
Informatica 39 (2015) 421–429 421

Data-intensive Service Mashup Based on Game Theory and Hybrid Fireworks
Optimization Algorithm in the Cloud

Wanchun Yang
School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
School of Sciences, Shandong Jiaotong University, Jinan 250357, China
E-mail:yangwch1982@126.com

Chenxi Zhang* and Bin Mu
School of Software Engineering, Tongji University, Shanghai 201804, China
E-mail: chenxizhang10@126.com, binmu@tongji.edu.cn
∗Corresponding author

Keywords: cloud computing, data-intensive, mashup, hybrid fireworks optimization algorithm, game theory, service
correlation

Received: June 2, 2015

End users can create kinds of mashups which combine various data-intensive services to form new ser-
vices. The challenging issue of data-intensive service mashup is how to find service from a great deal
of candidate services while satisfying SLAs. In this paper, Service-Level Agreement (SLA) consists of
two parts, which are SLA-Q and SLA-T. SLA-Q (SLA-T) indicates the end-to-end QoS (transactional)
requirements. SLA-aware service mashup problem is known as NP-hard, which takes a significant amount
of time to find optimal solutions. The service correlation also exists in data-intensive service mashup
problem. In this paper, the service correlation includes the functional correlation and QoS correlation.
For efficiently solving the data-intensive service mashup problem with service correlation, we propose an
approach GTHFOA-DSMSC (Data-intensive Service Mashup with Service Correlation based on Game
Theory and Hybrid Fireworks Optimization Algorithm) which evolves a set of solutions to the Pareto op-
timal front. The experimental tests demonstrate the effectiveness of the algorithm.

Povzetek: Razvit je nov algoritem za reševanje NP težkega problema prepletanja storitev v oblaku.

1 Introduction

With the rapid development of cloud computing, the num-
ber of data-intensive services has increased dramatically.
Data-intensive services are defined as the services whose
inputs are large data sets. Users can create various mashups
which combine data-intensive services to form new value-
added services [1-2]. Data-intensive service mashup has
become an important type of application in the field of
Big Data. The challenging problem of data-intensive ser-
vice mashup is how to find service from a large number of
candidate services while satisfying SLAs. A service-level
agreement (SLA) is defined upon a mashup as its end-to-
end requirements [3]. A large number of research works
such as [4-6], solve the SLA-aware service selection prob-
lem by leveraging linear programming. However, integer
linear programming is only suitable for small size problems
and suffers from high computational costs.

In order to solve the problem of high computational
costs, numerous approaches have been studied. Alrifai et
al. [7] proposed a hybrid solution that combines global op-
timization with local selection. The approach first adopted
mixed integer programming to get the optimal decompo-

sition of end-to-end QoS constraints, and then performed
efficient local selection to get the best services which sat-
isfy the local QoS constraints. Compared with the inte-
ger linear programming, the hybrid solution performs bet-
ter in the time efficiency while achieving close-to-optimal
results. The skyline technique has been used to reduce the
number of candidate services. Instead of considering all
services of each service class, a large number of efficient
algorithms speed up the service selection process and dis-
cover the optimal composite service from a reduced solu-
tion space [8-11].

A large number of research works leverage heuristic al-
gorithms to solve the service selection problem. In [12],
an approach based on genetic algorithm was presented
where the solution is encoded as a chromosome. How-
ever, there are some shortcomings in classical genetic al-
gorithm, such as premature phenomena. To overcome the
flaws of genetic algorithm, a number of improved genetic
algorithms have been used to find the sub-optimal solu-
tion [13-18]. In [18], an improved genetic algorithm was
proposed for SLA-aware service selection problem which
results with higher fitness values. The simulated anneal-
ing and harmony search were used as mutation operator in

422 Informatica 39 (2015) 421–429 W.Yang et al.

the improved algorithm. Compared with genetic algorithm,
other heuristic algorithms can also achieve better optimal-
ity. Wang et al.[19] combined an approximation approach
with artificial bee colony to solve the QoS-aware service
selection problem. In [20], an improved immune optimiza-
tion algorithm based on PSO was presented for QoS-aware
service selection with end-to-end QoS constraints. In [21],
an effective service selection approach with global QoS
constraints based on particle swarm optimization algorithm
was proposed.

