
 Informatica 40 (2016) 245–255 245

Software Features Extraction from Object-Oriented Source Code

Using an Overlapping Clustering Approach

Imad Eddine Araar

Department of Mathematics and Computer Science

Larbi Ben M’hidi University, Oum el Bouaghi, Algeria

E-mail: imad.araar@gmail.com

Hassina Seridi

Electronic Document Management Laboratory (LabGED)

Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria

E-mail: seridi@labged.net

Keywords: feature model, software product line, overlapping clustering, reverse engineering, program analysis

Received: January 16, 2016

For many decades, numerous organizations have launched software reuse initiatives to improve their

productivity. Software product lines (SPL) addressed this problem by organizing software development

around a set of features that are shared by a set of products. In order to exploit existing software

products for building a new SPL, features composing each of the used products must be specified in the

first place. In this paper we analyze the effectiveness of overlapping clustering based technique to mine

functional features from object-oriented (OO) source code of existing systems. The evaluation of the

proposed approach using two different Java open-source applications, i.e. “Mobile media” and

“Drawing Shapes”, has revealed encouraging results.

Povzetek: Prispevek vpelje novo metodo generiranja spremenljivk za ponovno uporabo objektno

usmerjenih sistemov.

1 Introduction
A software product line, also known as software family,

is “a set of software-intensive systems sharing a

common, managed set of features that satisfy the specific

needs of a particular market segment or mission and that

are developed from a common set of core assets in a

prescribed way” [6]. A feature represents a prominent or

distinct aspect that is visible to the user, a quality, or a

system characteristic [16]. There are two types of

features: (1) the commonalities, that must be included in

all products, and (2) the variabilites, which are shared by

only some of them. A feature model (FM) provides a

detailed description of the commonalities and

variabilities, specifying all the valid feature

configurations. Driven by the software industrial

requirements, i.e. cost and time-to-market, several

organizations have therefore chosen to convert to a SPL

solution. Such a migration can be achieved using one of

three major adoption strategies: proactive, reactive,

extractive [19]. Using a proactive approach, the

organization analyzes, designs and implements a SPL to

support all anticipated products (which are within the

scope of the SPL). With the reactive approach,

organizations develop their SPLs in an incremental

manner. This strategy is appropriate when the

requirements of new products in the SPL are somehow

unpredictable. The extractive approach is used to

capitalize on existing software systems by extracting

their commonalities and variabilities. Since the proactive

strategy is the most expensive and exposed to risks [19],

most researchers are now interested in reengineering

commonalities and variabilities from existing systems.

On this matter, the type of artifacts to be used in the

SPL reengineering process seems of great importance,

since it strongly impacts the quality of the results, as well

as the level of user involvement in this process. Most of

the existing SPL extractive approaches use various types

of artifacts such as FMs of existing systems,

requirements documents or other additional data.

However, most of the requirement documents are written

in natural language and, therefore, suffer from several

problems such as scalability, heterogeneity and

ambiguity [21, 26]. The software documentation on the

other hand may be obsolete after making several changes

to the code without updating its documentation. In

addition, it happens that some systems are not yet

equipped with a FM, knowing that it is indispensable

throughout the entire SPL development cycle. In order to

obtain a FM of an old system, commonalities and

variabilities that characterize such a system must be

identified and documented. The manual construction of a

FM is an expensive and greedy task [33]. Hence,

assisting this process would be of great help.

In this article, we propose a new approach which

mines features from Java source code of an existing

system for disentangling stakeholder goals. Compared to

the existing approaches that mine features, the novelty of

246 Informatica 40 (2016) 245–255 I.E. Araar et al.

the proposed approach is that it provides a generic and

reusable features catalogue for a software variant instead

of generating a single FM which is specific to a set of

product variants. We use an overlapping clustering

algorithm in order to minimize the information loss. In

the proposed approach, Java programs’ elements

constitute the initial search space. By conducting a static

analysis on the target system, we define a similarity

measure that enables to proceed through a clustering

process. The result is subgroups of elements each of

which represents a feature implementation. The number

of clusters is automatically calculated during the mining

process which decreases the expert involvement.

The remainder of this paper is structured as follows:

Section 2 presents the state of the art and motivates our

work. Section 3 describes, step by step, our proposed

approach for features reengineering using Java source

code of existing systems. Section 4 reports the

experimentation and discusses threats to the validity of

the proposed approach. Finally, Section 5 concludes and

provides perspectives for this work.

2 State of the art
This section carries out a survey of leading papers

describing the work carried out so far which are related

to reverse engineering feature models. Depending on the

type of artifacts used as input, one can distinguish two

main subgroups of studies that aim to extract FMs: (1)

documentation-based approaches and (2) source code-

based approaches.

2.1 Documentation-based techniques

Extraction of FMs from legacy systems can benefit from

the existing experience in reverse engineering works.

The approach proposed by Graaf et al. [14] consists in

migrating an existing architecture to a SPL using

automatic model transformations. The transformation

rules used are defined using ATL (Atlas Transformation

Language). Thus, migration can only be possible if the

variability is defined by a meta-model.

Niu et al. [22] present a new approach based on

clustering, information theory, and natural language

processing (NLP) to extract features by analyzing

functional requirements. They use an overlapping

clustering algorithm. NLP technique is used to define the

similarity between the attributes of FRP (functional

requirement profiles); FRPs are abstractions of functional

requirements. However, the FRPs and their attributes

must be prepared manually which implies a considerable

human effort.

Rashid et al. [26] propose a technique based on NLP

and clustering for automatic construction of FM from

heterogeneous requirements documents. However, the

FM generated by their approach was of great size

compared with a manually created FM. Hence, the

intervention of an expert is always needed to perform pre

and/or post-processing. The authors explain that this

problem is caused by the used clustering algorithm and

irrelevant information contained in the inputs.

Haslinger et al. [15] present an algorithm that reverse

engineers a FM for a given SPL from feature sets which

describe the characteristics each product variant

provides. The features used were obtained by

decomposing FMs retrieved from an online repository.

