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Data classification has been actively used for most effective means of conveying knowledge and informa-
tion to users. With emergence of huge datasets existing classification techniques fail to produce desirable
results where the challenge lies in analyzing characteristics of massive datasets by retrieving useful ge-
ometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine
(PFRSVM) for in-data classification in cloud environment. The fuzzy rough set model takes care of sen-
sitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results.
The algorithm is parallelized with a view to reduce training times. The system is built on support vector
machine library using Hadoop implementation of MapReduce. The algorithm is tested on large datasets
present at the cloud environment available at University of Technology and Management, India to check its
feasibility and convergence. It effectively resolves outliers’ effects, imbalance and overlapping class prob-
lems, normalizes to unseen data and relaxes dependency between features and labels with better average
classification accuracy. The experimental results on both synthetic and real datasets clearly demonstrate
the superiority of the proposed technique. PFRSVM is scalable and reliable in nature and is characterized
by order independence, computational transaction, failure recovery, atomic transactions, fault tolerant and
high availability attributes as exhibited through various experiments.

Povzetek: Razvita je nova verzija metode podpornih vektorjev (tj. strojnega učenja) nad velikimi podatki
v oblaku, imenovana PFRSVM.

1 Introduction

The volume of business data is always expanding with
rapid increase of global competitiveness [1] among the or-
ganizations. It is estimated that the volume of business data
double within every two years. This fact is evident in both
advanced and emerging economies. A common task often
performed by the analysts and managers is data classifi-
cation [2] which categorizes data into different subgroups
in which ideas and objects are recognized and understood.
In this process relevant and meaningful hidden informa-
tion is discovered from data. From economic perspective,
knowledge obtained from classified data can be applied
directly for business application and services. However,
as the amount of data increases continuously classification
becomes more and more complex [3] where present tech-
niques produce spurious results. This in turn disturbs the
integrity of data. The inherent challenge lies in analyz-
ing and interpreting characteristics of huge datasets by ex-
tracting significant usage patterns through various machine
learning techniques [3].

Knowledge discovery [4] of meaningful information has
been a topic of active research since past few years. The
ongoing rapid growth of online data generally referred to
as big data [1] have created an immense need for effec-
tive classification techniques [5]. The process of extracting

knowledge from data draws upon the research in pattern
classification and optimization to deliver advanced busi-
ness intelligence [3]. The big data is specified using three
characteristics viz. volume, variety and velocity [6]. This
means that at some point in time when volume, variety and
velocity of data are increased the current techniques may
not be able to process the data. Ideally these three char-
acteristics of a dataset increase data complexity and thus
the existing techniques function below expectations within
given processing time. Many applications such as classifi-
cation, risk analysis, business forecasting etc. suffer from
this problem. These are time sensitive applications and re-
quire efficient techniques to tackle the problem on the fly.

Some emerging techniques such as hadoop distributed
file systems [7], cloud technology [8] and hive database
[9] can be combined to big data classification problem.
With this motivation this work entails the development of
a supervised classification algorithm in cloud environment
incorporating machine intelligence techniques for mining
useful information [10]. The classification here is per-
formed by the fuzzy rough [11] version of support vec-
tor machine (SVM) [12] which though considered faster
than artificial neural network (ANN) [13] for training large
datasets but is computationally intensive. Given a large
enough dataset the training time can range from days to
weeks. This problem is handled by extending the fuzzy
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rough version of SVM to parallel framework using hadoop
implementation of MapReduce.

In this Paper, we propose parallel fuzzy rough support
vector machine (PFRSVM) with MapReduce to classify
huge data patterns in a cloud environment. Using MapRe-
duce the scalability and parallelism of split dataset train-
ing is improved. Fuzzy rough support vector machine
(FRSVM) [12], [14] is trained in cloud storage servers that
work concurrently and then in every trained cloud node all
support vectors are merged. This operation is continued
until the classifier converges to an optimal function value
in finite iteration size. This is done because it is impossi-
ble to train large scale datasets using FRSVM on a single
computer. The fuzzy rough model is sensitive to noisy mis-
labeled samples which brings robustness to classification
results. All the experiments are performed on the cloud en-
vironment available at University of Technology and Man-
agement, India.

The major contributions of this work include: (a) par-
allel implementation of FRSVM in cloud environment (b)
formulation of sensitive fuzzy rough sets for noisy misla-
beled samples to bring robustness in classification results
(c) training FRSVM with MapReduce (d) identifying rel-
evant support vectors at each computing node and merg-
ing with global support vectors (e) development of a scal-
able and reliable in-stream data classification engine ad-
hering to the fundamental rules of stream processing such
that it is maintains order independence in data processing,
streamlines computational transaction, recovers from fail-
ure, generates atomic transactions and are fault tolerant and
highly available in nature. To the best of our knowledge
PFRSVM presented in this research work illustrates a ro-
bust architecture of in-stream data analytics which is first of
its kind. The proposed computational framework has never
been studied rigorously prior to this research work [15].

This Paper is organized as follows. The section 2
presents some work related to classification using fuzzy
and rough versions of SVM. In section 3 an overview of
SVM is presented. This is followed by a brief discussion
on fuzzy rough sets. FRSVM is described in section 5.
The section 6 illustrates the MapReduce pattern. PFRSVM
formulation is highlighted in section 7. The experimental
results and discussions are given in section 8. Finally con-
clusions are given in section 9.

2 Related work

Over the past decade data classification though fuzzy and
rough versions of SVM have been rigorously used by re-
searchers in several applications [15]. A brief illustration
of few important ones is highlighted here. Mao et al in-
vestigated multiclass cancer classification by using fuzzy
support vector machine (FSVM) and binary decision tree
with gene selection. They proposed two new classifiers
with gene selection viz. FSVM and binary classification
tree based on SVM tested on three datasets such as breast