To our best knowledge, there are only a small number of
works which concern SLA from transactional risk. In [22],
a survey of SLA assurance was conducted in the cloud.
Haddad et al. [23] proposed a series of construction and
processing rules to obtain a transactional mashup. How-
ever, the approach cannot gain global optimality and cannot
support SLA-aware service selection. Wu et al.[24] com-
bined the transaction properties into QoS-aware service se-
lection and presented an approach based on ant colony al-
gorithm.Compared with [23], the approach shows better
performance in efficiency.

Many approaches regard the service mashup problem
as a single objective optimization problem. To obtain
multiple Pareto-optimal solutions, a few researches adopt
multi-objective genetic algorithms to solve the problem
[25-26]. In [25], a multi-objective optimization frame-
work for SLA-aware service selection was presented. By
leveraging multi-objective genetic algorithm, the frame-
work can produce a set of Pareto-optimal solutions effec-
tively. In [26], the authors improved a multi-objective op-
timization algorithm which applies background knowledge
to find QoS-optimized service selection. In [27], an effec-
tive multi-objective approach was presented to solve QoS-
aware service selection with conflicting objectives and di-
verse constraints on quality matrices. In [28], a hybrid
multi-objective particle swarm optimization algorithm was
proposed for SLA-aware service selection problem. Fire-
works optimization algorithm (FOA) [29-30] is a relatively
new heuristic method inspired by the phenomenon of fire-
works explosion. As far as we know, there is still no re-
search on the application of fireworks optimization algo-
rithm in multi-objective service selection problem.

The contributions which distinguish our work from the
above researches can be summarized as follows: 1. the
problem of SLA-aware data-intensive service mashup with
service correlation is formulated; 2. the SLA is divided into
two aspects which are SLA-Q and SLA-T; 3. the service
correlation is composed of two parts which are functional
correlation and QoS correlation; 4. an approach GTHFOA-
DSMSC (Data-intensive Service Mashup with Service Cor-
relation based on Game Theory and Hybrid Fireworks Op-
timization Algorithm) which evolves a set of solutions to
the Pareto optimal front is presented.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly presents the framework for data-intensive ser-
vice mashup. Section 3 introduces the multi-objective op-
timization model, while Section 4 presents an approach

based on Game Theory and Hybrid Fireworks Optimiza-
tion Algorithm. The analysis of simulated results is done
in Section 5. Finally, Section 6 concludes our work.

2 Framework for data-intensive
service mashup

Figure 1 demonstrates the data-intensive service mashup
process in the cloud. The framework is composed of three
main components: 1) Planner component; 2) Generator
component; 3) Execution Engine.

Figure 1: Framework for data-intensive service mashup.

2.1 Planner component
The component receives the request to generate an abstract
mashup. An abstract mashup specifies the execution se-
quences among the activities. Each activity is an abstract
service(AS) which corresponds to a candidate services set.

2.2 Generator component
Given a certain abstract mashup, in addition to a set of
concrete services that can implement the activities from
the cloud provider, the generator component can decide on
what concrete services to include in the mashup. This com-
ponent consists of two sub-components:1) Constraints An-
alyzer; 2) Service Selector.

Constraints Analyzer component receives the end-to-end
constraints and generates a score based on constraints. Ser-
vice Selector component selects services to construct the
concrete mashup. The concrete mashup is composed of a
set of concrete services from the candidate services. For
an abstract mashup with n abstract services and l candi-
date services in each abstract service, there are ln concrete
mashups to be evaluated. A concrete service is represented
by a tuple denoted as < N, I,O, T,Q >. Following is the
detail description of the tuple.

– N is the name of a service.

– I={I1,...,In} is a set of inputs which are required
when performing the service.

Data-intensive Service Mashup Based on. . . Informatica 39 (2015) 421–429 423

– O={O1,...,On} is a set of outputs that will be acquired
after completing the service.