Experiments have shown that the basic FMs calculated

by this algorithm are identical to the initial models

retrieved from the repository.

Ziadi et al. [33] propose an automatic approach to

identify features for a set of product variants. They

assume that all product variants use the same vocabulary

to name the program elements. However, given that their

approach uses UML class diagrams as inputs, it doesn’t

consider the method body. In addition, their approach

identifies all common features as a single mandatory

feature (a maximal set), that is shared by all the product

variants.

Ryssel et al. [27] present a technique based on

formal concept analysis (FCA) that analyzes incidence

matrices containing matching relations as input and

creates FMs as output. The matrix describes parts of a set

of function-block-oriented models. Compared to other

FCA-based approaches, their approach uses optimization

techniques to generate the lattices and FMs in a

reasonable time.

2.2 Source code-based techniques

There exist very few studies that have addressed the

problem of reverse engineering FMs using the source

code as a starting point. Kästner et al. [17] propose a

tool, Colored IDE (currently known as the CIDE tool), to

identify and mark code fragments that correspond to

features. However, the process is still manual and it

depends on the experience of the tool user. The CIDE

tool seems to be more useful in feature-oriented

refactoring tasks.

Loesch et al. [20] propose a new approach for

restructuring an existing SPL. Their FCA-based approach

consists in analyzing real products configuration files

used in a given SPL, and building a lattice that provides a

classification of variable features usage in product

variants. This classification can be used as a formal basis

in interactive tools in order to restructure the variabilities.

Paskevicius et al. [23] propose a framework for an

automated generation of FM from Java source code using

static analysis and conceptual clustering. The approach

uses as input the dependency graph (DG) of a targeted

software system. The DG is transformed into a distance

matrix that must be analyzed using the CobWeb

algorithm [12] in order to create a features hierarchy.

This latter is used to generate the final FM as Feature

Description Language (FDL) descriptors and as Prolog

rules. Their approach may be useful during the partial

configuration of a given system, for example, to derive a

light version of a system.

Al-Msie’deen et al. [25] propose an approach for

generating FMs from Java source code of a set of

existing systems. They suppose that the analyzed systems

use the same vocabulary to name the program elements,

i.e. product variants belonging to the same SPL. First,

Software Features Extraction From… Informatica 40 (2016) 245–255 247

they explore candidate systems to extract OO building

elements (OBE). These items are then analyzed

combining FCA analysis, Latent Semantic Indexing

(LSI), and structural similarity to identify features. Their

approach has given good results. However, the analyzed

systems may not use the same vocabulary to name OBEs,

which means that the used lexical similarity cannot be

always reliable.

2.3 Synthesis

As we can see from the preceding sections, most of the

existing approaches that address the problem of reverse

engineering FMs from existing systems are semi-

automatic, and use the documentation and textual

descriptions as inputs. However, such a practice involves

several challenges. Although the input data type in a

given approach is strongly linked to its purpose and

usage type, the abstraction level and formalization of

such data must also be considered. Ziadi et al. [33] use as

input the parts of UML class diagram, which is likely to

omit many details related to the variability in the

program implementation. FM generated from

requirements in [26] was imprecise and very large. The

authors justified their finding by the heterogeneous and

especially textual nature of the inputs. These latter are

likely to be filled with imprecise language commonly

used in conversations. Besides the ambiguity, scalability

is a problem in the context of SPL. Indeed, we can find a

significant number of documents associated with a given

product variant, each of which is very large in terms of

size. Other works such that given by Haslinger et al. [15]

use a set of FM of existing systems in order to derive the

SPL’ feature model. However, existing systems do not

always have a FM, and even if exists it may not be up to

date and, therefore, does not truly reflect the variabilities

of these systems.

Regarding the used technique, the majority of

approaches use classification, since it is the most suitable

for the problem of FM generation. Some approaches

have used a clustering technique to generate FMs.

Paskevicius et al. [23] consider the hierarchy generated

by the Cobweb algorithm as a FM, while there is simply

not enough information in the input data in order to

decide one preferred hierarchy. Moreover, the use of a

simple clustering algorithm to generate disjoint groups of

program elements can cause information loss, since a

program element can be part of more than one feature

(crosscutting concerns). Niu et al. [22], address the

overlapping problem using an overlapping partitioning

algorithm called OPC [5]. Nevertheless, the OPC

algorithm requires four parameters to be specified by the

user, which significantly minimizes the automation of the

task.

Besides clustering, many researchers have used FCA

analysis to extract FMs while taking into account the

overlap problem. However, there is a limit in the use of

FCA. Indeed, not only FCA does not assure that the

generated features (formal concepts) are disjoint and

cover the entire set of entities [30], but it is also exposed

to the information loss problem. For example, in [25],

cosine similarity matrices are transformed into a (binary)

formal context using a fixed threshold. The information

loss caused by such a sharp threshold usage may affect

the quality of the result, as claimed by the authors in [2].

The REVPLINE approach proposed by Al-Msie’Deen et

al. [2, 25] generates SPL features using as inputs the

source code of product variants. They suppose that

analyzed products are developed with copy-paste

technique, i.e. they use the same vocabulary. However, if

this assumption does not hold, it is therefore essential to

have a separate FM for each product variant in order to

generate the SPL feature model.

3 A tool support for automatic

extraction of features
This section presents the main concepts, hypotheses and

techniques used in the proposed approach for mining

features from source code.

3.1 Goal and core assumptions

The overall aim of the proposed method is to identify all

feature implementations for a given software product,

based on static analysis of source code. In fact, We

recognize that it is essential to have, for every software, a

FM which is up to date and reflects the changes that were

made to the source code over time. The generated

features can be used for documenting a given system as

well as for reverse engineering a FM for a SPL. We

adhere to the classification given by [16] which

distinguishes three categories of features: functional,

operational and presentation features. In this article we

focus on the identification of functional features;

functional features express how users can interact with a

software system.

