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P2P live streaming system is one of the most popular Internet applications which developed rapidly in the 

past decade. However, some common problems, such as long startup delay and unsmooth playback, 

seriously restrict user’s experience on live streaming. In this paper, we propose a novel but simple scheme, 

namely guarantee mechanism of contingency resource (GMCR), which can improve the quality of service 

(QoS) of live streaming by deploying a contingency server to provide contingency service for those chunks 

whose playback deadlines are urgent. Then we establish a queuing model to analyze the quantitative 

relation between the amount of contingency server resources and the level of user’s QoS. Finally, we 

simulate our scheme in a P2P live streaming simulation platform, and obtain the optimal value of some 

critical parameters. The results of theoretical analysis and simulation experiment present the feasibility 

and validity of GMCR scheme. 

Povzetek: Predstavljen je nov mehanizem za bolj kvalitetno predvajanje video posnetkov v živo preko 

spleta. 

1 Introduction 
Recently, transmitting TV programs over the Internet has 

become an increasingly popular type of network 

application. This type of application provides users with 

abundant, convenient, highly interactive multimedia 

service, and has engendered a large-scale industry [1]. 

Live streaming is such a type of application that delivers 

live program over the Internet, and involves a camera for 

the media, an encoder to digitize the content, a media 

publisher, and a content delivery network to distribute and 

deliver the content [2]. 

According to the transmission mode in the Internet, 

the content delivery network of live streaming can be 

divided into client/server (C/S) paradigm and peer-to-peer 

(P2P) paradigm. C/S paradigm provides live program 

from servers entirely, but this transmission mode brings 

many problems, such as poor scalability and high costs, 

which makes it difficult to implement large-scale 

deployment. On the contrary, P2P paradigm exploits the 

idle resources in end users effectively, who can share and 

exchange their video chunks, thus improving the operation 

efficiency and decreasing the costs. There exist many live 

streaming systems, such as Coolstreaming [6], PPLive, 

PRIME [13]etc. However, despite P2P can meet the 

demands of file sharing application, it can’t provide QoS 

guarantee for time-sensitive and bandwidth-sensitive 

applications, e.g. live streaming. Bo Li et al. measured 

Coolstreaming and discovered that only about 95% of the 

chunks could reach user’s buffer before being played [5], 

while Yan Huang analyzed the data collected from PPLive 

and found the buffering time of almost 20% of the users 

occupied more than 80% of the total time [6]. Due to these 

missing chunks, the screen will be frozen, and the media 

players have to wait until these chunks arrive at the user’s 

buffer, which seriously degrades the quality of experience. 

An intuitive solution is to increase the amount of 

streaming servers to cut down the loss rate of the chunks, 

but in another aspect, too many servers deployed in the 

Internet will raise the costs and result in the waste of 

resources. 

Therefore, studying the relation between the amount 

of server resources and user’s QoS level, and finding out 

a scheme to achieve the balance between them have great 

theoretical significance and practical importance. 

However, the instinct of IP network is best effort, and it’s 

difficult to provide rigorous QoS for users, but the 

statistical analysis still has important reference to our 

research. In this paper, from the perspective of improving 

the QoS of live streaming, we propose a novel but simple 

scheme, namely guarantee mechanism of contingency 

resource (GMCR for short), which deploys a contingency 
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server to provide necessary countermeasure to those 

potential missing chunks to promote user’s QoS. 

Subsequently, we establish a queuing model to analyze the 

quantitative relation between the resources of contingency 

server and user’s QoS. 

The rest of this paper is organized as follows. Related 

work is introduced in Section 2. GMCR is proposed in 

Section 3. The quantitative relation of contingency server 

resources and user’s QoS is analyzed by queuing model in 

Section 4. The performance of GMCR and the results of 

theoretical model are evaluated by simulation experiment 

in Section 5. Finally, our work is concluded in Section 6. 