cancer, round blue cell tumors and acute leukemia data
which gave higher prediction accuracy. Abe et al studied
multiclass problems using FSVM where they used trun-
cated polyhedral pyramidal membership function for de-
cision functions to train SVM for two different pairs of
classes. Huang et al proposed new SVM fuzzy system
with high comprehensibility where SVM is used to se-
lect significant fuzzy rules directly related to a fuzzy ba-
sis function. Analysis and comparative tests about SVM
fuzzy system show that it possesses high comprehensibility
and satisfactory generalization capability. Thiel et al stud-
ied fuzzy input fuzzy output one against all SVM where
fuzzy memberships were encoded in fuzzy labels to give
fuzzy classification answer to recognise emotions in human
speech. Shilton et al proposed an iterative FSVM classifi-
cation whereby fuzzy membership values are generated it-
eratively based on positions of training vectors relative to
SVM decision surface itself. Li et al studied fault diagno-
sis problem using FSVM. Pitiranggon et al constructed a
fuzzy rule based system from SVM which has the capa-
bility of performing superior classification than the tradi-
tional SVM. Zhu et al used FSVM control strategy based
on sliding mode control to reduce oscillation. Parameters
of FSVM controller were optimized by hybrid learning al-
gorithm which combines least square algorithm with im-
proved genetic algorithm to get the optimal control per-
formance for controlled object. Li et al proposed double
or rough margin based FSVM algorithm by introducing
rough sets into FSVM. First, the degree of fuzzy member-
ship of each training sample is computed and then data with
fuzzy memberships were trained to obtain decision hyper-
plane that maximizing rough margin method. Chen et al
extracted a new feature of consonants employing wavelet
transformation and difference of similar consonants. Then
algorithm classified consonants using multiclass FSVM.
Long et al proposed network intrusion detection model
based on FSVM. They concentrated on automatic detection
of network intrusion behavior using FSVM. The system
composed of five modules viz. data source, AAA protocol,
FSVM located in local computer, guest computer and ter-
minals. The intrusion detection algorithm based on FSVM
is implemented by training and testing process. Jian et al
coined FSVM based method to refine searching results of
SEQUEST which is a shotgun tandem mass spectrometry
based peptide sequencing using programs on a dataset de-
rived from synthetic protein mixtures. Performance com-
parison on various criteria show that proposed FSVM is
a good approach for peptide identification task. Duan et
al studied FSVM based on determination of membership.
They investigated sensitivity issues relating SVM to outlier
and noise points which favours use of FSVM though appro-
priate fuzzy membership. Shi et al proposed an emotional
cellular based multiclass FSVM on product’s kansei image
extraction. Li et al proposed fuzzy twin SVM algorithm
that has computational speed faster than traditional SVM.
It takes into account the importance of training samples
on learning of decision hyperplane with respect to classi-
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fication task. Yan et al proposed probability FSVM based
on the consideration both for fuzzy clustering and proba-
bility distributions. The model is based on consideration
that probability distribution among samples exhibits supe-
rior performance.

3 Support vector machine
Support vector machine (SVM) [12] is a promising pattern
classification tool based on structural risk minimization and
statistical learning theory [16]. Many complex problems
have been solved by SVMs. It minimizes prediction er-
ror and models complexities. SVM formalizes classifica-
tion boundary by dividing points having different labels so
that boundary distance from closest point is maximized. It
transforms training vectors into high dimensional feature
space labeling each vector by its class. It classifies data
through set of support vectors which are members of train-
ing input set that outline a hyperplane in feature space [12],
[16] as shown in figure 1. Structural risk minimization re-
duces generalization error. The number of free parame-
ters depends on margin that separates data points. SVM
fits hyperplane surface to data using kernel function that
allows handling of curse of dimensionality. To recognize
support vectors the problem is restructured as following
quadratic optimization problem [12] which is convex, guar-
antees uniqueness and optimality:

min ‖w‖ 2

subject to: zi
(
wTYi + b

)
≥ 1, i = 1, . . . . . . .,M (1)

In equation (1) is weight vector and b is bias term. Slack
variables ξi; i ∈ {1, ...,M} measures violation of con-
straints such that the quadratic problem now becomes:

min
1

2
‖w‖ 2

+ C

M∑
i=1

ξi

subject to:{
zi
(
wTYi + b

)
1− ξi; i = 1, . . . . . . .,M ; ξi ≥ 0 (2)

Figure 1: Separating Hyperplane between Classes leading
to different Support Vectors.

In equation (2) regularization parameter C determines
constraint violation cost. To classify nonlinear data [17]
the mapping transforms classification problem into higher
dimensional feature space giving linear separability. This
is achieved by transforming Yi into higher dimensional
feature space through Φ (Yi) satisfying Mercer’s condi-
tion [12]. The quadratic problem is solved by scalar
product K (Yi, Yj) = (Yi) · (Yj). By using Lagrange mul-
tipliers and kernels the problem becomes:

min
1

2

M∑
i=1

M∑
j=1

zizjαiαjK(Yi, Yj)−
M∑
j=1

αj

subject to:∑M
i=1 ziαi = 0; i = 1, . . . . . . ,M ; 0 ≤ αi ≤ C (3)

The commonly used kernels are polynomial and gaus-
sian functions. In training SVMs we need kernel func-
tion and its parameters to achieve good results and con-
vergence. When solving two class classification problems
each training point is treated equally and assigned to only
one class. In many real word problems some training points
are corrupted by noise. Some points also are misplaced on
wrong side. These points are outliers and belong to two
classes with different memberships. SVM training algo-
rithm makes decision boundary to severely deviate from
optimal hyperplane as it is sensitive to outliers [12], [16].
This is handled by techniques as illustrated in [17], [18].
[19].

4 Fuzzy rough sets
Let R be an equivalence relation on universal set P . The
family of all equivalence classes induced on P by R is
denoted by P

R . One such equivalence class in P
R con-

tains p ∈ P is denoted by [p]R. For any output class
A ⊆ P lower and upper approximations approaching A
closely from inside and outside are defined [11]. Rough
set R(A) is a representation of A by lower and upper ap-
proximations. When all patterns from equivalence class do
not carry same output class label rough ambiguity is gener-
ated as manifestation of one-to-many relationship between
equivalence class and output class labels. The rough mem-
bership function rmA (p) : A→ [0, 1] of pattern p ∈ P for
output class A is given by equation (4) in Appendix A.

When equivalence classes are not crisp they form fuzzy
classes {FC1, . . . .., FCH} generated by fuzzy weak
partition [11] of input set P . Fuzzy weak partition means
that each FCi; i ∈ {1, . . . . ., H} is normal fuzzy set. Here,
maxp µFCi

(p) = 1 and infpmaxi µFCi
(p) > 0 while

sup︸︷︷︸
x

mini,j
{
µFCi

(p) , µFCj
(p)
}

< 1 ∀i, j ∈

{1, 2, . . . . . . .,H}. Here µFCi
(p) is fuzzy member-

ship function of pattern p in class FCi.The output classes
Cc; c = {1, 2, . . . . . . .,H} may be fuzzy also. Given
a weak fuzzy partition {FC1, FC2, . . . . . . ., FCH} on
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P description of any fuzzy set Cc by fuzzy partitions
under upper approximation Cc is given by equation (5) in
Appendix A and lower approximation Cc is:

µCc
(FCi) = sup︸︷︷︸

x∈Cc

min {µFCi
(p) , µCc

(p)} ∀p (6)

The tuple
〈
Cc, Cc

〉
is called fuzzy rough set. Here

µCc
(p) = {0, 1} is fuzzy membership of input p to Cc.

