends on 

𝐵 if 𝐴 references 𝐵. For example a method 𝐴() uses a 

variable 𝐵 or calls a method 𝐵(). Given a dependency 

graph 𝐺 = (𝑉, 𝐸), a cluster is defined as a sub-graph  

�̀� = (�̀�, �̀�) whose nodes are tightly connected, i.e. 

cohesive. Such clusters are considered as functional 

feature implementations. We suppose also that feature 

implementations may overlap; a given PE may be shared 

by the implementations of several features 

simultaneously. 

In addition, since a class represents the main 

building unit in OO languages, we assume that a 

generated feature is represented by at least one class. 

Indeed, a class is generally referred to as a set of 

responsibilities that simulates a concept or a feature in 

the application domain [9]. This hypothesis has been 
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checked by experiments carried out in [25]. For the sake 

of simplicity, we make no distinction between classes per 

se and abstract classes. Taking into account this 

assumption about classes, interfaces must be pruned from 

the PEs set. In fact, as a method body must anyway be 

redefined at the class level when implementing an 

interface, then considering interfaces in the inputs will 

not provide additional information to the overall mining 

process. Consequently, pruning interfaces from the initial 

PEs set will not affect the validity of our assumptions. 

Furthermore, since a software system’s features are 

associated with its behavior, we decided to keep only 

those PEs which are created by developer to implement 

the system’s specific features. For example, a linked list 

is a concept from the solution domain which may be 

implemented in the source code, yet it is not a specific 

feature of the system. All the concepts we defined for 

mining features are illustrated in the “program to feature 

mapping model” of Figure 1. 

3.2 Feature mining step by step 

This section presents, in a detailed way, the feature 

reengineering process. Input data were prepared using 

the method described by Paskevicius et al. [23] while 

introducing necessary modifications to comply with 

assumptions and techniques used in our proposed 

approach. The architecture of our proposed approach for 

mining features from source code is given in Figure 2. 

3.2.1 Extraction of program elements and 

dependencies 

Dependencies of the candidate system was modelled 

using an oriented dependency graph  𝐺 = (𝐹, 𝐷), such 

that 𝐹 is a set of vertices which represent PEs, and 𝐷 is a 

set of dependencies.  The dependency graph 𝐺 was 

generated and saved into an XML file by analyzing  

“.class” files using DependencyExtractor. This latter is a 

part of a toolbox called JDependencyFinder1. The use of 

the Java byte code instead of the source code facilitates 

the analysis of existing systems whose source code is not 

available. Moreover, sometimes source code lacks 

information like, for example, how the compiled code 

will be organized in execution containers (Jar files). Such 

information is usually defined in the scripts executed 

during compilation [7]. The choice of using a 

dependency graph as input is justified by the nature of 

the problem as well as the granularity of the processed 

entities. In fact, we try to build clusters of PEs, i.e. 

feature implementations, based on functional 

dependencies between these PEs; a feature 

implementation is characterized by a strong functional 

dependency (intra-cluster cohesion) between its 

composing PEs. 

DependencyExtractor was executed through the 

command line by combining three of its parameters: [-

class-filter], [-minimize] and [-filter-excludes]. The [-

minimize] parameter was used to remove redundant 

dependencies. In fact, it is often the case that an explicit 

dependency in the code can be implied from another 

explicit dependency in that code. Such dependencies do 

not add anything to the overall connectivity of the graph 

and, therefore, must be removed. The second parameter, 

i.e. [-class-filter], allows us to select only those 

dependencies going to/from classes. These latter 

represent, as explained earlier, the main construction 

                                                           
1 http://depfind.sourceforge.net/ 

 

Figure 1: A meta-model to map source code to features. 
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units of feature implementations. The choice of using 

such type of dependencies instead of only considering 

inter-class dependencies is justified by the fact that such 

kind of mixed dependencies are likely to enrich the 

training set. Finally, the third parameter [-filter-excludes] 

is used to remove graph vertices (resp. dependencies) 

which represents language specific libraries, such that 

“Java.*” and “javax.*”.  