The functional features are implemented using OO

program elements (PEs), such as packages, classes, class

attributes, methods or elements of method bodies. We

also consider that the PEs can be classified in two

categories: (1) atomic program elements (APE), and (2)

composite program elements (CPE). An APE is a basic

construction element in the program (a variable or a

method). A CPE is a composition of atomic and/or

composite PEs (i.e. a class or a package). A dependency

is a relation between two PEs. An element 𝐴 depends on

𝐵 if 𝐴 references 𝐵. For example a method 𝐴() uses a

variable 𝐵 or calls a method 𝐵(). Given a dependency

graph 𝐺 = (𝑉, 𝐸), a cluster is defined as a sub-graph

�̀� = (�̀�, �̀�) whose nodes are tightly connected, i.e.

cohesive. Such clusters are considered as functional

feature implementations. We suppose also that feature

implementations may overlap; a given PE may be shared

by the implementations of several features

simultaneously.

In addition, since a class represents the main

building unit in OO languages, we assume that a

generated feature is represented by at least one class.

Indeed, a class is generally referred to as a set of

responsibilities that simulates a concept or a feature in

the application domain [9]. This hypothesis has been

248 Informatica 40 (2016) 245–255 I.E. Araar et al.

checked by experiments carried out in [25]. For the sake

of simplicity, we make no distinction between classes per

se and abstract classes. Taking into account this

assumption about classes, interfaces must be pruned from

the PEs set. In fact, as a method body must anyway be

redefined at the class level when implementing an

interface, then considering interfaces in the inputs will

not provide additional information to the overall mining

process. Consequently, pruning interfaces from the initial

PEs set will not affect the validity of our assumptions.

Furthermore, since a software system’s features are

associated with its behavior, we decided to keep only

those PEs which are created by developer to implement

the system’s specific features. For example, a linked list

is a concept from the solution domain which may be

implemented in the source code, yet it is not a specific

feature of the system. All the concepts we defined for

mining features are illustrated in the “program to feature

mapping model” of Figure 1.

3.2 Feature mining step by step

This section presents, in a detailed way, the feature

reengineering process. Input data were prepared using

the method described by Paskevicius et al. [23] while

introducing necessary modifications to comply with

assumptions and techniques used in our proposed

approach. The architecture of our proposed approach for

mining features from source code is given in Figure 2.

3.2.1 Extraction of program elements and

dependencies

Dependencies of the candidate system was modelled

using an oriented dependency graph 𝐺 = (𝐹, 𝐷), such

that 𝐹 is a set of vertices which represent PEs, and 𝐷 is a

set of dependencies. The dependency graph 𝐺 was

generated and saved into an XML file by analyzing

“.class” files using DependencyExtractor. This latter is a

part of a toolbox called JDependencyFinder1. The use of

the Java byte code instead of the source code facilitates

the analysis of existing systems whose source code is not

available. Moreover, sometimes source code lacks

information like, for example, how the compiled code

will be organized in execution containers (Jar files). Such

information is usually defined in the scripts executed

during compilation [7]. The choice of using a

dependency graph as input is justified by the nature of

the problem as well as the granularity of the processed

entities. In fact, we try to build clusters of PEs, i.e.

feature implementations, based on functional

dependencies between these PEs; a feature

implementation is characterized by a strong functional

dependency (intra-cluster cohesion) between its

composing PEs.

DependencyExtractor was executed through the

command line by combining three of its parameters: [-

class-filter], [-minimize] and [-filter-excludes]. The [-

minimize] parameter was used to remove redundant

dependencies. In fact, it is often the case that an explicit

dependency in the code can be implied from another

explicit dependency in that code. Such dependencies do

not add anything to the overall connectivity of the graph

and, therefore, must be removed. The second parameter,

i.e. [-class-filter], allows us to select only those

dependencies going to/from classes. These latter

represent, as explained earlier, the main construction

1 http://depfind.sourceforge.net/

Figure 1: A meta-model to map source code to features.

Software Features Extraction From… Informatica 40 (2016) 245–255 249

units of feature implementations. The choice of using

such type of dependencies instead of only considering

inter-class dependencies is justified by the fact that such

kind of mixed dependencies are likely to enrich the

training set. Finally, the third parameter [-filter-excludes]

is used to remove graph vertices (resp. dependencies)

which represents language specific libraries, such that

“Java.*” and “javax.*”.

3.2.2 Constructing the similarity matrix

The dependency graph generated in the previous step is

used in this phase to build a similarity matrix. A native

structural distance-based measure was used to evaluate

similarity between each pair of vertices. Firstly, the

dependency graph 𝐺 was expressed, as an adjacency

matrix 𝐶 of the size |𝐹|, such that 𝑐𝑖𝑗 = 1 means that

there exists an explicit dependency from 𝑖 to 𝑗. In order

to describe indirect dependencies, the matrix 𝐶 has been

converted into a distance matrix 𝑀 of size |𝐹| using

Floyd-Warshall’s all pairs shortest path algorithm (after

Floyd [13] and Warshall [31]), such that 𝑚𝑖𝑗 is equal to

the shortest path distance between program elements 𝑖
and 𝑗. The two matrices 𝐶 and 𝑀 are asymmetric because

the dependency graph 𝐺 is directed. Given that the used

clustering algorithm operates on an undirected graph, the

asymmetric distance table 𝑀 was converted into a

symmetric table �̀�, such that �̀�𝑖𝑗 = �̀�𝑗𝑖 =

𝑀𝑖𝑛 (𝑚𝑖𝑗 , 𝑚𝑗𝑖). In addition, it is difficult to estimate the

similarity between two PEs using absolute distance �̀�𝑖𝑗.

Hence, absolutes distances matrix was converted into a

normalized similarity matrix in such a way that two

given PEs have a similarity 𝑆(𝑖, 𝑗) = 0 if there is no path

between them, and a similarity 𝑆(𝑖, 𝑗) = 1 if they are

identical.