– Transactional properties(T) guarantee the failure
atomicity during execution.

– QoS(Q) presents the quality of service which can be
used to assess a service.

2.3 Execution engine
The concrete mashup is sent to execution engine to be exe-
cuted. The execution engine is responsible for coordinating
the execution of the components in the most effective way.

3 Multi-objective optimization
model

3.1 QoS attributes
QoS attributes are introduced to describe non-functional
properties of data-intensive services. They are used to dif-
ferentiate the services providing the same functionality dur-
ing the service selection process. In this paper, four most
popular QoS attributes are considered: execution cost(C),
response time(T), availability(A) and reliability(R).

– Execution cost : the cost that a service requester has
to pay for the service invocation.

– Response time : the time interval between when the
service is invoked and when the result is obtained.

– Availability : the probability that the service is acces-
sible.

– Reliability : the probability that a request is correctly
responded.

3.2 Normalization of attribute value
Due to the diverse measurement metrics of QoS attributes,
attribute values should be normalized. For positive at-
tributes, higher value indicates better quality (e.g. avail-
ability and reliability), which are normalized as equation
(1). For negative attributes, lower value indicates better
quality (e.g. cost and response time), which are normal-
ized as equation (2).Qmaxi andQmini are the maximal and
minimal attribute values among all services, respectively.
Q
′

i refers to the attribute value of Qi after normalization.

Q
′

i =


Qi −Qmini

Qmaxi −Qmini

Qmaxi −Qmini > 0

1 Qmaxi −Qmini = 0
(1)

Q
′

i =


Qmaxi −Qi
Qmaxi −Qmini

Qmaxi −Qmini > 0

1 Qmaxi −Qmini = 0
(2)

3.3 QoS computation of mashup

A mashup can be constructed from several services in dif-
ferent structures. There are four basic structures: sequen-
tial, parallel, branch, and loop structures. Figure 2 shows
the four structures.

Figure 2: Four basic structures.

This paper computes the QoS of mashup according to the
equations in table 1.For an additive property (e.g. cost and
response time), we should compute the value through add
operation. For a multiplicative property (e.g. availability
and reliability), the value should be determined by multiply
operation.

Sequential Parallel branch Loop

C
n∑
i=1

ci
n∑
i=1

ci
n∑
i=1

pici k*c

T
n∑
i=1

ti max[ti]
n∑
i=1

piti k*t

A
n∏
i=1

ai
n∏
i=1

ai
n∏
i=1

piai ak

R
n∏
i=1

ri
n∏
i=1

ri
n∏
i=1

piri rk

Table 1: QoS aggregation functions.

3.4 Transactional properties

The transactional properties of services that we consider
in this paper are pivot, compensatable, retriable and their
combination. To obtain a transactional mashup, the rules
are proposed in [23]. The transactional property of mashup
Tp(M) ∈ Tpset , Tpset={p,c,r,cr}.

– TP (M) = p. Once all services of mashup execute
successfully, the effects cannot be undone.

– TP (M) = c. Mashup is able to recover its effects
even if it is executed successfully.

– TP (M) = r. Mashup will execute repeatedly until it
is successful.

– TP (M) = cr. Mashup is both compensatable and
retriable.

424 Informatica 39 (2015) 421–429 W.Yang et al.

Table 2 and 3 represent the rules, where row heading
indicates the transactional property of the first service, col-
umn heading indicates the transactional property of the sec-
ond service. The value in each table cell represents the
transactional property of mashup. ′′−′′ denotes the mashup
does not satisfy atomic consistency.

p c r cr
p - - p p
c p c p c
r - - r r
cr p c r cr

Table 2: Transactional rules for sequential construct.

p c r cr
p - - - p
c - c - c
r - - r r
cr p c r cr

Table 3: Transactional rules for parallel construct.

3.5 Service level agreement (SLA)
We assume that the end user has more SLA requirements
with regard to the QoS values and transactional properties
of the requested mashup. For a given abstract mashup, we
consider a selection as a feasible selection, if it contains
exactly one service for each service class and satisfies the
end-to-end QoS (transactional) requirements.