3.2.2 Constructing the similarity matrix 

The dependency graph generated in the previous step is 

used in this phase to build a similarity matrix. A native 

structural distance-based measure was used to evaluate 

similarity between each pair of vertices. Firstly, the 

dependency graph 𝐺 was expressed, as an adjacency 

matrix 𝐶 of the size |𝐹|, such that 𝑐𝑖𝑗 = 1 means that 

there exists an explicit dependency from 𝑖 to 𝑗. In order 

to describe indirect dependencies, the matrix 𝐶 has been 

converted into a distance matrix 𝑀 of size |𝐹| using 

Floyd-Warshall’s all pairs shortest path algorithm (after 

Floyd [13] and Warshall [31]), such that 𝑚𝑖𝑗 is equal to 

the shortest path distance between program elements 𝑖 
and 𝑗. The two matrices 𝐶 and 𝑀 are asymmetric because 

the dependency graph 𝐺 is directed. Given that the used 

clustering algorithm operates on an undirected graph, the 

asymmetric distance table 𝑀 was converted into a 

symmetric table �̀�, such that �̀�𝑖𝑗 = �̀�𝑗𝑖 =

𝑀𝑖𝑛 (𝑚𝑖𝑗 , 𝑚𝑗𝑖). In addition, it is difficult to estimate the 

similarity between two PEs using absolute distance �̀�𝑖𝑗. 

Hence, absolutes distances matrix was converted into a 

normalized similarity matrix in such a way that two 

given PEs have a similarity 𝑆(𝑖, 𝑗) = 0 if there is no path 

between them, and a similarity 𝑆(𝑖, 𝑗) = 1 if they are 

identical. 

3.2.3 Building feature implementations 

After preparing the training set using program 

dependencies, OclustR algorithm [24] was then executed 

on that data to generate a set of clusters of PEs. Each 

calculated cluster is considered as the implementation of 

a single feature. The OclustR passes through two main 

stages: (1) initialization step, and (2) the improvement 

step.  

The main idea of the initialization phase is to 

produce a first set 𝑋 of sub-graphs, i.e. ws-graphs, that 

covers the graph; in this context, each ws-graph consists 

in a candidate cluster. Afterward, during the 

improvement phase, a post-processing is performed on 

the initial clusters in order to reduce their number and 

overlap. To do this, the set 𝑋 is analyzed to remove ws-

graphs which are considered as less useful. These latter 

are pruned by merging the sets of their vertices with 

those of a chosen ws-graph. 

Formally, let 𝑂 =  {𝑃𝐸1 , 𝑃𝐸2, . . . , 𝑃𝐸𝑛} be a set of 

PEs. The OclustR algorithm uses as input an undirected 

and weighted graph �̃�𝛽 = (𝑉, �̃�𝛽 , 𝑆), such that 𝑉 = 𝑂, 

and there is an edge (𝑣, 𝑢) ∈ �̃�𝛽 iff 𝑣 ≠ 𝑢 and 𝑆(𝑣, 𝑢) ≥

𝛽, with 𝑆(𝑃𝐸1 , 𝑃𝐸2) is a symmetric similarity function 

and 𝛽 ∈ [0,1] is a user-defined threshold; Each edge 

(𝑣, 𝑢) ∈ �̃�𝛽 is labeled with the value of 𝑆(𝑣, 𝑢). We 

assume that each PE must be assigned at least to one 

cluster, even if the similarity between that element and 

the cluster’s center is very small. Thus, there is an edge 

(𝑣, 𝑢) ∈ �̃�𝛽 iff 𝑣 ≠ 𝑢 and 𝑆(𝑣, 𝑢) > 0. Consequently, we 

are sure that every PE in the training set will be assigned 

to at least one cluster. The OclustR algorithm doesn’t 

need, henceforth, any input parameter, which increase 

the task automation. The user still can select other values 

for the parameter 𝛽 in order to generate features with 

more fine-grained granularity, so he can have multiple 

views of the analyzed system with different abstraction 

levels.  