3.2.3 Building feature implementations

After preparing the training set using program

dependencies, OclustR algorithm [24] was then executed

on that data to generate a set of clusters of PEs. Each

calculated cluster is considered as the implementation of

a single feature. The OclustR passes through two main

stages: (1) initialization step, and (2) the improvement

step.

The main idea of the initialization phase is to

produce a first set 𝑋 of sub-graphs, i.e. ws-graphs, that

covers the graph; in this context, each ws-graph consists

in a candidate cluster. Afterward, during the

improvement phase, a post-processing is performed on

the initial clusters in order to reduce their number and

overlap. To do this, the set 𝑋 is analyzed to remove ws-

graphs which are considered as less useful. These latter

are pruned by merging the sets of their vertices with

those of a chosen ws-graph.

Formally, let 𝑂 = {𝑃𝐸1 , 𝑃𝐸2, . . . , 𝑃𝐸𝑛} be a set of

PEs. The OclustR algorithm uses as input an undirected

and weighted graph �̃�𝛽 = (𝑉, �̃�𝛽 , 𝑆), such that 𝑉 = 𝑂,

and there is an edge (𝑣, 𝑢) ∈ �̃�𝛽 iff 𝑣 ≠ 𝑢 and 𝑆(𝑣, 𝑢) ≥

𝛽, with 𝑆(𝑃𝐸1 , 𝑃𝐸2) is a symmetric similarity function

and 𝛽 ∈ [0,1] is a user-defined threshold; Each edge

(𝑣, 𝑢) ∈ �̃�𝛽 is labeled with the value of 𝑆(𝑣, 𝑢). We

assume that each PE must be assigned at least to one

cluster, even if the similarity between that element and

the cluster’s center is very small. Thus, there is an edge

(𝑣, 𝑢) ∈ �̃�𝛽 iff 𝑣 ≠ 𝑢 and 𝑆(𝑣, 𝑢) > 0. Consequently, we

are sure that every PE in the training set will be assigned

to at least one cluster. The OclustR algorithm doesn’t

need, henceforth, any input parameter, which increase

the task automation. The user still can select other values

for the parameter 𝛽 in order to generate features with

more fine-grained granularity, so he can have multiple

views of the analyzed system with different abstraction

levels.

3.2.4 Pruning irrelevant clusters

When constructing the dependency graph, we have

selected only those dependencies whose composing

nodes contains at least one class, which means that the

resulting clusters will be composed of APEs and/or

CPEs. Taking into account that classes are considered as

the main construction units of feature implementations,

Figure 2: The feature mining process.

250 Informatica 40 (2016) 245–255 I.E. Araar et al.

Figure 3: Example of a mined feature.

clusters which contain only APEs are, consequently,

considered as irrelevant and pruned from the result set. In

the case of a mixed content cluster, each APE has been

replaced by its source class. Indeed, APEs involved in

such clusters are only used to provide an optional

detailed view. Hence, the final result is a set of relevant

clusters composed only by classes. Figure 3 represents a

feature (i.e. cluster) mined by our proposed approach for

the Drawing Shapes case study (see Section 4.1.1). Given

that a cluster computed using OclustR is mainly a ws-

graph, it’s, consequently, defined by his name which is a

unique reference given by the system, his center, and his

satellites.

4 Experimentations
In this section, the experimental setup is described and

subsequently, the empirical results are presented in

detail, together with a discussion of possible limitations

and threats to validity of this study.

4.1 Experimental setup

We fully implemented the steps described in Section 3.2

as a Java tool. We tried to develop the features inference

engine as an independent component so that it can be

used in a generic and efficient manner. The feature

inference engine reads dependency graphs generated

using a static analyzer, and seeks to discover software

features. In our experiments, we tested our implemented

tool on two Java programs, but software written in other

OO languages (i.e. C++ or C#) can also be analyzed

using our tool, if their dependency graphs are delivered

in XML files respecting the DTD2 used by the

2 http://depfind.sourceforge.net/dtd/dependencies.dtd

DependencyExtractor tool. Experiments were made on

Windows 7 based PC with Intel i5-4200U processor and

8G of RAM.

4.1.1 Case studies

In order to validate the proposed approach, we conducted

experiments on two different Java open-source

applications: Mobile media3 and Drawing Shapes4. The

advantage of having two case studies is that they

implement variability at different levels. In addition, the

corresponding documentations and FMs are available

which facilitate the comparison with our results.

Moreover, using these two case studies we target two

different categories of FMs: (1) a flat FM which is

related with the Drawing Shapes case study, and (2) a

nested FM related with the Mobile Media case study.

Figure 4 and Figure 5 present the corresponding FMs,

following the notation proposed by Ferber et al. [10].

The Drawing Shapes SPL represents a small case

study (version 5 consists of 8 packages and 25 classes

with about 0,6 KlOC). The Drawing Shapes application

allows a user to draw seven different kinds of shapes in a

variety of colors. The user chooses the shape and the

color, and then presses the mouse button and drag the

mouse to create the shape. The user can draw as many

shapes as desired. The Drawing Shapes software variants

were developed based on the copy paste modify

technique. In this example, we use version 5 (the full

version) which supports draw 3D rectangle, draw

rectangle, draw oval, draw string and draw arc features,

together with the core one.

The Mobile Media [32] SPL is a benchmark used by

researchers in the area of program analysis and SPL

research [2, 11, 29]. It manipulates photo, music, and

video on mobile devices, such as mobile phones. Mobile

Media endured seven evolution scenarios, which led to

eight releases, comprising different types of changes

involving mandatory, optional, and alternative features,

as well as non-functional concerns. In this example, we

used the sixth release (R6) which contains OO

implementation of all the optional and mandatory

features for managing Photos. The used release of

3 http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/
4 https://code.google.com/p/svariants/

Figure 4: The Drawing Shapes FM.

http://depfind.sourceforge.net/dtd/dependencies.dtd
http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/
https://code.google.com/p/svariants/

Software Features Extraction From… Informatica 40 (2016) 245–255 251

Mobile Media consists of 9 packages, 38 classes with

about 3 KLOC.