The fuzzy roughness appears when class contains patterns
that belong to different classes.

5 Fuzzy rough support vector
machine

Based on SVM and fuzzy rough sets [11] we present
FRSVM. To solve misclassification problem in SVM,
fuzzy rough membership is introduced to each input point
such that different points can make unique contribution
to decision surface. The input’s membership is reduced
so that its contribution to total error term is decreased.
FRSVM also treats each input as of opposite class with
higher membership. This way fuzzy rough machine makes
full use of data and achieves better generalization ability.
We consider training sample points as:

SP = {(Yi, zi, frmi(p)) ; i = 1, . . . . . . ,M} (7)

Here each Yi ∈ RN is training sample and zi ∈
{−1,+1} represents its class label; frmi (p) ; i =
1, . . . . . . ,M is fuzzy rough membership function satis-
fying sj ≤ frmi (p) ≤ si; i, j = 1, . . . . . . .,M with
sufficiently small constant sj > 0 and si ≤ 1 consider-
ing pattern p. Taking P = {Yi | (Yi, zi, frmi (p)) ∈ SP}
containing two classes; one class C+ with sample
point Yi (zi = 1) and other class C− with sample
point Yi (zi = −1) such that:

C+ = {Yi|Yi ∈ SP ∧ zi = 1} (8)

C− = {Yi|Yi ∈ SP ∧ zi = −1} (9)

Here, P = C+ ∪ C−; then classification problem is given
by equation (10) in Appendix A.

In equation (10) C is constant. The fuzzy rough mem-
bership frmi(p) governs the behavior of corresponding
point Yi towards one class and ξi is error measure in
FRSVM. The term frmi(p)ξi is an error measure with dif-
ferent weights. A smaller frmi(p) reduces the effect of
ξi in equation (10) such that point Yi is treated less signif-
icant. The quadratic problem can also be solved by their
dual alternatives [12]. The kernel function used is hyper-
bolic tangent kernel K (Yi, Yj) = tanh [(Yi) · (Yj)] [13]
given in figure 2. It is conditionally positive definite and

allows lower computational cost and higher rate of posi-
tive eigenvalues of kernel matrix alleviating limitations of
other kernels. The sigmoid kernel has been used in sev-
eral cases with appreciable success [19] motivating its us-
age in fuzzy rough membership function in proposed ma-
chine. The class centre of C+ and C− in feature space is
defined as Φ+ and Φ− respectively.

Φ+=
1

m+

∑
Y i∈C+

(Y i)fi (11)

Φ−=
1

m−

∑
Y i∈C−

(Y i)fi (12)

In equations (11) and (12) m+ and m− is num-
ber of samples of class C+ and C− with fi frequency
of ith sample in feature space (Y i). The radius of
C+ ( Y i ∈ C+) and C− ( Y i ∈ C−) with n =

∑
i fi :

rd+ =
1

n
max ‖Φ+− Φ(Y i)‖ (13)

rd− =
1

n
max ‖Φ−− Φ(Y i)‖ (14)

Then equation (13) can be written as equation (15) which
is given in Appendix A. In equation (15) Y ′ ∈ C+ andm+

is number of training samples in C+. Similarly, we have
equation (16) as given in Appendix A.

Figure 2: Hyperbolic Tangent Kernel.

In equation (16) Y ′ ∈ C− and m− is number of training
samples in C−. The square of distance between sample
Yi ∈ C+and Yi ∈ C− to their class centres in feature space
is:

dist2i+ = ‖(Yi)− Φ+‖2 = Φ2 (Yi)−
2tanh [Φ (Yi) · Φ+] +Φ2

+

dist2i+=K (Yi, Yj)−
2

m+

∑
Yj∈C+

K (Yi, Yj)+

1

m2
+

∑
Yj∈C+

∑
Yk∈C+

K(Yj , Yk) (17)
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dist2−=K (Yi, Yj)−
2

m−

∑
Yj∈C−

K (Yi, Yj)+

1

m2
−

∑
Yj∈C−

∑
Yk∈C−

K(Yj , Yk) (18)

Now, ∀i; i = 1, . . . . . . ,M fuzzy rough membership
function frmi(p) is defined in equation (19) as given in
Appendix A. The term (·) in equation (19) holds when
(∃i)µFCi (p) > 0 and ε > 0 so that frmi(p) 6= 0.
Here, τ iCc

= ‖FCi∩Cc‖
‖FCi‖ and 1∑

i µFCi
(p) normalizes fuzzy

rough membership function µFCi
(p). The function is a

constrained fuzzy rough membership function. The above
definition can further be modified as equation (20) which is
given in Appendix A.
In equation (20) Ĥ is number of clusters and p has a non-
zero membership. When p does not belong to any cluster

then Ĥ = 0 so that
∑H

i=1 µFCi
(p)τ i

Cc

Ĥ
becomes undefined.

This issue is resolved by taking frmc
i (p) = 0 when p does

not belong to any cluster. This definition does not normal-
ize fuzzy rough membership values and so the function is a
possibilistic fuzzy rough membership function. The equa-
tions (19) and (20) expresses the fact that if an input pat-
tern belongs to clusters (all belonging to only one class)
with non-zero memberships then no fuzzy roughness are
involved. However, in equation (20) it matters to what ex-
tent the pattern belongs to clusters. This is evident from
property 11. Some of the important properties applicable
to equations (19) and (20) are:
Property 1: 0<frmi(p) < 1 and 0 < frmc

i (p) < 1
Property 2: frmi(p)/frm

c
i (p) = 1 or 0 iff no uncertainty

exists
Property 3: If no uncertainty is with p then
frmi(p)/frm

c
i (p) = τ iCc

for some j ∈ {1, 2, . . . . . . .,H}
Property 4: If no uncertainties are with p
then frmi(p)/frm

c
i (p) = rmA (p)

Property 5: When each class is crisp and fine and class
memberships are crisp frmi(p)/frm

c
i (p) is equivalent to

fuzzy membership of p in class Cc
Property 6: If a and b are two patterns with µFCj

(a) =
µFCj

(b) ∀j and µFCCc
(a) = µFCCc

(b) then frmi (a) =
frmi(b) and frmc

i (a) = frmc
i (b)

Property 7: rmc
P−Cc

(p) =

(∑H
i=1 µFCi

(p)τ i
Cc

Ĥ

)
−

rmc
Cc

(p) ∧ rmP−Cc
(p) = 1− rmCc

(p)