3.6 Service correlation
– Functional Correlation: some concrete services are

functional dependent on each other. The functional
correlation FC(Sim, Sjn) indicates if the abstract ser-
vice Si selects the mth concrete service, then the nth

concrete service should be selected for abstract ser-
vice Sj .

– QoS Correlation: the QoS values delivered by a ser-
vice in a mashup may vary according to the other ser-
vices selected. QCa(Sim, Sjn) indicates a QoS corre-
lation between Sim and Sjn, regarding a QoS attribute
a.

3.7 Multi-objective optimization model
In this paper, we take T, C and R as three objective func-
tions for the sake of simplicity. A model of multi-objective
service mashup can be formalized as follows:

Minimum(T(M),C(M),-R(M))
s.t.

(1)A(M) > A0

(2)T (M) < T0

(3)C(M) < C0

(4)Tp(M) ∈ {p,c,r,cr}
(5)Correlation constraints are satisfied.

Where T(M),C(M),A(M) and R(M) represent QoS at-
tributes of mashup. A0 ,T0 and C0 are the constraints to
availability, time and cost respectively. The goal is to make
the objective functions to be minimized simultaneously.

4 Service mashup based on game
theory and hybrid fireworks
optimization algorithm

4.1 Game theory
During the game, a problem is divided into several simpler
problems according to the number of players. Each player
seeks the best strategy in order to improve its objective cri-
terion. As soon as no players can improve its objective
value by adjusting its own best strategy, the goal is reached.

4.2 Fireworks optimization algorithm
Fireworks Optimization Algorithm (FOA), a novel heuris-
tic algorithm, is implemented by simulating the fireworks
explosion. At each iteration, the algorithm selects some
quality locations as fireworks, which generate many sparks
to search the local area. The algorithm continues until op-
timal location is found, or the termination condition is sat-
isfied. The number of sparks and the amplitude generated
by each firework are respectively defined such that:

si = m× fmax − f(xi) + α
n∑
i=1

(fmax − f(xi)) + α

(3)

Ai = A× f(xi)− fmin + α
n∑
i=1

(f(xi)− fmin) + α

(4)

Where m and A are control parameters, n is the size of
the population, fmax and fmin indicate the maximum and
minimum object values among the n fireworks respectively,
and α is a small constant. To avoid overwhelming effects
of splendid fireworks, bounds are defined for si as follows:

s
′

i =


round(β ×m) if si < βm

round(δ ×m) if si > δm

round(si) otherwise

(5)

Where β and δ are constant parameters. The location of
each spark xj generated by xi can be calculated by equa-
tion (6):

xdj = xdi +Ai × rand(−1, 1) (6)

Data-intensive Service Mashup Based on. . . Informatica 39 (2015) 421–429 425

If the obtained location falls out of the search area, we
should map it to the search area as follows:

xdj = xdmin + xdjmod(xdmax − xdmin) (7)

In the algorithm, the current best location is always selected
as a firework of the next explosion iteration. Afterwards, n-
1 locations are selected according to their distances to other
locations.

4.3 Fitness assignment
In this paper, we adopt the notion of domination value to
compute the fitness. A solution xi is said to dominate a
solution xj in three cases:

– The solution xi is feasible, and xj violates some con-
straints.

– Both xi and xj are feasible, and xi dominates xj in
terms of their object values.

– Both xi and xj violate constraints, and xi dominates
xj in terms of their SLA violations.

In the GTHFOA-DSMSC, the fitness value of xi is de-
termined:

f(xi) =
∑
xj>xi

s(xj) +
1

d(xi)
(8)

Where d(xi) is the distance from xi to its nearest solu-
tion. The strength value s(xj) is computed according to the
number of other solutions it dominates.

s(xj) = |{xk ∈ P ∪NP |xj > xk}| (9)

4.4 Coding strategy
As illustrated in figure 3, the firework is encoded as an inte-
ger array of n elements: AS1,AS2, . . . , ASn and the value
of ASi ranges from 1 to m . Where n is the number of
activities in the abstract mashup and m is the number of
candidate services for each of the activity.