The PEs used to implement the Exception handling

feature in this Mobile Media release were discarded from

the entry set in the pre-processing phase. Indeed, as

mentioned before, this paper deals only with functional

feature implementations. Additionally, we used the

default similarity threshold value for OclustR, i.e. 𝛽 = 0.

4.1.2 Evaluation measures

The accuracy and performance of the proposed method is

evaluated using an external validation measure. The F-

measure [8] is a well-known tool in the information

retrieval (IR) domain, which can also be used as a

measure for flat clustering quality. We assume that for a

given set of program elements 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑛} we

have both: the real, true partition of this set 𝐿 =
{𝐿1, 𝐿2, … , 𝐿𝐾𝐿 } (we can call 𝐿 sets as classes, 𝐾𝐿 is the

number of classes) and clustering partition, the result of

OclustR algorithm 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝐾𝐶 } (𝐶 sets as

clusters, 𝐾𝐶 is the number of clusters), in order to

compute how similar they are.

For the two aforementioned case studies, the true

partitions (i.e. listing of real features’ PEs) were prepared

manually by inspecting the documentation provided by

their authors.

F-measure is a mixture of two indices: precision (𝑃),

which measures the homogeneity of clusters with respect

to a priori known classes, and recall (𝑅), that evaluates

the completeness of clusters relatively to classes. A

higher precision shows that almost all the cluster

elements correspond to expected class. A lower recall, in

the other hand, indicates that there are various actual

elements that were not retrieved. The convenience of F-

measure at this stage of our work is justified by the

behavior of this metric. Indeed, F-measure computes the

quality of every cluster independently with respect to

each class, which allows us to automatically determine

the most representative cluster for each class in the gold

standard.

Having the previously introduced notation, precision

of cluster 𝐶𝑖 with regard to class 𝐿𝑗 is computed as

follows:

𝑃(𝐶𝑖 , 𝐿𝑗) =
|𝐶𝑖 ∩ 𝐿𝑗|

|𝐶𝑖|

Recall of cluster 𝐶𝑖 with respect to class 𝐿𝑗 is

computed as follows:

𝑅(𝐶𝑖 , 𝐿𝑗) =
|𝐶𝑖 ∩ 𝐿𝑗|

|𝐿𝑗|

Thus, the 𝐹 value of the cluster 𝐶𝑖 with respect to

class 𝐿𝑗 is the combination of these two:

𝐹(𝐶𝑖 , 𝐿𝑗) =
2 × 𝑃(𝐶𝑖 , 𝐿𝑗) × 𝑅(𝐶𝑖 , 𝐿𝑗)

𝑃(𝐶𝑖 , 𝐿𝑗) + 𝑅(𝐶𝑖 , 𝐿𝑗)

Hence, the F-measure for a cluster 𝐶𝑖 is the highest

of 𝐹 values obtained by comparing this cluster with each

of known classes:

𝐹(𝐶𝑖) = 𝑚𝑎𝑥
𝐿𝑗∈𝐿

𝐹(𝐶𝑖, 𝐿𝑗)

Despite the fact that the usage of F-measure at this

point decreases the expert involvement, this metric seems

to be inappropriate when assessing the overall

effectiveness of an overlapping clustering solution.

According to [3], F-measure does not always detect small

improvements in the clustering distribution, and that

might have negative implications in the system

evaluation/refinement cycles. The authors in [3] have

proposed a new metric, i.e. 𝐹𝐵𝐶𝑢𝑏𝑒𝑑, that gives a good

estimation of the clustering system effectiveness while

taking into account the overlapping among clusters.

Thus, we decided to evaluate the overall accuracy and

performance of our proposed method using 𝐹𝐵𝐶𝑢𝑏𝑒𝑑.

The 𝐹𝐵𝐶𝑢𝑏𝑒𝑑 is calculated using the BCubed Precision

and BCubed Recall metrics as proposed in [3]. The

BCubed Precision and BCubed Recall are based on the

Multiplicity Precision and Multiplicity Recall metrics

respectively; which are defined as:

𝑀𝑃(𝑜1, 𝑜2) =
𝑀𝑖𝑛(|𝐶(𝑜1) ∩ 𝐶(𝑜2)|, |𝐿(𝑜1) ∩ 𝐿(𝑜2)|)

|𝐶(𝑜1) ∩ 𝐶(𝑜2)|

Figure 5: The Mobile Media FM.

252 Informatica 40 (2016) 245–255 I.E. Araar et al.

𝑀𝑅(𝑜1, 𝑜2) =
𝑀𝑖𝑛(|𝐶(𝑜1) ∩ 𝐶(𝑜2)|, |𝐿(𝑜1) ∩ 𝐿(𝑜2)|)

|𝐿(𝑜1) ∩ 𝐿(𝑜2)|

Where 𝑜1 and 𝑜2 are two program elements, 𝐿(𝑜1)

are the classes associated to 𝑜1, 𝐶(𝑜1) are the clusters

associated to 𝑜1. 𝑀𝑃(𝑜1, 𝑜2) is the Multiplicity Precision

of 𝑜1 wrt 𝑜2, such that 𝑜1 and 𝑜2 share at least one

cluster. 𝑀𝑅(𝑜1, 𝑜2) is the Multiplicity Recall of 𝑜1 wrt

𝑜2, such that 𝑜1 and 𝑜2 share at least one class.