2 Related work 
Because P2P can alleviate the pressure of the streaming 

servers and make use of the peers’ resources, P2P 

technology was first introduced to a practical live 

streaming system in [6]. A data-driven based overlay 

network, namely DONet, was constructed to implement 

better transmission and dissemination of the live 

streaming data. Moreover, AnySee and PRIME [13] also 

used P2P for the deployment and operation of live 

streaming systems, and the use of the peers’ resources 

effectively decreased the cost of the servers. However, the 

intrinsic characteristics of the peers of P2P networks, 

including dynamic and peer churn, as well as the impact 

of firewall and network address translation, make it 

impossible to provide high QoS for the users if a live 

streaming system entirely relies on the resources from the 

peers. In [3], CDN and P2P hybrid architecture was 

proposed to disseminate video streaming. Under this 

circumstance, there are more server resources, which can 

lead to better QoS. In [4], a peer-assisted content delivery 

network was proposed, in which there are two layers, and 

CDN distribution layer lies in the core network while P2P 

distribution layer is deployed in the access network. In 

[14], a radically different cross-channel P2P streaming 

framework, namely View-Upload Decoupling (VUD), 

was proposed, which decouples the peer downloading 

from uploading, bringing stability to multi-channel 

systems and enabling cross-channel resource sharing to 

make sure the resource provision is sufficient for user 

demand in each channel. 

Besides, improving resource utility is another way to 

improve user experience. In [11], a mixed strategy to 

schedule video chunk was proposed, and it remarkably 

increased the rate of data arriving at the users’ buffer in 

time. In [12], Yan Yang et al. introduced a deadline-aware 

scheduling approach, which avoided the waste of 

resources to a certain extent by considering the data 

request deadline. In [9], random network coding was 

employed to P2P live streaming, and it polished up the 

system performance. In [10], a new P2P streaming 

algorithm that incorporated the network coding 

seamlessly with the scalable video coding was designed, 

and the experiments demonstrated the feasibility and 

better performance of the approach. 

Actual video streams carry highly organized 

information, part of which is more important than others, 

and with high variability in the generated bitrate. Chunk 

loss probability and delivery delay provide therefore only 

a partial view of the actual performance of a P2P-TV 

system, the user Quality of Experience (QoE) being the 

paramount index [15]. In the multimedia and signal 

processing communities, indeed, the evaluation of the 

QoE is considered mandatory, see [16], [17] for notable 

examples. In [15], a realistic simulative model of the 

system was proposed, which represented the effects of 

access bandwidth heterogeneity, latencies, peculiar 

characteristics of the video, while still guaranteeing good 

scalability properties. Otherwise, a new latency/ 

bandwidth-aware overlay topology design strategy was 

proposed, which improved application layer performance 

while reducing the underlying transport network stress. 

Reference [15] investigated the impact of chunk 

scheduling algorithms that explicitly exploit properties of 

encoded video. 

In [18], Hu et al. studied the chunk dissemination of 

P2P live streaming, and introduce a discrete and slotted 

mathematical model to analyze chunk selection 

algorithms, including rarest first algorithm and greedy 

algorithm. Moreover, Xing et al. presented a performance 

metric to evaluate chunk selection algorithms, as well as 

the optimization function for the exploration of chunk 

dissemination strategies. Reference [19] pointed out the 

causes of poor performance of these algorithms, and 

propose a service request randomization mechanism to 

promote the use of peer resources, which can prevent 

chunk requests from rendezvous on a few of peers. 

Simultaneously, they employ weight assignment 

strategies to avoid excessive requests for rare chunks. 

Besides, an enhanced model was presented, which adds 

node degree constraint.  

Simultaneously, analyzing P2P live streaming with 

mathematical model is also a hot spot. In [11], a discrete 

and slotted model was adopted to study the chunk 

selection strategy of P2P live streaming. Kumar et al 

employed stochastic fluid theory to model P2P streaming 

systems, and exposed the fundamental characteristics and 

limitations in [20]. 