Figure 3: Coding strategy.

4.5 Crossover and mutation operators

The crossover and mutation operators are incorporated into
the FOA to improve the performance. If crossover occurs at
certain position, solutions in pairs swap their values at that
position and the resulting solutions are used as offspring.
The mutation operator is done by randomly selecting a po-
sition in a parent solution and randomly choosing a new
concrete service to replace the one at that position.

Figure 4: Crossover operator.

4.6 Non-dominated archive controller

The function of the archive controller is to determine
whether a solution should be inserted into the external
archive. The size of external archive may increase quickly,
and thus it is required to limit the size of archive. If the ex-
ternal archive is empty, then the current solution is added
into the archive. If the new solution is dominated by an in-
dividual within the archive, then the solution is discarded.
If none of the individuals included in the archive domi-
nates the new solution, then the solution is inserted in the
archive. If there are individuals in the archive which are
dominated by the new solution, then the individuals are re-
moved from the external archive. Lastly, when the external
archive reaches the size limit, the approach proposed by
[31] is invoked.

4.7 Hypervolume (HV)

The HV of a solution set w signifies the hypervolume in
the objective space that is dominated by w . In Figure 5,
the solution w5 is dominated by the solution set {w1, w2,
w3 ,w4}. In this paper, we combine the non-dominated
fronts of several algorithms into a maximum front wmax .
The HV ratio of w is calculated by equation (10):

HV Ratio =
HV (w)

HV (wmax)
(10)

426 Informatica 39 (2015) 421–429 W.Yang et al.

Figure 5: The hypervolume of the solution set {w1, w2, w3,
w4}.

4.8 Algorithm design of GTHFOA-DSMSC
The algorithm description is as follows:

step1 Randomly generate a population P of n feasible so-
lutions; create the empty external archive, and se-
lect non-dominated solutions from P to update the
archive. Each player optimizes only his object.

step2 If the termination criteria is satisfied, goto Step5;
else continue;

step3 Compute si and Ai for each individual xi in P ac-
cording to equations (3) (4)and (5); generate sparks
of xi according to equations (6) and (7); compute
fitness for all sparks according to equations (8)
and (9); select n solutions from the fireworks and
sparks, use the crossover and mutation operations
on the n solutions. Each player obtains his best so-
lution respectively. Update the archive based on the
new solutions.

step4 Update P by including the best solution and other
n− 1 ones selected based on their distance to other
locations, goto Step2.

step5 Get the solutions and stop the algorithm.

5 Experiment and analysis
In this section, we conduct experiments to assess the per-
formance of the proposed algorithm on a PC with Pen-
tium 2.0GHz processor, 4.0GB of RAM and Windows7.
In the experiment, the QoS attributes of the services are
randomly generated expect for the cost, which is par-
tially anti-correlated to the other QoS attributes. The al-
gorithms optimize three objectives and have to meet con-
straints. The transactional property of each service is se-
lected from {p,c,r,cr} randomly. The percentage Θ indi-
cates the strength of end-to-end QoS constraints. For pos-
itive QoS attributes, Θ is calculated by equation (11). For
negative QoS attributes, Θ is calculated by equation (12).

Θ =
ci − qmini

qmaxi − qmini

(11)

Figure 6: The flowchart of GTHFOA-DSMSC.

Θ =
qmaxi − ci
qmaxi − qmini

(12)

Where ci is the ith QoS constraint, qmaxi and qmini indi-
cate the maximum and minimum aggregated values of the
ith QoS attribute of the mashup. For all the algorithms, the
upper limit of the archive size is set to 20. The population
size is set to 30 for the GTHFOA, 200 for the NSGA-II [32]
and GDE [33]. We evaluate every test case 100 times and
limit the runtime of each algorithm to 30s.