Let 𝐷(𝑜𝑖) be the set of PEs that share at least one

cluster with 𝑜𝑖 including 𝑜𝑖 . The BCubed Precision

metric of 𝑜𝑖 is defined as:

𝐵𝐶𝑢𝑏𝑒𝑑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑜𝑖) =
∑ 𝑀𝑃(𝑜𝑖 , 𝑜𝑗)𝑜𝑗∈𝐷(𝑜𝑖)

|𝐷(𝑜𝑖)|

Let 𝐻(𝑜𝑖) be the set of PEs that share at least one

class with 𝑜𝑖 including 𝑜𝑖 . The BCubed Recall metric of

𝑜𝑖 is defined as:

𝐵𝐶𝑢𝑏𝑒𝑑𝑅𝑒𝑐𝑎𝑙𝑙(𝑜𝑖) =
∑ 𝑀𝑅(𝑜𝑖 , 𝑜𝑗)𝑜𝑗∈𝐻(𝑜𝑖)

|𝐻(𝑜𝑖)|

The overall BCubed Precision of the clustering

solution, denoted as 𝐵𝐶𝑢𝑏𝑒𝑑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, is computed as the

average of the BCubed precision of all PEs in the

distribution 𝑂; the overall BCubed recall of the clustering

solution, denoted as 𝐵𝐶𝑢𝑏𝑒𝑑𝑅𝑒𝑐𝑎𝑙𝑙 , is defined

analogously but using the BCubed recall of all PEs.

Finally, the FBCubed measure of the clustering solution

is computed as the harmonic mean of 𝐵𝐶𝑢𝑏𝑒𝑑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

and 𝐵𝐶𝑢𝑏𝑒𝑑𝑅𝑒𝑐𝑎𝑙𝑙 as follows:

𝐹𝐵𝐶𝑢𝑏𝑒𝑑 =
2 × 𝐵𝐶𝑢𝑏𝑒𝑑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝐵𝐶𝑢𝑏𝑒𝑑𝑅𝑒𝑐𝑎𝑙𝑙

𝐵𝐶𝑢𝑏𝑒𝑑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝐵𝐶𝑢𝑏𝑒𝑑𝑅𝑒𝑐𝑎𝑙𝑙

4.2 Results and discussions

Our implemented tool has derived features quickly from

the used case studies in a reasonable amount of time

(about 1 second). Table 1 summarizes the obtained

results. For the sake of readability, we manually

associated feature names to clusters, based on their

content. Of course, this does not impact the quality of our

results.

Firstly, we observe that the F values obtained in the

Mobile media case study have been greatly influenced by

the recall values. The precision values however, remain

high for the majority of the features, indicating the

relevance of their composing PEs.

These observations can be explained by the

operating mechanism of OclustR, which produces

partitions having strong cohesion and low overlap.

Indeed, we assumed that the features are simulated using

one or more classes at the code level. Considering this

assumption, implementations of Mobile Media features

are therefore strongly overlapped. Indeed, many classes

are shared by the implementations of numerous features

at the same time, because of the use of several design

patterns by the Mobile Media authors such as Model-

Vue-Controller (MVC) and Chain of responsibility. For

example, the classes PhotoController, ImageAccessor

and ImageData encapsulate all the photo management

methods. Thus, features such as send picture, sorting and

add picture share most of their PEs (i.e. classes) and,

therefore, have reached a low Recall and F values. The

Splash screen feature however, has not suffered from this

problem since all functionalities related to this feature

were encapsulated in distinguishable classes. Thus, the

splash screen feature obtained a maximum F value.

The conclusions drawn from the Mobile Media

analysis comply with those obtained for the Drawing

Shapes case study. The Drawing Shapes features are

slightly overlapped, so we reached a maximum F value,

except for the 3D-Rectangle and Core features. The low

F value of 3D-Rectangle is caused by the low cohesion

between its classes in the source code level. In fact, the

manual verification of the 3D-Rectangle source code

revealed that the Drawing Shapes author has

intentionally or accidently caused this low cohesion by

creating 3D-Rectangle classes without creating

dependencies between them (i.e. classes instantiations

are missing). Thus, the PEs involved in the

implementation of 3D-Rectangle were scattered

throughout the results, so that a low F value was reached.

However, in the case of Core feature, some relevant PEs

were mined and mistakenly mapped to another cluster so

Feature
Evaluation metrics

P % R % F %

Drawing Shapes (version 5)

Core 100 57 73

Drawing Text 100 100 100

Drawing Oval 100 100 100

Drawing Line 100 100 100

Drawing Rectangle 100 100 100

Drawing Image 100 100 100

Drawing Arc 100 100 100

Drawing 3D-

Rectangle
11 33 17

Mobile Media (version 6)

Splash screen 100 100 100

SMS transfer 64 41 50

Photo management 100 35 52

Album management 40 22 29

View photo 54 58 56

Edit photo Label 70 39 50

Add photo 100 9 17

Delete photo 40 40 40

Favourites 100 8 15

Sorting 100 8 15

Add album 67 22 33

Delete album 38 38 38

Send photo 100 14 25

Receive photo 40 17 24

Table 1: Features mined from Mobile Media and

Drawing Shapes softwares.

Software Features Extraction From… Informatica 40 (2016) 245–255 253

that the F value was slightly affected. Anyway, the F-

measure for this latter is 0.73 on average which is an

acceptable value.

The evaluation of overlapping clustering solution for

each of the case studies using the FBCubed metric

clearly confirms the above findings (see Table 2). The

overall BCubed Precision of the Mobile Media case

study remains high and the low value of the Bcubed

Recall affected consequently the global FBCubed value.

In the other hand, balanced and high values were reached

for the Drawing Shapes’ Bcubed metrics.

Software
BCubed

Precision

Bcubed

Recall
FBCubed

Drawing

Shapes
80% 67% 73%

Mobile

Media
78% 25% 38%

Table 2: The BCubed evaluation results of the

overlapping clustering solutions.

Despite F-measure and FBCubed proved to be

appropriate, our implemented tool generates a small

number of clusters most of which are relevant. This latter

characteristic makes our results easily understandable

and effectively handleable by the user. Table 3 shows

that our tool generated 50% of relevant clusters for

Drawing Shapes case study, and 88% for Mobile Media.

Software
Mined

clusters

Relevant

clusters

Relevance

ratio

Drawing

Shapes
16 8 50%

Mobile

Media
16 14 88%

Table 3: Number of reliable mapping.