When some popular programs start, many users will 

access this channel during a short time, and if these 

requests couldn’t be handled appropriately, severe 

performance problem will emerge. Another crucial issue 

is peer churn, and robust live streaming systems must have 

the capability against peer dynamics. Practical chunk 

scheduling mechanisms must be able to deal with these 

issues. In [21], a radically different cross-channel P2P 

streaming framework, namely View-Upload Decoupling 

(VUD), was proposed, which decouples the peer 

downloading from uploading, bringing stability to multi-

channel systems and enabling cross-channel resource 

sharing to make sure the resource provision is sufficient 

for user demand in each channel. Kumar et al employed 

stochastic fluid theory to model P2P streaming systems, 

and exposed the fundamental characteristics and 

limitations in [22]. Liu et al. theoretically studied chunk-

based P2P video streaming in [23], and showed the delay 

bound to distribute video chunks to all peers. Furthermore, 

a conceptual snowball streaming algorithm was proposed 

to approach the minimum delay bound in dynamic P2P 
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network environment. In [25], the authors presented a 

novel metric, called the Content Propagation Metric 

(CPM), to quantitatively evaluate the marginal benefit of 

available bandwidth, and CPM could guide a global 

allocation of bandwidth to maximize the aggregate 

download bandwidth of consumers. 

3 Guarantee Mechanism of 

Contingency Resource 

3.1 Basic idea 

In P2P live streaming system, source server codes the live 

television signal, and periodically generates new video 

chunks, and then distributes these chunks to peers in P2P 

network. Subsequently, peers share and exchange their 

possessed chunks to take charge of the partial uploading 

assignment for source server, which enables source server 

without powerful upload capacity to provide live service 

for a great number of users, and improve the scalability of 

live streaming system. 

However, in contrast to the dedicated server, the 

upload capacity of ordinary peers is limited. Especially, 

there are plenty of peers locating behind firewall or 

network address translation, and those devices restrict the 

resources usage of P2P network, where network resources 

includes processing resources and bandwidth resources 

etc., but the performance bottleneck of live streaming 

system generally lies on uplink bandwidth (In order to 

prevent terminological confusion, we don’t distinguish 

resource and uplink bandwidth in the following content). 

Furthermore, streaming application is different from file-

sharing application in time sensitivity. If a chunk doesn’t 

arrive at peer before being played, it is equivalent to chunk 

miss even though the chunk reaches user buffer 

afterwards. Consequently, it is necessary to ensure the 

amount of resources provided by server or peers must be 

adequate for the resource requirements of peers. Assume 

a live channel has n peers and source server’s uplink 

bandwidth is us, the uplink bandwidth of peer i is ui, and 

the playback rate is r, then the precondition that all peers 

can watch live program smoothly is: 

1 1

n

s ii
u u

nr





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                              (1) 

For a single peer, it also needs enough resources for 

continuous playing. Assume the instantaneous bandwidth 

peer i derives from source server is uis, and the value is uij 

from peer j , where uii =0, and then the instantaneous total 

bandwidth that peer i receives is 
1

n

is ijj
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
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Equation (1) ensures that there are enough resources 

for users, while it also makes equation (2) have feasible 

solutions of resource allocation. However, because of the 

uncertainty of resource scheduling and delay sensitivity of 

live streaming, it’s difficult to guarantee that every peer 

can receive sufficient resources to download video chunks 

for smooth playing every time despite the total resources 

exceeds users’ requirements from the macroscopic angle. 

Every video chunk stored in peer buffer has a deadline 

apart from being played. Assume the playback deadline is 

tp, and this deadline will decrease with the time’s lapse. 

When chunk’s deadline is less than a certain threshold, and 

the chunk hasn’t received yet, it is in the risk of missing. 

Suppose the threshold value is Tu, and if the playback 

deadline of unpossessed chunk satisfies tp≤Tu, then this 

type of chunk is called urgent chunk, and the other chunk 

is non-urgent chunk. 

In contrast with those non-urgent chunks, urgent 

chunk should be served firstly, because the loss 

probability is much larger than that of non-urgent chunk. 