Property 8: τCc∪V (p) ≥ max {τCc
(p), τV (p)}

Property 9: τCc∩V (p) ≤ min {τCc
(p), τV (p)}

Property 10: If W is family of pairwise disjoint crisp sub-
sets of P then τ∪W (p) =

∑
Cc∈W τCc

(p)

Property 11: For C class classification problem with crisp
classes, possibilistic fuzzy rough functions behave in pos-
sibilistic manner and constrained fuzzy rough functions be-
have otherwise
Property 12: If class is fuzzy then 0 ≤

∑C
c=1 τCc

(p) ≤ C

The fuzzy rough membership values depend on fuzzy
classification of input dataset. The fuzziness in classes rep-
resents fuzzy linguistic uncertainty present in dataset. The
classification can be performed through either (a) unsuper-
vised classification which involves collecting data from all
classes and classify them subsequently without considering
associated class labels with data or (b) supervised classifi-
cation where separate datasets are formed for each class
and classification is performed on each such dataset to find
subgroups present in data from same class. Both classi-
fication tasks can be performed by some trivial classifica-
tion algorithms [17], [18], [19]. However, there are certain
problems which are to be taken care of such as: (a) number
of classes which have to be fixed apriori or which may not
be known (b) it will not work in case number of class is one
and (c) generated fuzzy memberships are not possibilistic.

To overcome the first problem evolutionary program-
ming based method may be used [18]. For various classi-
fication problems evolutionary methods can automatically
determine number of classes. It is worth mentioning that
number of classes should be determined as best as possible.
Otherwise, calculation of fuzzy linguistic variables will be
different and as a result fuzzy rough membership values
may also vary. For the second problem if it is known apriori
that only one class is present then mean and standard devia-
tion are calculated from input dataset and π fuzzy member-
ship curve is fitted. But while doing so care must be taken
to detect possible presence of the outliers in input dataset.
To overcome third problem possibilistic fuzzy classifica-
tion algorithm or any mixed classification algorithm can
be used. As of now there is no single classification algo-
rithm which can solve all the problems. If output class is
fuzzy then it may be possible to assign fuzzy memberships
for output class subjectively. However, if domain specific
knowledge is absent then we have to be satisfied with given
crisp membership values.

The fuzzy rough ambiguity plays a critical role in many
classification problems because of its capability towards
modeling non statistical uncertainty. The characterization
and quantification of fuzzy roughness are important aspects
affecting management of uncertainty in classifier design.
Hence measures of fuzzy roughness are essential to es-
timate average ambiguity in output class. A measure of
fuzzy roughness for discrete output classCc ⊆ X is a map-
ping S(X) → R+ that quantifies degree of fuzzy rough-
ness present in Cc. Here S(X) is set of all fuzzy rough
power sets defined within universal setX . The fuzzy rough
ambiguity must be zero when there is no ambiguity in de-
ciding whether an input pattern belongs to it or not. The
equivalent classes form fuzzy classes so that each class is
fuzzy linguistic variable. The membership is function of
center and radius of each class in feature space and is rep-
resented with kernel.

In formulation of FRSVM, fuzzy membership reduces
outliers’ effects [18], [19]. When samples are nonlinear
separable fuzzy memberships are calculated in input space
but not in feature space. The contribution of each point in
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hyperplane in feature space cannot be represented properly
and fuzzy rough membership function efficiently solves
this. Through fuzzy rough membership function the input
is mapped into feature space. The fuzzy rough member-
ships are calculated in feature space. Further using kernel
function it is not required to know shape of mapping func-
tion. This method represents contribution of each sample
point towards separating hyperplane in feature space [19].
Thus, the proposed machine reduces outlier’ effects effi-
ciently and has better generalization ability.

The higher value of fuzzy rough membership function
implies importance of data point to discriminate between
classes. It implies highest value is given by support vectors.
These vectors are training points which are not classified
with confidence. These are examples whose corresponding
αivalues are non zero. From representer theorem [20] opti-
mal weight vector w∗ is linear combination of support vec-
tors which are essential training points. The number nSV
of support vectors also characterizes complexity of learning
task. If nSV is small then only a few examples are impor-
tant and rest can be disregarded. If nSV is large then nearly
every example is important for accuracy. It has been shown
that under general assumptions about loss function and un-
derlying distribution training data nSV = Ω (n). This sug-
gests that asymptotically all points are critical for training.
While this gives Ω (n) bound on training time this solves
FRSVM problem exactly. Further, datasets need not neces-
sarily have Θ (n) support vectors.

6 MapReduce

MapReduce [21] illustrated in figure 3 is a programming
model for processing large datasets with parallel distributed
algorithm on cluster. It is composed of map and reduce
function combinations derived from functional program-
ming. The users specify map function that processes key
value pair to generate a set of intermediate key value pairs
and reduce function that merges all intermediate values as-
sociated with same intermediate key [21]. MapReduce is
divided into two major phases called map and reduce sep-
arated by an internal shuffle phase of intermediate results.
The framework automatically executes those functions in
parallel over n number of processors. MapReduce job ex-
ecutes three basic operations on dataset distributed across
many shared nothing cluster nodes. The first task is map
function that is processed in parallel manner by each node
without transferring any data with other nodes. In next
operation processed data by map function is repartitioned
across all nodes of cluster. Finally reduce task is executed
in parallel by each node with partitioned data.

A file in distributed file system is split into multiple
chunks and each chunk is stored on different data nodes.
A map function takes key value pair as input from input
chunks and produces list of key value pairs as output. The
type of output key and value can be different from input

values.

map (key1, value1)⇒ list (key2, value2) (21)

A reduce function takes key and associated value list as
input and generates list of new values as output:

reduce (key2, list (value2))⇒ list (value3) (22)

Figure 3: MapReduce System.

Each reduce call produces either value value3 or an
empty return, through one call returns more than one value.
The return of all calls is collected as desired result list. The
main advantage of MapReduce is that it allows distributed
processing of submitted job on subset of whole dataset in
the network.

7 Experimental framework: Parallel
fuzzy rough support vector
machine

FRSVM suffers from the scalability problem [22] both in
terms of memory and computational time. In order to
improve the scalability problem a parallel FRSVM viz.
PFRSVM is developed which handles the stated problems
through parallel computation. It is executed through mul-
tiple commodity computing nodes on cascade FRSVM
model parallel in cloud environment. PFRSVM training
is realized through FRSVMs where each FRSVM acts as
filter. This leads to the process of deriving local optimal
solutions which contribute towards the global optimum so-
lution. Through PFRSVM huge scale data optimization
problems are divided into independent small optimization
problems. The support vectors of the prior FRSVM are
used as the input of later FRSVM. FRSVM is aggregated
into PFRSVM in hierarchical fashion. The PFRSVM train-
ing process is described in the figure 4.