3.2.4 Pruning irrelevant clusters 

When constructing the dependency graph, we have 

selected only those dependencies whose composing 

nodes contains at least one class, which means that the 

resulting clusters will be composed of APEs and/or 

CPEs. Taking into account that classes are considered as 

the main construction units of feature implementations, 

 

Figure 2: The feature mining process. 
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Figure 3: Example of a mined feature. 

clusters which contain only APEs are, consequently, 

considered as irrelevant and pruned from the result set. In 

the case of a mixed content cluster, each APE has been 

replaced by its source class. Indeed, APEs involved in 

such clusters are only used to provide an optional 

detailed view. Hence, the final result is a set of relevant 

clusters composed only by classes. Figure 3 represents a 

feature (i.e. cluster) mined by our proposed approach for 

the Drawing Shapes case study (see Section 4.1.1). Given 

that a cluster computed using OclustR is mainly a ws-

graph, it’s, consequently, defined by his name which is a 

unique reference given by the system, his center, and his 

satellites. 

4 Experimentations 
In this section, the experimental setup is described and 

subsequently, the empirical results are presented in 

detail, together with a discussion of possible limitations 

and threats to validity of this study. 

4.1 Experimental setup 

We fully implemented the steps described in Section 3.2 

as a Java tool. We tried to develop the features inference 

engine as an independent component so that it can be 

used in a generic and efficient manner. The feature 

inference engine reads dependency graphs generated 

using a static analyzer, and seeks to discover software 

features. In our experiments, we tested our implemented 

tool on two Java programs, but software written in other 

OO languages (i.e. C++ or C#) can also be analyzed 

using our tool, if their dependency graphs are delivered 

in XML files respecting the DTD2 used by the 

                                                           
2 http://depfind.sourceforge.net/dtd/dependencies.dtd  

DependencyExtractor tool. Experiments were made on 

Windows 7 based PC with Intel i5-4200U processor and 

8G of RAM. 

4.1.1 Case studies 

In order to validate the proposed approach, we conducted 

experiments on two different Java open-source 

applications: Mobile media3 and Drawing Shapes4. The 

advantage of having two case studies is that they 

implement variability at different levels. In addition, the 

corresponding documentations and FMs are available 

which facilitate the comparison with our results. 

Moreover, using these two case studies we target two 

different categories of FMs: (1) a flat FM which is 

related with the Drawing Shapes case study, and (2) a 

nested FM related with the Mobile Media case study. 

Figure 4 and Figure 5 present the corresponding FMs, 

following the notation proposed by Ferber et al. [10]. 

The Drawing Shapes SPL represents a small case 

study (version 5 consists of 8 packages and 25 classes 

with about 0,6 KlOC). The Drawing Shapes application 

allows a user to draw seven different kinds of shapes in a 

variety of colors. The user chooses the shape and the 

color, and then presses the mouse button and drag the 

mouse to create the shape. The user can draw as many 

shapes as desired. The Drawing Shapes software variants 

were developed based on the copy paste modify 

technique. In this example, we use version 5 (the full 

version) which supports draw 3D rectangle, draw 

rectangle, draw oval, draw string and draw arc features, 

together with the core one. 

The Mobile Media [32] SPL is a benchmark used by 

researchers in the area of program analysis and SPL 

research [2, 11, 29]. It manipulates photo, music, and 

video on mobile devices, such as mobile phones. Mobile 

Media endured seven evolution scenarios, which led to 

eight releases, comprising different types of changes 

involving mandatory, optional, and alternative features, 

as well as non-functional concerns. In this example, we 

used the sixth release (R6) which contains OO 

implementation of all the optional and mandatory 

features for managing Photos. The used release of 

                                                           
3 http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/  
4 https://code.google.com/p/svariants/ 

 

Figure 4: The Drawing Shapes FM. 
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Mobile Media consists of 9 packages, 38 classes with 

about 3 KLOC. 

The PEs used to implement the Exception handling 

feature in this Mobile Media release were discarded from 

the entry set in the pre-processing phase. Indeed, as 

mentioned before, this paper deals only with functional 

feature implementations. Additionally, we used the 

default similarity threshold value for OclustR, i.e. 𝛽 = 0. 