The results show that our proposed approach has

generated a reasonable number of features with an

acceptable precision. According to the case studies that

we have conducted, our proposed method operates

efficiently when dealing with programs having flat FMs.

Unlike documentation-based approaches [15, 26, 33], our

proposed approach relies on source code as it seems to be

the most reliable source that can capitalize on the

knowledge and the expertise of experts who participated

in the development of the analyzed systems. Since they

consist of sets of program elements, the features

generated by the proposed approach are of a more formal

nature which, thereby, facilitates their interpretation and

further manipulation.

The proposed approach provided a feature catalogue

instead of generating one preferred hierarchy. This latter

characteristic, together with the formal nature of the

generated features, represents the key strength of our

proposed approach, so it can operate in a generic and

efficient manner. Thus, results obtained by our proposed

method can be manipulated by other complementary

tools in order to get additional information and,

therefore, construct a reliable FM. Our proposed method

is also complementary to other approaches such as

software transplantation [4]. Inspired from human organ

transplantation, this latter works by isolating the code of

a useful feature in a “donor” program and transplanting

this “organ” to the right “vein” in software lacking the

feature. Our proposed approach can act in such case by

delimiting and extracting a feature before its

transplantation.

In addition, our proposed method addressed the

information loss problem that characterizes most of

FCA-based methods by the usage of a similarity

measure. This latter can be tuned by the user to change

the granularity of outputs. Compared to other clustering

approaches [22, 23], our proposed approach used a new

partitioning algorithm that provides overlapping clusters

in an efficient manner. The user involvement was

negligible during all the steps of our experimentation.

Hence, the method can be potentially very useful and it

can save stakeholder from a lot of effort and time

required to specify features composing each software

variant during the SPL reverse engineering task.

4.3 Threats to validity

There is a limit to the use of Floyd’s algorithm to infer

similarity between PEs. In fact, the complexity

determined by this algorithm is of 𝑂(𝑛3) [18]. In

addition, precomputing all the shortest paths and storing

them explicitly in a huge dependency matrix seems to be

challenging in terms of space complexity. These two

factors affect the applicability of the proposed approach

on larger software systems. In fact, even if computing

shortest paths is a well-studied problem, exact algorithms

cannot be adopted for a massive dependency graph.

Moreover, as illustrated above, the OclustR

algorithm manages clusters’ overlapping but still

represents several restrictions when dealing with clusters

that are strongly overlapped, which limits the usability of

the proposed approach to systems with a nested FM.

Another problem related to OclustR that may affect the

results accuracy happens when a given class, i.e. an

abstract class, is inherited by most of the system classes

and, thus, will be considered as the center 𝑐 of a ws-

graph (𝐺𝑐
⋆) having all the inheriting classes as satellites.

Hence, during the improvement phase, each ws-graph

having as center one of the 𝐺𝑐
⋆ satellites will be judged as

irrelevant. In this case, we call 𝐺𝑐
⋆ a predatory ws-graph

and his center 𝑐 a predatory center. Such predatory

cluster phenomena may affect the results accuracy.

Finally, structural distance-based measure used in

the proposed approach still has some restrictions. Indeed,

we used a simple technique to compute similarity

between PEs based on the number of steps on the

shortest path relating them in the graph. Even that such a

strategy has given acceptable results, it still has some

limitations since it does not consider the multiplicity in

paths (i.e. connectivity) between a pair of nodes.

5 Conclusion and perspectives
In this paper, we proposed a new method for reverse

engineering software functional features from source

code. We used dependencies that exist between program

254 Informatica 40 (2016) 245–255 I.E. Araar et al.

elements at the source code level in order to apply a

graph clustering algorithm in an efficient way. We tested

our implemented tool to recover features from source

code of two existing java programs. We obtained

promising results that are consistent with the main

objectives of our study, which makes the proposed

approach useful for mining features from software source

code.

In future work, we would like to improve output

quality using other overlapping clustering techniques, in

order to overcome the aforementioned OclustR

limitations. We also plan to automatically extract mined

feature names, based on features contents, in order to

facilitate their interpretation and manipulation in further

tasks.

Furthermore, in order to tackle the complexity

problem when computing structural distance-based

measures, we plan to use approximation methods based

on random walks [1], such as random walk with restart.

Besides complexity optimization, random walk-based

measure provides a result that is different from that of the

shortest-path measure because the multiplicity in paths

between a pair of nodes is also leveraged when

computing similarity. Such a measure is likely to

enhance accuracy of our results and to reduce the effects

of the predatory clusters phenomena.

Moreover, since software features are associated

with its behavior, we intend to enrich input data using

dynamic information. Indeed, even if they are based on

different operating strategies, dynamic and static

analyses can be complementary in certain points [28].

Hence, a dynamically collected data is likely to enhance

the result set by additional information.

6 References
[1] C. C. Aggarwal (2015), "Similarity and Distances",

Data Mining: The text book, pp. 63-91: Springer

International Publishing.

[2] R. Al-Msie'deen et al. (2014), “Automatic

Documentation of [Mined] Feature

Implementations from Source Code Elements and

Use-Case Diagrams with the REVPLINE

Approach”, International Journal of Software

Engineering and Knowledge Engineering, vol. 24,

n°. 10, pp. 1413-1438.

[3] E. Amigó et al. (2009), “A comparison of extrinsic

clustering evaluation metrics based on formal

constraints”, Information Retrieval, vol. 12, n°. 4,

pp. 461-486.

[4] E. T. Barr et al. (2015), “Automated software

transplantation”, in International Symposium on

Software Testing and Analysis Baltimore, MD,

USA, pp. 257-269.

[5] Y.-L. Chen, and H.-L. Hu (2006), “An overlapping

cluster algorithm to provide non-exhaustive

clustering”, European Journal of Operational

Research, vol. 173, n°. 3, pp. 762-780.

[6] P. Clements, and L. Northrop (2001), "Software

product lines: practices and patterns", Addison-

Wesley.