In this architecture, support vectors sets of two FRSVMs
are combined together as input to new FRSVM. This pro-
cess continues until only one vector set remains. Here a
single FRSVM never deals with the whole training set. If
filters in the first few layers are efficient in extracting more
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support vectors it leads to maximum optimization. This
results in handling fewer support vectors in the later lay-
ers. Thus training sets of each of the sub problems are
much smaller than that of whole problem where support
vectors are a small subset of training vectors. For train-
ing FRSVM classifier functions LibSVM [23] with various
kernels. The cross validation test is used to find appropri-
ate values of parameters C and γ as discussed in section
8. The entire framework is implemented with Hadoop and
streaming Python package.

Figure 4: The training flow of PFRSVM.

Given computing nodes in cloud environment the orig-
inal large scale data SD is partitioned into smaller data
sections {SD1, . . . . . . , SDn} uniformly. These small data
sets SDi are placed on the computing nodes. Then the cor-
responding partition files are created. Based on the avail-
able computation environment the job configuration man-
ager [24] configures the computation parameters such as
map, reduce, class names combination, number of map and
reduce tasks, partition file etc. The driver manager [24] ini-
tiates the MapReduce task. The dynamic parameters are
transformed to each computing node through an API inter-
face [24].

In each computing node the map tasks are operated. The
first layer of figure 4 loads the sample data from local
file system according to the partition file. Each node in
the layer classifies partitioned dataset SDi locally through
FRSVM from which support vectors are obtained. In fol-
lowing layers training samples are support vectors of the
former layer. The local support vectors obtained in ear-
lier layers are merged with global support vectors in the
later layers. LibSVM is used to train each FRSVM. In Lib-
SVM sequential minimal optimization [23] is used to select
workset in decomposition methods for training FRSVM.
FRSVM is trained using [23].

In map job of MapReduce subset of training set is
combined with other local support vectors. The trained
support vectors are sent to reduce jobs. In reduce job
support vectors of all map jobs are collected, evaluated,

merged with global support vectors and fed back to the
client. Each computer within cloud environment reads
global support vectors. Then it merges global support
vectors with subsets of local training data and classifies via
FRSVM. Finally, all computed support vectors in cloud
computers are merged. The algorithm saves global support
vectors with new ones. The training process is performed
iteratively and stops when all FRSVMs are combined
together resulting into PFRSVM. The entire system is
schematically shown in figure 5. The steps of algorithm
are:

PFRSVM Algorithm

1. Initialize global support vector set
[
i = 0, GV i = φ

]
2. i = i+ 1

3. For any computing node c ∈ C
Read global support vectors

Merge them with subset of training data

4. Train FRSVM with merged new dataset

5. Find support vectors

6. When all computers in cloud complete training
Merge all calculated support vectors
Save to global support vector set

7. If (t
i

= ti−1)

Stop

else

Goto 2

The map and reduce functions of PFRSVM are:
Map function of PFRSVM Algorithm

GV= φ
While (t

i 6= ti−1) do
for c ∈ C do

TSic = TSic ∪GV
i

end for
end while

Reduce function of PFRSVM Algorithm
While (t

i 6= ti−1) do
for c ∈ C do

SV c, t
i = frsvm(TSc)

end for
for c ∈ C do

GV = GV ∪ SV C

end for
end while



404 Informatica 39 (2015) 397–420 A. Chaudhuri

The architecture of PFRSVM developed is not able to
achieve linear speedup when number of machines contin-
ues to increase beyond a data size dependent threshold.
This happens because of communication and synchroniza-
tion overheads between the computing nodes. The com-
munication overhead occurs when message passing takes
place between machines. The synchronization overhead
occurs when master node waits for task completion on
slowest machine. The MapReduce compatible algorithm
runs with Hadoop cluster [25] which uses identical soft-
ware versions and hardware configurations through which
linear speedup is achieved.

Another aspect which deserves attention is convergence
of PFRSVM while performing classification [12], [19]. To
consider this let us assume a subset ST of training set TS
with OPT (ST ) as optimal objective function over ST .
HereH∗ is global optimal hypothesis with minimal empiri-
cal risk RKemp (H∗). The algorithm starts with GV 0 = 0
and generates a decreasing sequence of positive set of vec-
tors GV i with following hinge loss function:

HL (f (x) , y) = max [0, 1− y · f (x)] (23)

The empirical risk is computed with approximation:

RKemp (H) =
1

n

n∑
i=1

HL (H (xi) , yi) (24)

According to empirical risk minimization principle
learning algorithm chooses hypothesis Ĥ minimizing risk:

Ĥ = arg minH∈H RKemp (H) (25)

Figure 5: Schematic representation of PFRSVM in Cloud
Environment.

A hypothesis exists in every cloud node. Let Y be subset
of training data at cloud node j; Hi,j is hypothesis at node
j with iteration i such that optimization problem in equa-
tion (3) and corresponding equation (10) becomes equation
(26) given in Appendix A.

In equation (26) KM12 and KM21 are
kernel matrices with respect to KM12 ={
Kj,k

(
yjk, GV

i
(j,k)

)
|j = 1, ..,m; k = 1, ..n

}
. Here

α1 and α2 are solutions estimated by node j with
dataset Y and GV . The kernel matrix KM is
symmetric positive definite on square because of
Mercer’s condition as a result of which KM12 and
KM21 are equal. At iteration i matrices KM11 =
{Kj,k (yjk, yjk) |yjk ∈ Y, j = 1, ..,m; k = 1, ..n} and

KM22 = {Kj,k (GV,GV ) |j = 1, ..,m; k = 1, ..n} .

The algorithm terminates when hypothesis’ empirical
risk is same with previous iteration i.e. RKemp

(
Hi
)

=

RKemp

(
Hi−1

)
. The accuracy of decision function of

PFRSVM classifier at ith iteration is always greater than
or equal to maximum accuracy of decision function of
SVM classifier at 1stiteration i.e. RKemp

(
Hi
)
≤

arg minH∈Hi−1 RKemp (H).
Finally we discuss the complexity of proposed algo-

rithm. The time complexity of FRSVM is O
(
n2
)
. The

bandwidth of network determines the transmission time of
data Tttbetween map and reduce nodes. When training
data is divided into p partitions computation cost is cal-
culated in terms of layers of cascade FRSVM as log2p .
Considering ratio between number of support vectors and
whole training sample as a (0 < a < 1) and ratio between
support vectors and training sample excluding first layer
as b(1 < b < 2), the number of training sam-
ples of ith layer is nab

(
b
2

)log2p −i. The computation

time is: O

((
n
p

)2
)

+
∑
iO

((
nab
(
b
2

)log2p −i
)2
)

+

O
(∑

i nab
(
b
2

)log2p −i−1
2log2p −i−1

)
+Ttt. The overhead

of data transfer includes three parts: (a) the first part is data
transfer from map to reduce nodes which are support vec-
tors obtained by map nodes (b) the second part is data trans-
fer from reduce to server node which are support vectors
and (c) the third part is data transfer from server nodes to
map node which are training samples combined by support
vectors. The overhead of data transfer depends on band-
width of MapReduce cluster.