5.1 Performance vs problem size
We investigate the performance of GTHFOA with the prob-
lem size. In figure 7, the number of abstract services is
fixed 8. The number of concrete service candidates in-
creases from 40 to 120 with the step 20. In figure 8, the
number of abstract services increases from 4 to 12 with the
step 2. The number of concrete service candidates is fixed
100. As the figures illustrate, GTHFOA is able to achieve
above 90% in average. NSGA-II and GDE have decreasing
HV ratio with the increase of the problem size. Through
the experiment, we conclude GTHFOA can efficiently es-
cape from the local optima and guide the search towards the
Pareto fronts. The exploration strategies used by the other
heuristic algorithms are not sufficient for achieving a good
approximation of the Pareto-front in the solution space.

5.2 Performance vs strength of constraints
We investigate the performance of GTHFOA with the
strength of constraints. In figure9, the strength of con-

Data-intensive Service Mashup Based on. . . Informatica 39 (2015) 421–429 427

Figure 7: Performance vs service candidates.

Figure 8: Performance vs abstract services.

straints increases from 0.2 to 0.6 with the step 0.1. With the
increase of the strength of constrains, the existence proba-
bility for a feasible solution which satisfy all constraints
declines. In figure9, GTHFOA has a constant HV ratio
above 90%. If the strength of constraints is fixed 0.6, GTH-
FOA can gain HV ratio 91 %, while NSGA-II 85% and
GDE 68%. As can be seen, GTHFOA shows better per-
formance over NSGA-II and GDE. GTHFOA has a higher
probability of reaching the Pareto-optimal front than other
optimization algorithms.

Figure 9: Performance vs strength of constraints.

5.3 Performance vs convergence
This part shows the convergence of GTHFOA. We fix the
number of abstract services 8 and the number of service
candidates 100. The strength of constraints is fixed 0.4. In
figure 10, the number of iterations increases from 0 to 400
with the step 100. As can be seen, the convergence of GTH-

FOA is approximately 95%, while NSGA-II 90% and GDE
75%. The performance of GTHFOA overwhelms the other
two algorithms. The GDE has the lowest performance
among the algorithms, which indicates that its search ca-
pability is very limited. By comparison, we find GTHFOA
converges fast and can converge to a higher value.

Figure 10: Performance vs convergence.

5.4 Performance vs service correlation
This part shows the performance of GTHFOA with service
correlation. The approach GTHFOA-withoutQC does not
consider the service correlation. We fix the number of ab-
stract services 8 and the number of service candidates 100.
The strength of constraints is fixed 0.4. We evaluate the
ratio of the results of the two approaches. The ratio can be
calculated by

ratio =
GTHFOA− withoutQC

GTHFOA
(13)

In figure 11, the number of service correlation increases
from 20 to100 with the step 20. As can be seen, GTHFOA-
withoutQC does not consider the correlation, so it cannot
reach the Pareto-optimal front. With the number of service
correlation increases, the ratio declines. That is because the
QoS deviation happened during the service selection.

Figure 11: Performance vs service correlation.

6 Conclusion
This paper solves the data-intensive service mashup from
QoS and transactional dimensions. The Service-Level

428 Informatica 39 (2015) 421–429 W.Yang et al.

Agreement (SLA) consists of two parts, which are SLA-
Q and SLA-T. In this paper, we consider the service cor-
relation which includes the functional correlation and QoS
correlation. In order to solve the service mashup problem
efficiently, we propose an approach based on game theory
and hybrid fireworks optimization algorithm which evolves
a set of solutions to the Pareto optimal front. In our future
work, we will further improve the performance of multi-
objective evolution algorithm to solve the multi-objective
service selection problem. The problem of runtime service
process reconfiguration is also left for future research.

Acknowledgement
The research is supported by the Fundamental Research
Funds for the Central Universities, the Natural Science
Foundation of Shandong Jiaotong University (Z201342)
and National Key Basic Research Program of China
(2010CB328106).

References
[1] A. Bouguettaya, S. Nepal, W. Sherchan, X. Zhou, J.