Nevertheless, the program progresses of different users 

are diverse in practical live streaming system, and the 

resource owners can’t distinguish which chunk is nearer 

to be played, and they can’t easily find out the more urgent 

chunk requests and serve them. Consequently, if there is a 

dedicated server for those urgent chunks to provide 

contingency service, it’s likely to reduce the loss 

probability with fewer resources, and improve user’s QoS. 

3.2 The model of Guarantee Mechanism of 

Contingency Resource 

Based on the above idea, we propose a scheme, namely 

guarantee mechanism of contingency resource (GMCR), 

to promote system performance. GMCR is a scheme to 

provide contingency service for urgent chunks in order to 

make sure they can arrive at user’s buffer in time. In 

practical P2P live streaming system, we can deploy a 

server that accomplishes GMCR to serve those urgent 

chunks, and this server is called contingency server. It is 

a viable solution to the improvement of live streaming 

QoS to resort to the coordination of contingency server 

and P2P network. 

In order to implement GMCR, we need to adjust 

chunk scheduling mechanism appropriately. Firstly, peer 

should partition all the unreceived chunks into urgent 

chunks and non-urgent chunks according to the value of tp 

and Tu. For non-urgent chunks, peer requests them from 

other peers or source server based on P2P paradigm. Once 

a non-urgent chunk becomes urgent due to the decrease of 

tp, the peer sends chunk request to contingency server 

immediately, and contingency server responses to this 

request promptly to provide this urgent chunk. Figure 1 

shows the model of GMCR. 

In Figure 1, source server and peers constitute the 

typical P2P live streaming system, and they share and 

exchange video chunks with each other, while 

contingency server is dedicated to provide contingency 

service for urgent chunk request. Peers ought to decide the 

resource requested object based on the deadline of chunk. 
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4 Queuing model analysis of 

Guarantee Mechanism of 

Contingency Resource 
In this section, we analyze the GMCR model 

quantitatively with queuing theory to discover the relation 

between the resource amount of contingency server and 

users’ QoS. 

4.1 Model and notations 

According to GMCR, if the playback deadline of a chunk 

in peer’s buffer tp is less than Tu, the peer will send request 

to contingency server immediately to prevent chunk 

missing. Subsequently, contingency server is going to 

insert these urgent chunk requests into service queue, and 

provide contingency service for them to keep the chunk 

from missing caused by time out. Figure 2 shows the 

queuing model depicting the above work flow. 
 

To describe the model, we define the system 

parameters and notations in Table I. 
 

Table 1: Notation and definition of GMCR queuing model. 

Notation Definition 

Tu Playback deadline threshold of urgent chunks 

tp 
Playback deadline of chunk away from being 

played 

U Uplink bandwidth of contingency server 

N The number of peers in live streaming system 

R Playback rate of live program 

L Size of each chunk in live streaming 

B 
Queue length of contingency server to store 

urgent chunk requests 

a 

The probability of chunk that doesn’t arrive at 

peer buffer when its playback deadline reduces 

to Tu 

T1 
The delay of peer sending urgent chunk request 

to contingency server 

T2 
The queuing delay of urgent chunk request in 

contingency server 

T3 
The delay of contingency server sending urgent 

chunk to peer 

4.2 Performance analysis 

To analyze the model, we divide time into slots firstly, and 

the size of slot is equal to the period that source server 

generates a new video chunk, so the size of each slot is 

/T L R                                  (3) 

 
Figure 1: The model of GMCR. 
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Figure 2: The queuing model for contingency. 
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When a slot passes, at most one non-urgent chunk will 

turn into urgent chunk in every peer, and it is going to send 

an urgent chunk request to contingency server. As defined, 

a is the probability of the chunk that doesn’t arrive at peer 

buffer when deadline reduces to Tu, which means the 

probability every peer will send request in each slot is a. 

Because the peer’s number is N in system, the probability 

that contingency server will receive k urgent chunk 

requests in a slot is 

k N k

k

N
a a b

k

 
  
 

                              (4) 

Where b=1-a. 