8 Experimental results and
discussions

In this section, the effectiveness of PFRSVM is demon-
strated with various experiments. At first a brief discussion
on generation of synthetic data is given. Then real datasets
used are highlighted. Next we illustrate selection of opti-
mum values of (C, γ) and kernel used in PFRSVM. The
classification on synthetic data follows this. Next the out-
lier generation in real data is given. This is followed by
classification on real data. The imbalance and overlapping
class classification is presented next. This is followed by
generalization to unseen data when size of training and test
dataset are varied. The discussion on features and labels
relaxation follows this. The comparative classification per-
formance of PFRSVM with other approaches is given next.
Finally, some critical issues regarding implementation of
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PFRSVM in cloud environment is highlighted.

8.1 Generation of synthetic data

To validate performance of PFRSVM in realistic environ-
ments the datasets are generated as: (a) We randomly
created S clusters such that for each cluster: (i) centre
cp ∈ [cpl, cph] for each dimension independently; (ii)
radius rd ∈ [rdl, rdh] and (iii) number of points np ∈
[npl, nph] in each cluster (b) We labeled clusters based on
X-axis value such that cluster T i is labeled as positive if
cpxi < α − rdi and negative if cpxi > α + rdi. Here cpxi is
X-axis of centre cpi and α is threshold between [cpl, cph].
We removed clusters not assigned to either of positive or
negative which lie across threshold α on X-axis to make
them linearly separable. (c) Once characteristics of each
cluster are determined points for clusters are generated ac-
cording to 2-dimensional independent normal distribution
with [cp, rd] as mean and standard deviation. The class la-
bel of each data is inherited from label of its parent cluster.
It is noted that due to normal distribution maximum dis-
tance between a point in cluster and centre is unbounded.
The points that belong to one cluster but located farther
than surface of cluster are treated as outsiders. Due to
this dataset does not become completely linearly separa-
ble. Figure 6 shows a dataset according to parameters (see
Table 1). The data generated from clusters in left and right
side are positive (‘|’) and negative (‘-’) respectively. Fig-
ure 6(b) shows 0.5 % randomly sampled data from original
dataset of figure 6(a). From figure 6(b) the random sam-
pling reflects unstable data distribution of original dataset
which includes nontrivial amount of unnecessary points.
The dashed ellipses on Figure 6(b) indicate densely sam-
pled areas that reflect original data distribution are mostly
not very close to boundary. As such areas around boundary
are less dense because cluster centers which are very dense
are unlikely to cross over boundary of multiple classes.
Thus unnecessary data increases training time of PFRSVM
without contributing to support vectors of boundary. The
random sampling disturbs more when probability distribu-
tions of training and testing data are different because ran-
dom sampling only reflects that distribution of training data
could miss significant regions of testing data. This happens
as they are collected in different time periods. For fair eval-
uation testing data is generated using same clusters and ra-
diuses but different probability distributions by randomly
reassigning number of points for each cluster.

8.2 Real datasets used

The real datasets from UCI Machine Learning Repository
viz. German Credit, Heart Disease, Ionosphere, Semeion
Handwritten Digit and Landsat Satellite are used to con-
duct experiments and illustrate convergence of PFRSVM.
The different attributes of datasets are given (see Table 2
in Appendix B). The missing values’ problem in datasets is
resolved by genetic programming [19]. The nominal values

Figure 6: Original dataset [N = 114996].

Figure 7: 0.5 % randomly sampled data [N = 602]

Figure 8: Synthetic Dataset in 2-Dimensional Space.
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are converted into numerical ones during processing. The
datasets are divided into training and test sets each con-
sisting of 50 % samples. The training set is created by ran-
domly selecting samples from whole dataset and remaining
samples constitute test set.

Parameter Values
Number of clusters S 70
Range of cp [cpl, cph] [0.0, 1.0]
Range of rd [rdl, rdh] [0.0, 0.1]
Range of np [npl, nph] [0, 5000]

α 0.7

Table 1: Data Generated for figure 6.

8.3 Selection of optimum values of (C, γ)
and kernel used in PFRSVM

Selection of appropriate PFRSVM parameters plays a vi-
tal role in achieving good results. We consider RBF kernel
and use cross validation to find best parameters of (C, γ)
to train and test whole training set. A common strategy
is to separate dataset into known and unknown parts. The
prediction accuracy obtained from unknown set precisely
reflects classifying performance on an independent dataset.
An improved version viz. v fold cross validation is used
(v = 20) where training set is divided into v equal subsets.
One subset is tested using classifier trained on remaining
(v − 1) subsets. Each instance of whole training set is
predicted once cross validation accuracy is data percentage
correctly classified. This prevents over fitting problem. The
grid search also finds (C, γ) using cross validation. Vari-
ous pairs of (C, γ) values are tried and best cross validation
accuracy is selected. We found that exponentially growing
sequences of (C, γ) viz. (C = 2−5, 2−3, . . . . . . ., 215; γ =
2−15, 2−13, . . . . . . , 23) give best results. The grid search
performs exhaustive parameter search by using heuristics
with good complexity. The kernel used here is RBF. It
has been used with considerable success so its choice is
obvious. It nonlinearly maps samples into higher dimen-
sional space when relation between class labels and at-
tributes is nonlinear. RBF kernel has less hyper parameters
which also influences complexity of model selection. Also
RBF kernel has fewer numerical difficulties. After scaling
the datasets we first use grid search and find average best
(C, γ) values as (23, 2−7.37) with average cross validation
rate 83 %. After the best (C, γ) is found whole training
set is trained to generate final classifier. The proposed ap-
proach works well with thousands or more points.