4.1.2 Evaluation measures 

The accuracy and performance of the proposed method is 

evaluated using an external validation measure. The F-

measure [8] is a well-known tool in the information 

retrieval (IR) domain, which can also be used as a 

measure for flat clustering quality. We assume that for a 

given set of program elements 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑛} we 

have both: the real, true partition of this set 𝐿 =
{𝐿1, 𝐿2, … , 𝐿𝐾𝐿  } (we can call 𝐿 sets as classes, 𝐾𝐿 is the 

number of classes) and clustering partition, the result of 

OclustR algorithm 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝐾𝐶 } (𝐶 sets as 

clusters, 𝐾𝐶 is the number of clusters), in order to 

compute how similar they are.  

For the two aforementioned case studies, the true 

partitions (i.e. listing of real features’ PEs) were prepared 

manually by inspecting the documentation provided by 

their authors.  

F-measure is a mixture of two indices: precision (𝑃), 

which measures the homogeneity of clusters with respect 

to a priori known classes, and recall (𝑅), that evaluates 

the completeness of clusters relatively to classes. A 

higher precision shows that almost all the cluster 

elements correspond to expected class. A lower recall, in 

the other hand, indicates that there are various actual 

elements that were not retrieved. The convenience of F-

measure at this stage of our work is justified by the 

behavior of this metric. Indeed, F-measure computes the 

quality of every cluster independently with respect to 

each class, which allows us to automatically determine 

the most representative cluster for each class in the gold 

standard. 

Having the previously introduced notation, precision 

of cluster 𝐶𝑖 with regard to class 𝐿𝑗 is computed as 

follows: 

𝑃(𝐶𝑖  , 𝐿𝑗) =
|𝐶𝑖 ∩ 𝐿𝑗|

|𝐶𝑖|
 

Recall of cluster 𝐶𝑖 with respect to class 𝐿𝑗 is 

computed as follows: 

𝑅(𝐶𝑖  , 𝐿𝑗) =
|𝐶𝑖 ∩ 𝐿𝑗|

|𝐿𝑗|
 

Thus, the 𝐹 value of the cluster 𝐶𝑖 with respect to 

class 𝐿𝑗 is the combination of these two: 

𝐹(𝐶𝑖  , 𝐿𝑗) =
2 × 𝑃(𝐶𝑖  , 𝐿𝑗) × 𝑅(𝐶𝑖  , 𝐿𝑗)

𝑃(𝐶𝑖  , 𝐿𝑗) + 𝑅(𝐶𝑖  , 𝐿𝑗)
 

Hence, the F-measure for a cluster 𝐶𝑖 is the highest 

of 𝐹 values obtained by comparing this cluster with each 

of known classes: 

𝐹(𝐶𝑖) = 𝑚𝑎𝑥
𝐿𝑗∈𝐿

𝐹(𝐶𝑖, 𝐿𝑗) 

Despite the fact that the usage of F-measure at this 

point decreases the expert involvement, this metric seems 

to be inappropriate when assessing the overall 

effectiveness of an overlapping clustering solution. 

According to [3], F-measure does not always detect small 

improvements in the clustering distribution, and that 

might have negative implications in the system 

evaluation/refinement cycles. The authors in [3] have 

proposed a new metric, i.e. 𝐹𝐵𝐶𝑢𝑏𝑒𝑑, that gives a good 

estimation of the clustering system effectiveness while 

taking into account the overlapping among clusters. 

Thus, we decided to evaluate the overall accuracy and 

performance of our proposed method using 𝐹𝐵𝐶𝑢𝑏𝑒𝑑. 

The 𝐹𝐵𝐶𝑢𝑏𝑒𝑑 is calculated using the BCubed Precision 

and BCubed Recall metrics as proposed in [3]. The 

BCubed Precision and BCubed Recall are based on the 

Multiplicity Precision and Multiplicity Recall metrics 

respectively; which are defined as: 

𝑀𝑃(𝑜1, 𝑜2) =
𝑀𝑖𝑛(|𝐶(𝑜1) ∩ 𝐶(𝑜2)|, |𝐿(𝑜1) ∩ 𝐿(𝑜2)|)

|𝐶(𝑜1) ∩ 𝐶(𝑜2)|
 

 