Wu, S. Chen, L. Liu, H. Wang and X. Liu(2010). End-
to-End Service Support for Mashups,IEEE Transac-
tions on Service Computing, 3(3), pp. 250-263.

[2] A. Ngu, M. Carlson, Q. Sheng and Hye-young
Paik(2010). Semantic-Based Mashup of Composite
Applications,IEEE Transactions on Service Comput-
ing, 3(1), pp. 2-15.

[3] F.H. Zulkernine and P. Martin(2011). An Adaptive
and Intelligent SLA Negotiation System for Web Ser-
vices,IEEE Transactions on Service Computing, 4(1),
pp. 1939-1374.

[4] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J.
Kalagnanam and H. Chang(2004). QoS-aware Mid-
dleware for Web Services Composition,IEEE Trans-
actions on Software Engineering, 30(5), pp. 311-327.

[5] D. Ardagna and B. Pernici(2007). Adaptive Service
Composition in Flexible Processes,IEEE Transac-
tions on Software Engineering, 33(6), pp. 369-384.

[6] T.Yu, Y.Zhang and K.J.Lin(2007). Efficient Algo-
rithms for Web service selection with End-to-End
QoS Constraints,ACM Transactions on the Web, 1(1),
article 6.

[7] M. Alrifai, T. Risse and W. Nejdl(2012). A Hy-
brid Approach for Efficient Web Service Composition
with End-to-End QoS Constraints, ACM Transactions
on the Web , 6(2), article 7.

[8] M. Alrifai, D. Skoutas and T. Risse(2010). Selecting
Skyline Services for QoS-based Web Service Compo-
sition, International Conference on World Wide Web,
Raleigh, North Carolina, pp. 11-20.

[9] K. Benouaret, D. Benslimane and A. Hadjali (2011).
On the Use of Fuzzy Dominance for Computing Ser-
vice Skyline Based on QoS,IEEE International Con-
ference on Web Services, Washington,DC, pp. 540-
547.

[10] K. Benouaret, D. Benslimane and A. Hadjali(2012).
WS-Sky: An Efficient and Flexible Framework for
QoS-Aware Web Service Selection, IEEE Interna-
tional Conference on Services Computing, Honolulu,
HI, pp.146-153.

[11] Q. Yu and A. Bouguettaya(2013). Efficient Service
Skyline Computation for Composite Service Selec-
tion, IEEE Transactions on Knowledge and Data En-
gineering, 25(4), pp. 776-789.

[12] G. Canfora, M. Penta, R.Esposito and M. Villani
(2005). An Approach for QoS-aware Service Compo-
sition based on Genetic Algorithms,7th annual con-
ference on Genetic and evolutionary computation,
Washington,DC, pp.1069-1075.

[13] Y. Ma and C. Zhang(2008). Quick Convergence of
Genetic Algorithm for QoS-driven Web Service Se-
lection, Computer Networks, 52(5), pp. 1093-1104.

[14] Y. Syu, Y. FanJiang, J. Kuo and S. Ma(2012). A Ge-
netic Algorithm with Prioritized Objective Functions
for Service Composition, International Conference
on Advanced Information Networking and Applica-
tions Workshops, Fukuoka, pp. 932-937.

[15] M. Chen and S. Ludwig(2012). Fuzzy-guided Genetic
Algorithm applied to the Web Service Selection Prob-
lem,IEEE World Congress on Computational Intelli-
gence, Brisbane, QLD, pp. 1-8.

[16] Y. Yu, H. Ma and M. Zhang(2013). An Adaptive Ge-
netic Programming Approach to QoS-aware Web Ser-
vices Composition, IEEE World Congress on Evo-
lutionary Computation,Cancun,Mexico, pp. 1740-
1747.

[17] F. Lecue and N. Mehandjiev(2011). Seeking Quality
of Web Service Composition in a Semantic Dimen-
sion, IEEE Transactions on Knowledge and Data En-
gineering,23(6), pp. 942-959.

[18] A.E.Yilmaz and P. Karagoz (2014). Improved Genetic
Algorithm based Approach for QoS Aware Web Ser-
vice Composition, IEEE International Conference on
Web Services,Anchorage, AK , pp. 463-470.