8.4 Classification on synthetic data
Considering the synthetic data generated in section 8.1
Table 3 in Appendix B shows results on testing dataset.
PFRVM accuracy is evaluated for different values of C ∈
{0.5, 1, 1.5, 2, 5, 10, 20}. The best value is when C =

20. For larger C PFRSVM accuracy improves and error
decreases. The number of false predictions is reported on
testing dataset because of data size. PFRSVM outperforms
SVM with same number of random samples. The FRSVM
training time is almost 0.5 % of random samples. The sam-
pling time for PFRSVM constructs 572 data points. With
the growth of data size random sample gives similar accu-
racies as PFRSVM. The training time of SVM with ran-
dom sampling is longer than PFRSVM. It is evident that
using standard kernel functions good classification results
are produced.

A larger dataset is generated according to parameters to
verify PFRSVM performance (see Table 3 in Appendix B).
The results of random sampling, MFSVM and PFRSVM
on large dataset are also given (see Table 4 in Appendix
B). Due to simple linear boundary on large training data
random sampling does not increase MFSVM performance
when sample size grows. The error rates of MFSVM and
PFRSVM are approximately around 15 % lower than ran-
dom sampling of highest performance. The total train-
ing time of PFRSVM including sampling time is less
than MFSVM or random sampling of highest performance.
For voluminous datasets MFSVM takes longer time than
PFRSVM. MFSVM is executed with δ = 7 starting from
one positive and one negative sample and adding seven
samples at each round yielding good results. The value of δ
is set below 10. If δ is too high, its performance converges
slower with larger amount of training data to achieve same
accuracy. If δ is too low, MFSVM may need to undergo too
many rounds.

8.5 Generation of outliers in real data

The outliers are generated from real datasets using distance
based outliers algorithm [19]. Each point is ranked on ba-
sis of its distance to kth nearest neighbor and top n points
are declared as outliers. Also classical nested loop join and
index join partition based algorithms are used for mining
outliers. The input dataset are first partitioned into disjoint
subsets. The entire partitions are pruned when they can-
not contain outliers resulting in substantial savings in com-
putation. The partition based algorithm scales well with
respect to both dataset size and dimensionality. The per-
formance results are dependent on number of points, kth

nearest neighbor, number of outliers and dimensions [26].

8.6 Classification on real data

Now we consider real datasets and study the comparative
performance of PFRSVM with FRSVM. The experimen-
tal results using Gaussian RBF and Bayesian kernels are
listed [17], [18] (see Tables 5 and 6 in Appendix B). Both
training and testing rates are highlighted. For different
datasets the values of C considered are 8 and 128. When
Gaussian kernel is used PFRSVM achieve highest test rate.
When bayesian kernel is used then also PFRSVM have bet-
ter generation performance for Ionosphere and Semeion
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Handwritten Digit datasets. The table also illustrates that
PFRSVM has better generalization ability than FRSVM.
Finally PFRSVM has better performance than FRSVM on
reducing outliers’ effects.

8.7 Classification with imbalance and
overlapping classes

PFRSVM resolves the class overlapping combined with
imbalance problem effectively. It is different from tradi-
tional classifiers using crisp decision producing high mis-
classifications rates. The soft decision of PFRSVM with
optimized overlapping region detection addresses this. It
provides multiple decision options. The overlapping region
detected optimizes performance index that balances classi-
fication accuracy of crisp and cost of soft decisions. The
optimized overlapping regions divide feature space into
two parts with low and high confidence of correct clas-
sification. For test data falling into overlapping regions
multiple decision options and measures of confidence are
produced for analysis while for test data falling into non
overlapping regions results in crisp decisions. The training
procedure first builds fuzzy rough soft model using train-
ing data. The fuzzy rough information of training data
FRtraining is used to search optimal threshold θ∗ defin-
ing overlapping region. In testing stage incoming data is
first processed to find its location. In feature space X over-
lapping region R (θ) is centered at decision boundary with
margin at each boundary side. The width of margin is de-
termined by threshold θ as given by Equation(27) in Ap-
pendix A. Here FR (ωi|X) is posterior fuzzy rough mea-
sure of class i given X . The location of decision boundary
(FR (ω1|X) = FR (ω2|X)) is determined by class distri-
bution of training data. In overlapping region detection the
problem is determination of θ. In overlapping region detec-
tion two considerations should be taken (i) region should be
large enough to cover most potentially misclassified data
so that classification in non-overlapping region is highly
accurate and (ii) region should be compact so as to avoid
making soft decisions to too many patterns as patterns with
soft decisions are verified by system and hence increase
cost. To implement the stated considerations two crite-
ria i.e. classification accuracy in non-overlapping regions
acc (θ) and cost c (θ) are considered. To find a good trade-
off between acc (θ) and c (θ) an aggregate performance
evaluation criterion is achieved through weighted harmonic
mean HMβ (θ). The weight parameter β is predefined to
attend to accuracy in non-overlapping region β

1−β times as
volume of non overlapping region. The default β = 0.86
since decreasing rate of c (θ) is always faster than increas-
ing rate of acc (θ). The optimal threshold θ∗ maximizes
criterion HMβ (θ). By using this optimization criterion
optimal volume of overlapping region is able to adapt to
various data distributions and overlapping degrees. This
criterion can be extended to multiple overlapping classes.

8.8 Generalization to unseen data when
varying the size of training to test
dataset

PFRSVM generalizes well to unseen data when size of
training to test dataset is varied. It has been observed
that dataset sizes have been growing steadily larger over
the years. This leads development of training algorithms
that scale at worst linearly with number of examples. Su-
pervised learning involves analyzing given set of labeled
observations (training set) so as to predict labels of unla-
beled future data (test set). Specifically, the goal is to learn
some function that describes relationship between observa-
tions and their labels. The interest parameter here is size
of training set. The learning problem is called large scale
if its training set cannot be stored in memory [25]. In large
scale learning main computational constraint is time avail-
able rather than number of examples. In order for algo-
rithms to be feasible on datasets they scale at worst linearly
with number of examples.

The dual quadratic programming method in PFRSVM
favors smooth handing of kernels. With focus of problem
in large scale setting several methods have shifted back to
primal. But dual is amenable to certain optimization tech-
niques that converge quickly. The dual solvers used are
special techniques to quickly achieve good solution. There
are exponentially many constraints to problem which are
expected for structural prediction. It is desirable that there
is a single slack variable shared across each of these con-
straints. This affords some flexibility in solving the prob-
lem. The problem is solved through cutting plane method.
The problem is approached iteratively by keeping work-
ing set W of constraints and restricted to constraints in W .
Each element of W is vector w ∈ {0, 1}n and is consid-
ered as some combination of training point indices. The
working set is updated each iteration to include indices for
points that are currently misclassified. The algorithm ter-
minates when it is within optimal primal solution and it
achieves with appreciable time. However, training time in-
creases such that it takes longer to reach an approximate
solution.