Figure 5: The Mobile Media FM. 
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𝑀𝑅(𝑜1, 𝑜2) =
𝑀𝑖𝑛(|𝐶(𝑜1) ∩ 𝐶(𝑜2)|, |𝐿(𝑜1) ∩ 𝐿(𝑜2)|)

|𝐿(𝑜1) ∩ 𝐿(𝑜2)|
 

Where 𝑜1 and 𝑜2 are two program elements, 𝐿(𝑜1) 

are the classes associated to 𝑜1, 𝐶(𝑜1) are the clusters 

associated to 𝑜1. 𝑀𝑃(𝑜1, 𝑜2) is the Multiplicity Precision 

of 𝑜1 wrt 𝑜2, such that 𝑜1 and 𝑜2 share at least one 

cluster. 𝑀𝑅(𝑜1, 𝑜2) is the Multiplicity Recall of 𝑜1 wrt 

𝑜2, such that 𝑜1 and 𝑜2 share at least one class. 

Let 𝐷(𝑜𝑖) be the set of PEs that share at least one 

cluster with 𝑜𝑖  including 𝑜𝑖 . The BCubed Precision 

metric of 𝑜𝑖  is defined as:  

𝐵𝐶𝑢𝑏𝑒𝑑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑜𝑖) =
∑ 𝑀𝑃(𝑜𝑖 , 𝑜𝑗)𝑜𝑗∈𝐷(𝑜𝑖)

|𝐷(𝑜𝑖)|
 

Let 𝐻(𝑜𝑖) be the set of PEs that share at least one 

class with 𝑜𝑖  including 𝑜𝑖 . The BCubed Recall metric of 

𝑜𝑖  is defined as:  

𝐵𝐶𝑢𝑏𝑒𝑑𝑅𝑒𝑐𝑎𝑙𝑙(𝑜𝑖) =
∑ 𝑀𝑅(𝑜𝑖 , 𝑜𝑗)𝑜𝑗∈𝐻(𝑜𝑖)

|𝐻(𝑜𝑖)|
 

The overall BCubed Precision of the clustering 

solution, denoted as 𝐵𝐶𝑢𝑏𝑒𝑑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, is computed as the 

average of the BCubed precision of all PEs in the 

distribution 𝑂; the overall BCubed recall of the clustering 

solution, denoted as 𝐵𝐶𝑢𝑏𝑒𝑑𝑅𝑒𝑐𝑎𝑙𝑙 , is defined 

analogously but using the BCubed recall of all PEs. 

Finally, the FBCubed measure of the clustering solution 

is computed as the harmonic mean of 𝐵𝐶𝑢𝑏𝑒𝑑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

and 𝐵𝐶𝑢𝑏𝑒𝑑𝑅𝑒𝑐𝑎𝑙𝑙  as follows:  

𝐹𝐵𝐶𝑢𝑏𝑒𝑑 =
2 × 𝐵𝐶𝑢𝑏𝑒𝑑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  × 𝐵𝐶𝑢𝑏𝑒𝑑𝑅𝑒𝑐𝑎𝑙𝑙

𝐵𝐶𝑢𝑏𝑒𝑑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝐵𝐶𝑢𝑏𝑒𝑑𝑅𝑒𝑐𝑎𝑙𝑙

 

4.2 Results and discussions 

Our implemented tool has derived features quickly from 

the used case studies in a reasonable amount of time 

(about 1 second). Table 1 summarizes the obtained 

results. For the sake of readability, we manually 

associated feature names to clusters, based on their 

content. Of course, this does not impact the quality of our 

results. 

Firstly, we observe that the F values obtained in the 

Mobile media case study have been greatly influenced by 

the recall values. The precision values however, remain 

high for the majority of the features, indicating the 

relevance of their composing PEs.  

These observations can be explained by the 

operating mechanism of OclustR, which produces 

partitions having strong cohesion and low overlap. 

Indeed, we assumed that the features are simulated using 

one or more classes at the code level. Considering this 

assumption, implementations of Mobile Media features 

are therefore strongly overlapped. Indeed, many classes 

are shared by the implementations of numerous features 

at the same time, because of the use of several design 

patterns by the Mobile Media authors such as Model-

Vue-Controller (MVC) and Chain of responsibility. For 

example, the classes PhotoController, ImageAccessor 

and ImageData encapsulate all the photo management 

methods. Thus, features such as send picture, sorting and 

add picture share most of their PEs (i.e. classes) and, 

therefore, have reached a low Recall and F values. The 

Splash screen feature however, has not suffered from this 

problem since all functionalities related to this feature 

were encapsulated in distinguishable classes. Thus, the 

splash screen feature obtained a maximum F value. 