[19] X. Wang, Z. Wang and X. Xu(2013). An Improved
Artificial Bee Colony Approach to QoS-Aware Ser-
vice Selection, IEEE International Conference on
Web Services, Santa Clara, CA, pp. 395-402.

[20] X. Zhao, B. Song, P. Huang, Z. Wen, J. Weng and Y.
Fan(2012). An Improved Discrete Immune Optimiza-
tion Algorithm based on PSO for QoS-driven Web

Data-intensive Service Mashup Based on. . . Informatica 39 (2015) 421–429 429

Service Composition, Applied Soft Computing, 12(8),
pp. 2208-2216.

[21] G. Kang, J. Liu, M. Tang and Y. Xu (2012). An Ef-
fective Dynamic Web Service Selection Strategy with
Global Optimal QoS Based on Particle Swarm Opti-
mization Algorithm, IEEE 26th International Parallel
and Distributed Processing Symposium Workshops &
PhD Forum, Shanghai, China, pp.2280-2285.

[22] L. Sun, J. Singh and O. Hussain(2012).Service Level
Agreement (SLA) Assurance for Cloud Services: A
Survey from a Transactional Risk Perspective, 10th
International Conference on Advances in Mobile
Computing & Multimedia, Bali, Indonesia, pp. 263-
266.

[23] J.E. Haddad and G. Ramirez(2010). TQoS: Transac-
tional and QoS-aware Selection Algorithm for Auto-
matic Web Service Composition, IEEE Transactions
on Service Computing, 3(1), pp. 73-85.

[24] Q. Wu and Q. Zhu(2013). Transactional and QoS-
aware dynamic service composition based on ant
colony optimization, Future Generation Computer
Systems, 29(5), pp. 1112-1119.

[25] H.Wada, J. Suzuki, Y.Yamano and K. Oba(2012).E3:
A Multiobjective Optimization Framework for SLA-
Aware Service Composition, IEEE Transactions on
Service Computing, 5(3), pp. 358-372.

[26] F. Wagner, B. Klopper, F. Ishikawa and S.
Honiden(2012). Towards Robust Service Composi-
tions in the Context of Functionally Diverse Ser-
vices,International Conference on World Wide Web,
Lyon, France, pp. 969-978.

[27] A. Moustafa and M. Zhang(2013). Multi-Objective
Service Composition Using Reinforcement Learn-
ing,International Conference on Service-Oriented
Computing, Berlin, Germany, pp.298-312.

[28] H. Yin, C. Zhang, B. Zhang, R. Sun and T. Liu(2014).
A Multi-Objective Discrete Particle Swarm Opti-
mization Algorithm for SLA-Aware Service Compo-
sition Problem, Acta Electronica Sinica, 42(10), pp.
1983-1990.

[29] Y. Tan and Y. Zhu (2010). Fireworks Algorithm for
Optimization, International Conference on Swarm In-
telligence, Beijing, China, pp.355-364.

[30] Y. Pei, S. Zheng, Y. Tan and H. Takagi(2012). An
Empirical Study on Influence of Approximation Ap-
proaches on Enhancing Fireworks Algorithm,IEEE
International Conference on Systems, Man, and Cy-
bernetics,Seoul, Korea, pp. 1322-1327.

[31] J.D.Knowles and D.W.Corne (2000). Approximating
the Nondominated Front using the Pareto Archived

Evolution Strategy,Evolutionary Computation, 8(2),
pp. 149-172.

[32] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan
(2002). A Fast and Elitist Multiobjective Genetic
Algorithm:NSGA-II,IEEE Transactions on Evolu-
tionary Computation, 6(2), 182-197.

[33] S. Kukkonen and J. Lampinen(2005). GDE3: The
Third Evolution Step of Generalized Differential Evo-
lution, IEEE Congress on Evolutionary Computation,
Edinburgh, Scotland, pp. 443-450.

430 Informatica 39 (2015) 421–429 W.Yang et al.