On the other hand, the most amount of urgent chunk 

that contingency server can upload in a slot is 

U
M

R

 
  
 

                                        (5) 

When the arrival ratio of urgent chunk request is less 

than the capacity of contingency server, the server can 

handle all the requests in one slot. But if the arrival ratio 

exceeds the server’s capacity, part of the requests have to 

stay in contingency server’s queue. 

Assume the state probability that there are k urgent 

chunk requests in contingency server queue to wait for 

service is sk, while the queue length is B, so all of the state 

probabilities constitute a state vector as follows. 

0 1 2[ ... ]BS s s s s                                  (6) 

According to the arrival ratio of chunk request in each 

slot and contingency server’s capacity, we can obtain the 

state transition diagram in Figure 3. 
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Figure 3: State transition diagram of contingency server’s 

queue. 

Therefore, the state transition matrix is denoted as P, 

and the element pij in the matrix means the probability of 

the number of urgent chunk request in contingency 

server’s queue transiting from i-1 to j-1. 
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   (7) 

At equilibrium, the input probability is equal to the 

output probability for every state, so the equilibrium 

equation is given as 

SP S                                 (8) 

Meanwhile, the queue length of contingency server is 

B, so we can obtain the following condition 

0

1
B

i

i

s


                                (9) 

Substitute equation (6) and (7) for equation (8), and 

combine equation (9), we can compute the state 

probability of contingency server’s queue. 

For every urgent chunk, if peer can receive this chunk 

from contingency server in Tu, this video chunk can be 

played on schedule, otherwise it will be lost. When a peer 

wants to get urgent chunk, it must suffer three phase 

latencies, and they are T1, T2, and T3, respectively. 

Consequently, the condition that ensures urgent chunk 

arrives in time is T1+ T2+ T3≤Tu, and the longest waiting 

time of urgent chunk request in contingency server is Tu- 

T1- T3. Because contingency server can deal with U

R

 
 
 

 

requests in one slot, the chunk’s number that an urgent 

chunk request can wait for is given by 
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       (10) 

Therefore, urgent chunk request can arrive at peer 

buffer in time when the number of chunk request in 

contingency server’s queue doesn’t exceed Wm, and the 

loss probability ploss is approximately equal to 

0

1
mW

loss i

i

p s


                              (11) 

For instance, if there are 1,000 peers in live streaming 

system, and the playback rate is 400kbps, the size of chunk 

is 64kB, and the arrival ratio of urgent chunk is 5%, while 

contingency server’s uplink bandwidth is 21Mbps, and its 

buffer can store 1,000 urgent chunk requests, the value of 

Tu, T1 and T3 is 2s, 100ms and 100ms, respectively, then 

we can figure out the loss probability is 0.015% according 

to equation (11). In fact, considering the quasi-

synchronous characteristic of live streaming, all the 

operation to offer the contingency service can be 

implemented in the memory of server, and a server can 

provide service for more users with lower loss probability. 

5 Simulation experiment 
To validate the feasibility and potential performance of 

GMCR, we test this mechanism in a P2P streaming 

simulator, namely P2PStrmSim [24], and compare GMCR 

to P2P-only mechanism. The purpose of our simulation is 

to check the dependability of GMCR queuing model, and 

we contrast the simulation results to theoretical results. 

5.1 Experiment scenario and metrics 

P2PStrmSim is an event-driven P2P live streaming 

simulator, and it can simulate the packet-level data 

exchange process. All the events, including control packet 
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exchange and data packet transmission etc., are stored in 

event queue; meanwhile, they are managed and executed 

by event engine. When an event is executed, the 

corresponding operation will be called. The system 

framework of P2PStrmSim is depicted as Figure 4. 

Overlay Topology

Peer Server

Event Engine
Event 

Queue

Token 

Bucket

Scheduler Monitor

Network Topology

Buffer

 
Figure 4: The system framework of P2PStrmSim. 