The conclusions drawn from the Mobile Media 

analysis comply with those obtained for the Drawing 

Shapes case study. The Drawing Shapes features are 

slightly overlapped, so we reached a maximum F value, 

except for the 3D-Rectangle and Core features. The low 

F value of 3D-Rectangle is caused by the low cohesion 

between its classes in the source code level. In fact, the 

manual verification of the 3D-Rectangle source code 

revealed that the Drawing Shapes author has 

intentionally or accidently caused this low cohesion by 

creating 3D-Rectangle classes without creating 

dependencies between them (i.e. classes instantiations 

are missing). Thus, the PEs involved in the 

implementation of 3D-Rectangle were scattered 

throughout the results, so that a low F value was reached. 

However, in the case of Core feature, some relevant PEs 

were mined and mistakenly mapped to another cluster so 

Feature 
Evaluation metrics 

P % R % F % 

Drawing Shapes (version 5) 

Core 100 57 73 

Drawing Text 100 100 100 

Drawing Oval 100 100 100 

Drawing Line 100 100 100 

Drawing Rectangle 100 100 100 

Drawing Image 100 100 100 

Drawing Arc 100 100 100 

Drawing 3D-

Rectangle 
11 33 17 

Mobile Media (version 6) 

Splash screen 100 100 100 

SMS transfer 64 41 50 

Photo management 100 35 52 

Album management 40 22 29 

View photo 54 58 56 

Edit photo Label 70 39 50 

Add photo 100 9 17 

Delete photo 40 40 40 

Favourites 100 8 15 

Sorting 100 8 15 

Add album 67 22 33 

Delete album 38 38 38 

Send photo 100 14 25 

Receive photo 40 17 24 

Table 1: Features mined from Mobile Media and 

Drawing Shapes softwares. 
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that the F value was slightly affected. Anyway, the F-

measure for this latter is 0.73 on average which is an 

acceptable value. 

The evaluation of overlapping clustering solution for 

each of the case studies using the FBCubed metric 

clearly confirms the above findings (see Table 2). The 

overall BCubed Precision of the Mobile Media case 

study remains high and the low value of the Bcubed 

Recall affected consequently the global FBCubed value. 

In the other hand, balanced and high values were reached 

for the Drawing Shapes’ Bcubed metrics. 

Software 
BCubed 

Precision  

Bcubed 

Recall  
FBCubed  

Drawing 

Shapes 
80% 67% 73% 

Mobile 

Media 
78% 25% 38% 

Table 2: The BCubed evaluation results of the 

overlapping clustering solutions. 

Despite F-measure and FBCubed proved to be 

appropriate, our implemented tool generates a small 

number of clusters most of which are relevant. This latter 

characteristic makes our results easily understandable 

and effectively handleable by the user. Table 3 shows 

that our tool generated 50% of relevant clusters for 

Drawing Shapes case study, and 88% for Mobile Media. 

Software 
Mined 

clusters 

Relevant 

clusters 

Relevance 

ratio 

Drawing 

Shapes 
16 8 50% 

Mobile 

Media 
16 14 88% 

Table 3: Number of reliable mapping. 

The results show that our proposed approach has 

generated a reasonable number of features with an 

acceptable precision. According to the case studies that 

we have conducted, our proposed method operates 

efficiently when dealing with programs having flat FMs. 

Unlike documentation-based approaches [15, 26, 33], our 

proposed approach relies on source code as it seems to be 

the most reliable source that can capitalize on the 

knowledge and the expertise of experts who participated 

in the development of the analyzed systems. Since they 

consist of sets of program elements, the features 

generated by the proposed approach are of a more formal 

nature which, thereby, facilitates their interpretation and 

further manipulation.  