[7] J. Dietrich et al. (2008), “Cluster analysis of Java

dependency graphs”, in Proceedings of the 4th

ACM symposium on Software visualization,

Ammersee, Germany, pp. 91-94.

[8] K. Draszawka, and J. Szymański (2011), "External

Validation Measures for Nested Clustering of Text

Documents", Emerging Intelligent Technologies in

Industry, Studies in Computational Intelligence pp.

207-225: Springer Berlin Heidelberg.

[9] H. Eyal-Salman, A.-D. Seriai, and C. Dony (2013),

“Feature-to-Code Traceability in Legacy Software

Variants”, in 39th EUROMICRO Conference on

Software Engineering and Advanced Applications

Santander, Spain, pp. 57-61.

[10] S. Ferber, J. Haag, and J. Savolainen (2002),

“Feature Interaction and Dependencies: Modeling

Features for Reengineering a Legacy Product

Line”, in Proceedings of the Second International

Conference on Software Product Lines, pp. 235-

256.

[11] E. Figueiredo et al. (2008), “Evolving Software

Product Lines with Aspects: An Empirical Study on

Design Stability”, in 30th International Conference

on Software Engineering, Leipzig, Germany, pp.

261-270.

[12] D. Fisher (1987), “Knowledge Acquisition Via

Incremental Conceptual Clustering”, Machine

Learning, vol. 2, n°. 2, pp. 139-172.

[13] R. W. Floyd (1962), “Algorithm 97: Shortest path”,

Communications of the ACM, vol. 5, n°. 6, pp. 345.

[14] B. Graaf, S. Weber, and A. van Deursen (2006),

"Migrating supervisory control architectures using

model transformations", The 10th European

Conference on Software Maintenance and

Reengineering. pp. 153-164.

[15] E. N. Haslinger, R. E. Lopez-Herrejon, and A.

Egyed (2011), “Reverse Engineering Feature

Models from Programs' Feature Sets”, in 18th

Working Conference on Reverse Engineering,

Limerick, Ireland, pp. 308-312.

[16] K. Kang et al. (1990), Feature Oriented Domain

Analysis (FODA) Feasibility Study, Report

CMU/SEI-90-TR-21, Carnegie-Mellon University

Software Engineering Institute, United States.

[17] C. Kästner, M. Kuhlemann, and D. Batory (2007),

“Automating feature-oriented refactoring of legacy

applications”, in ECOOP Workshop on Refactoring

Tools, pp. 62-63.

[18] S. Khuller, and B. Raghavachari (2009), "Basic

graph algorithms", Algorithms and Theory of

Computation Handbook, Second Edition, Volume 1,

Chapman & Hall/CRC Applied Algorithms and

Data Structures series: Chapman & Hall/CRC.

[19] C. W. Krueger (2002), "Easing the Transition to

Software Mass Customization", Software Product-

Family Engineering : Revised Papers from the 4th

International Workshop on Software Product-

Family Engineering, Lecture Notes in Computer

Science pp. 282-293: Springer Berlin / Heidelberg.

[20] F. Loesch, and E. Ploedereder (2007),

"Restructuring variability in software product lines

Software Features Extraction From… Informatica 40 (2016) 245–255 255

using concept analysis of product configurations",

Proceedings of 11th European Conference on

Software Maintenance and Reengineering CSMR

'07. pp. 159-168.

[21] B. Meyer (1985), “On Formalism in Speci-

fications”, IEEE Software, vol. 2, n°. 1, pp. 6-26.

[22] N. Niu, and S. Easterbrook (2008), "On-Demand

Cluster Analysis for Product Line Functional

Requirements", Proceedings of 12th International

Software Product Line Conference SPLC '08. pp.

87-96.

[23] P. Paskevicius et al. (2012), “Automatic Extraction

of Features and Generation of Feature Models from

Java Programs”, Information Technology and

Control, vol. 41, n°. 4, pp. 376-384.

[24] A. Pérez-Suárez et al. (2013), “OClustR: A new

graph-based algorithm for overlapping clustering”,

Neurocomputing, vol. 121, pp. 234-247.

[25] R. Al-Msie’Deen et al. (2013), “Mining Features

from the Object-Oriented Source Code of Software

Variants by Combining Lexical and Structural

Similarity”, in IEEE 14th International Conference

on Information Reuse & Integration, Las Vegas,

NV, USA, pp. 586-593.

[26] A. Rashid, J. C. Royer, and A. Rummler (2011),

"Aspect-Oriented, Model-Driven Software Product

Lines: The AMPLE Way", Cambridge University

Press.

[27] U. Ryssel, J. Ploennigs, and K. Kabitzsch (2011),

“Extraction of feature models from formal

contexts”, in Proceedings of the 15th International

Software Product Line Conference, Volume 2,

Munich, Germany, pp. 1-8.

[28] E. Stroulia, and T. Systä (2002), “Dynamic analysis

for reverse engineering and program

understanding”, ACM SIGAPP Applied Computing

Review, vol. 10, n°. 1, pp. 8-17.

[29] L. P. Tizzei et al. (2011), “Components meet

aspects: Assessing design stability of a software

product line”, Information and Software

Technology, vol. 53, n°. 2, pp. 121-136.

[30] P. Tonella, and A. Potrich (2007), "Reverse

Engineering of Object Oriented Code", Springer-

Verlag New York, 1 ed.

[31] S. Warshall (1962), “A Theorem on Boolean

Matrices”, Journal of the ACM (JACM), vol. 9, n°.

1, pp. 11-12.

[32] T. J. Young (2005), “Using aspectj to build a

software product line for mobile devices”, Master

Thesis, The University of British Columbia.

[33] T. Ziadi et al. (2012), "Feature Identification from

the Source Code of Product Variants", Proceedings

of 16th European Conference on Software

Maintenance and Reengineering (CSMR). pp. 417-

422.

256 Informatica 40 (2016) 245–255 I.E. Araar et al.