In P2PStrmSim, network topology is based on the 

measurement results of Internet delay, and it ignores the 

impact of packet queuing in routers. Peers construct 

overlay topology on network topology, and every peer has 

15 neighbors. The uplink bandwidth of server and peers 

are implemented by token bucket, and all video chunks are 

stored in buffer. The function of scheduler is to schedule 

peers’ arrival and departure, while monitor measures the 

system parameters and performance metrics. Event queue 

stores all the events of live streaming system generated in 

the simulation process, including peers’ join/leave system, 

buffer map exchanging between peers to be aware of 

which chunk other peers have received, as well as sending 

and reception of the packet. Event engine inserts newly 

generated event into event queue, and execute the event in 

the front of event queue. By configuring system 

parameters briefly, P2PStrmSim can directly simulate the 

whole process of P2P live streaming. In order to simulate 

GMCR, we modify the original simulator and append 

correlative module to implement contingency server. 

Contingency server takes charge of providing service to 

urgent chunks, and we introduce three types of delay to 

denote T1, T2 and T3. In peer module, we add the function 

of classifying urgent and non-urgent chunks based on Tu, 

and non-urgent chunks are requested by typical P2P 

paradigm, while urgent chunk requests are sent to 

contingency server. The simplicity of developing GMCR 

also indirectly demonstrates the feasibility of this 

mechanism. 

The scheduler can adjust communication paradigm 

according to the lowest quality requirement of various 

paradigm after obtaining performance information. There 

are mainly two parts in adaptive communication 

mechanism: network performance awareness module and 

adaptive paradigm adjustment module. The former is 

devoted to obtain end to end performance information 

through measurement and inference technology; and the 

latter intends to adopt the optimum communication 

paradigm to fulfill user requirement. 

In practical experiment scenario, the uplink 

bandwidth of source server is 10Mbps, and it generates 

video chunk with the rate of 400kbps, contingency server 

can store 1,000 urgent chunk requests. Simultaneously, 

some peers in the system download the video chunks 

according to the fixed scheduling mechanism. Moreover, 

the request window is 30s, and the size of the video chunk 

is 64kB. All peers access the network by asymmetrical 

digital subscriber line (ADSL), and the downlink 

bandwidth exceeds the uplink bandwidth. In order to 

simulate the heterogeneity of the peer’s access bandwidth, 

we introduce three types of ADSL, whose uplink 

bandwidths are 1Mbps, 384kbps and 128kbps, 

respectively, and their proportions are given in Table II. 

Table 2: The proportion of the three type of uplink bandwidth 

in the simulation experiment. 

Uplink bandwidth Proportion in experiment 

1 Mbps 

384 kbps 

128 kbps 

0.2 

0.45 

0.35 

We evaluate the performance of GMCR by 

monitoring the continuity of live program. Once a video 

chunk doesn’t arrive at peer’s buffer before being played, 

it will lead to program pause or screen frozen, so we 

employ chunk arrival ratio (CAR), which is equal to the 

ratio of chunks arriving in time and the total chunks, as the 

metric to evaluate user QoS. Obviously, the higher CAR 

means users have received higher QoS. In our simulation, 

all the results are the average value of 10 experiment 

results tested with different seeds. 

5.2 Experiment results and analysis 

5.2.1 Performance of Guarantee Mechanism of 

Contingency Resource 

Figure 5 shows the CAR’s cumulative distribution 

function (CDF) of GMCR and P2P based live streaming 

in different scale channels, where N is the peer’s number, 

the uplink bandwidth of contingency server is 2Mbps, and 

Tu is 2s. 

 
Figure 5: The CDF of CAR in GMCR and P2P based live 

streaming system. 

From Figure 4 we can find GMCR can provide better 

QoS for users in all different scale channels, and almost 

all the peers have a chunk arrival ratio above 99%. But in 

typical P2P paradigm, there are more than 15% of the 

peers whose loss probabilities exceed 4%. Though the 

uplink bandwidth of source server is not high, contingency 
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server is deployed in live streaming system and it can 

provide contingency service to the peers when they have 

urgent chunk, which greatly reduces the amount of chunk 

missing and improves CAR. Furthermore, the CARs of 

GMCR and P2P based system decreases in different 

degree with the increment of peers. This trend of 

performance degradation is due to the augment of user 

demand on the bandwidth resource, and the total amount 

resource provision of source server and contingency 

server is invariable. 