The proposed approach provided a feature catalogue 

instead of generating one preferred hierarchy. This latter 

characteristic, together with the formal nature of the 

generated features, represents the key strength of our 

proposed approach, so it can operate in a generic and 

efficient manner. Thus, results obtained by our proposed 

method can be manipulated by other complementary 

tools in order to get additional information and, 

therefore, construct a reliable FM. Our proposed method 

is also complementary to other approaches such as 

software transplantation [4]. Inspired from human organ 

transplantation, this latter works by isolating the code of 

a useful feature in a “donor” program and transplanting 

this “organ” to the right “vein” in software lacking the 

feature. Our proposed approach can act in such case by 

delimiting and extracting a feature before its 

transplantation. 

In addition, our proposed method addressed the 

information loss problem that characterizes most of 

FCA-based methods by the usage of a similarity 

measure. This latter can be tuned by the user to change 

the granularity of outputs. Compared to other clustering 

approaches [22, 23], our proposed approach used a new 

partitioning algorithm that provides overlapping clusters 

in an efficient manner. The user involvement was 

negligible during all the steps of our experimentation. 

Hence, the method can be potentially very useful and it 

can save stakeholder from a lot of effort and time 

required to specify features composing each software 

variant during the SPL reverse engineering task. 

4.3 Threats to validity 

There is a limit to the use of Floyd’s algorithm to infer 

similarity between PEs. In fact, the complexity 

determined by this algorithm is of 𝑂(𝑛3) [18]. In 

addition, precomputing all the shortest paths and storing 

them explicitly in a huge dependency matrix seems to be 

challenging in terms of space complexity. These two 

factors affect the applicability of the proposed approach 

on larger software systems. In fact, even if computing 

shortest paths is a well-studied problem, exact algorithms 

cannot be adopted for a massive dependency graph.  

Moreover, as illustrated above, the OclustR 

algorithm manages clusters’ overlapping but still 

represents several restrictions when dealing with clusters 

that are strongly overlapped, which limits the usability of 

the proposed approach to systems with a nested FM. 

Another problem related to OclustR that may affect the 

results accuracy happens when a given class, i.e. an 

abstract class, is inherited by most of the system classes 

and, thus, will be considered as the center 𝑐 of a ws-

graph (𝐺𝑐
⋆) having all the inheriting classes as satellites. 

Hence, during the improvement phase, each ws-graph 

having as center one of the 𝐺𝑐
⋆ satellites will be judged as 

irrelevant. In this case, we call 𝐺𝑐
⋆ a predatory ws-graph 

and his center 𝑐 a predatory center. Such predatory 

cluster phenomena may affect the results accuracy. 

Finally, structural distance-based measure used in 

the proposed approach still has some restrictions. Indeed, 

we used a simple technique to compute similarity 

between PEs based on the number of steps on the 

shortest path relating them in the graph. Even that such a 

strategy has given acceptable results, it still has some 

limitations since it does not consider the multiplicity in 

paths (i.e. connectivity) between a pair of nodes. 

5 Conclusion and perspectives 
In this paper, we proposed a new method for reverse 

engineering software functional features from source 

code. We used dependencies that exist between program 
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elements at the source code level in order to apply a 

graph clustering algorithm in an efficient way. We tested 

our implemented tool to recover features from source 

code of two existing java programs. We obtained 

promising results that are consistent with the main 

objectives of our study, which makes the proposed 

approach useful for mining features from software source 

code. 

In future work, we would like to improve output 

quality using other overlapping clustering techniques, in 

order to overcome the aforementioned OclustR 

limitations. We also plan to automatically extract mined 

feature names, based on features contents, in order to 

facilitate their interpretation and manipulation in further 

tasks. 

Furthermore, in order to tackle the complexity 

problem when computing structural distance-based 

measures, we plan to use approximation methods based 

on random walks [1], such as random walk with restart. 

Besides complexity optimization, random walk-based 

measure provides a result that is different from that of the 

shortest-path measure because the multiplicity in paths 

between a pair of nodes is also leveraged when 

computing similarity. Such a measure is likely to 

enhance accuracy of our results and to reduce the effects 

of the predatory clusters phenomena. 

Moreover, since software features are associated 

with its behavior, we intend to enrich input data using 

dynamic information. Indeed, even if they are based on 

different operating strategies, dynamic and static 

analyses can be complementary in certain points [28]. 

Hence, a dynamically collected data is likely to enhance 

the result set by additional information. 
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