5.2.2 The impact of Tu 

According to the analysis in Section 3, the length of urgent 

chunk’s deadline threshold Tu will affect system 

performance, because Tu decides the probability of urgent 

chunk generated in peer buffer and the length of queuing 

time that these urgent chunk requests can wait in 

contingency server. If the value of Tu is set to be larger, 

the probability of non-urgent chunk turning into urgent 

chunk will increase, and then more urgent chunk requests 

reach the contingency server, thus augmenting its burden. 

But if the value of Tu is set to be too small, the chunk 

request that can stay in contingency server will shorten, 

thus also increasing the probability of urgent chunks that 

cannot be played in time. Hence, there exists an 

appropriate value of Tu that could achieve the optimal 

system performance. In our experiment, we adjust Tu to 

get a serial of CDF curves of chunk arrival ratio. Figure 6 

shows the CDF of chunk arrival ratio with different Tu. 

From the movement trend of Figure 6, we can analyze 

the rough impact of Tu. Obviously, the curves shows that 

the value of Tu has significant influence on system 

performance. When Tu changes from 4 seconds to 2 

seconds, chunk arrival ratio increases clearly. But when Tu 

is set to be 1 second, chunk arrival ratio drops down. This 

result indicates that GMCR can provide fine contingency 

service and avoid too many urgent chunk requests when 

Tu is set to be about 2 seconds. 

 
Figure 6: The influence of Tu  on system performance. 

 

5.2.3 The impact of contingency server 

resource 

Subsequently, we analyze how to deploy contingency 

server resource in GMCR based live streaming. 

Theoretically, many urgent chunk requests are unable to 

be served without sufficient resource, and the user QoS 

will deteriorate. But if too much resource of contingency 

server is deployed in the system, it will cause the waste of 

resource. Therefore, it is necessary to supply appropriate 

contingency server resource according to the practical 

requirement. Figure 7 shows the movement curves of loss 

probability in contingency server under different scale 

channel when the uplink bandwidth of contingency server 

changes from 1.95Mbps to 2.1Mbps. At the same time, 

Figure 7 also shows the theoretical value to validate the 

dependability of GMCR queuing model established in 

Section 4. 

According to Figure 7, we can obtain three 

conclusions. Firstly, in three different scale channels, the 

theoretical results are very close to the experimental 

results, which demonstrates GMCR queuing model can 

describe the quantitative relation between contingency 

server resource and user QoS, and this queuing model has 

great dependability. Secondly, when contingency server 

has insufficient resource, the loss probability is very high, 

but if the amount of resource exceeds the demand of 

urgent chunk request, user QoS will improve significantly. 

Hence, we should deploy a few more contingency server 

resources. Thirdly, the requirement of contingency server 

resources will increase with the augment of peer’s 

number, because this situation will incur the insufficiency 

of resource provision and result in the increment of urgent 

chunk request, and more contingency server resources are 

needed for contingency service. But the requirement 

increment of contingency server resource is not notable, 

where the resource amount only increases from 1.95Mbps 

to 2.1Mbps. 

 
Figure 7: The loss probability of theoretical value and 

experimental value in contingency server under different scale 

channel. 

6 Conclusion 
In this paper, we propose a novel but simple scheme, 

namely guarantee mechanism of contingency resource, 

which greatly improves the QoS of live streaming system 

by deploying contingency server to provide service for 

urgent chunk request in time. We also establish GMCR 

queuing model to analyze the quantitative relation 

between the amount of contingency server resource and 
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user QoS. Finally, we simulate our scheme in simulation 

experiment, and obtain some conclusions. The 

experimental results and the theoretical analysis show the 

dependability and validity of GMCR and this queuing 

model. Our work sheds light of a new approach for the 

QoS elevation of live streaming system. In the future, we 

will focus on the technological approach to construct 

mathematical model on the different requirement of 

system resource in distinct phase to improve the QoS of 

live streaming system. 
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