8.9 Relaxation of dependency between
features and labels

PFRSVM effectively relaxes dependencies between fea-
tures of an element and its label. In this direction sequence
labeling is used which identifies best assignment to col-
lection of features so that it is consistent with dependen-
cies set. The dependencies constrain output space. The
dependencies are modeled with constraints so that it is a
constrained assignment problem. To solve this, two-step
process [27] is used that relies on constraint satisfaction al-
gorithm viz. relaxation labeling. First PFRSVM classifier
affects initial assignment to features without considering
dependencies and then relaxation process applies succes-
sively to constraints to propagate information and ensure
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global consistency. It aims at estimating for each feature
probability distribution over labels set. To produce these
maximum entropy framework is adopted. It models joint
distribution of labels and input features. The probability of
labeling feature tr with label λ is modeled as exponential
distribution:

prob (λ|tr; θ) =
1

Zθ (tr)
exp 〈θ, φ (tr, λ)〉 (28)

Here φ (tr, λ) is feature vector describing jointly feature
tr and label λ;Zθ (tr) is normalizing factor and θ is param-
eter vector. To estimate θ maximum entropy framework
advocates among all probability distributions that satisfy
constraints imposed by training set the one with highest
entropy. Relaxation labeling is an iterative optimization
technique that solves efficiently assigning labels problem
to features set satisfying constraints set. It reaches an as-
signment with maximal consensus among labels and fea-
ture sets. Denoting TR = {tr1, . . . .., trn} set of n fea-
tures, Λ is set of m possible labels and λ and ????? two
features of Λ. The interactions between labels are denoted
by compatibility matrix CM = {cmij (λ, µ)}. The co-
efficient cmij (λ, µ) represents constraint and measures to
which extent ith feature is modeled with label λ when la-
bel of jth feature is µ. These coefficients are estimated
from training set. The algorithm starts from an initial label
assignment from classifier. The relaxation iteratively mod-
ifies this assignment so that labeling globally satisfies con-
straints described by compatibility matrix. All labels are
updated in parallel using information provided by compati-
bility matrix and current label assignment. For each feature
tri and each label λ support function describes compatibil-
ity of hypothesis label of tri is λ and current label assign-
ment of other features defined by:

q
(t)
i (λ; p) =

n∑
j=1

∑
µ∈Λ

cmij (λ, µ)p
(t)
j (µ) (29)

In equation (29) p = {p1, . . . .., pn} is weighted label as-
signment and each p(t)

j (µ) in current confidence in hypoth-
esis label of ith feature is λ. The weighted assignment is
updated to increase pi (λ) when qi (λ) is big and decrease
it otherwise. More precisely update of each pi (λ) is:

p
(t+1)
i (λ)←

p
(t)
i (λ) · q(t)

i

(
λ, p(t)

)∑
µ∈Λ p

(t)
i (λ) · q(t)

i

(
λ, p(t)

) (30)

The calculation of support and mapping update is iterated
until convergence.

8.10 Comparative classification
performance of PFRSVM with other
approaches

Keeping in view the results on real datasets a compar-
ative average classification performance of PFRSVM is

presented here with respect to parameters C = 8, γ =
2−7.37 and Gaussian RBF and Bayesian kernels. The re-
sults are also highlighted (see Tables 7 and 8 in Appendix
B). It is evident that PFRSVM achieves superior average
classification accuracy percentage as compared to other
SVM versions for both kernels.

8.11 Some critical issues regarding
implementation of PFRSVM in cloud
environment

PFRSVM implemented here presents a powerful method
of huge datasets classification in distributed cloud environ-
ment. In this process we have discussed a new architecture
of in-stream data analytics [24]. The parallel approach of
computation offers a significant processing model for han-
dling discontinuity in data thereby enabling the develop-
ment of a scalable and reliable system [28]. The application
processes real time streams of data which pushes the limits
of traditional data processing architectures. This leads to
a new class of system software viz. stream processing en-
gine whose attributes are characterized by a core set of the
following eight general rules [29]:

1. Always keep the data moving

2. Place stream based query from the database

3. Handle the stream imperfections through delayed,
missing and out-of-order data

4. Always generate predictable outcomes

5. Effectively integrate the stored and streaming data

6. Always guarantee data safety and availability

7. Automatically partition and scale the applications

8. Always process and respond instantaneously

The architecture of PFRSVM as shown in figure 7 is de-
veloped keeping in view the above eight rules of stream
processing [29]. The overall architecture of the system pro-
vides guaranteed order independence which is challenging
and also vital in building scalable and reliable systems. In
what follows we highlight various critical problems solved
in order to build an enterprise class stream data classifica-
tion engine [24]:

1. Architecture of stream processing engine: The archi-
tecture of the system is designed by splitting the en-
tire computational workload into parallel phases that
relies on partial processing. These partial phases are
eventually combined together serially that operates
using traditional approach. This entails identifica-
tion of the portions of computation that are suitable
for parallel processing, pushing partial workload pro-
cessing right to the input manager of the data loading
pipeline and hooking up the results of concurrent par-
tial processing to serial processing [30]. The parallel
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Figure 9: The architecture of PFRSVM.

processing streams handle raw and intermediate de-
rived streams earmarked for parallel phase and serial
processing streams handle derived streams and other
computations that operate in serial phase. The data
sources are connected to the system using standard
protocols and start pumping data into streams using
bulk loading. The system forks an associated thread
dedicated to each connection. This thread instantiates
a local data flow network of computation operators on
appropriate stream on which data arrives. These oper-
ators are specifically generated for parallel processing
streams that correspond to particular raw stream and
produces result runs. The local data flow network is
also responsible for archiving raw data into tables it
processes as well as corresponding parallel process-
ing results it produces. It also sends parallel process-
ing data to the shared workload executor for use in
processing serial processing streams via shared mem-
ory queues [24]. The executor receives similar threads
that services other data sources. As such the executor
is part of a single very long running transaction for its
entire existence. The executor thread fetches parallel
processing records from input queues and processes
them through a data flow network. The executor ex-
ploits multiple available cores in the system by split-
ting operations across multiple threads. The system

also includes an archiver thread responsible for writ-
ing out windows of data produced for serial process-
ing streams by the executor to tables. There also ex-
ists a reducer thread responsible for eagerly combin-
ing partial results in background and a repair thread
that continually repairs contents of archives of serial
processing streams. It is always possible to spawn
several instances each executor, archiver, reducer and
repair threads.

2. Order independence in data processing: In this com-
putational framework order independence is always
achieved for parallel processing streams. For se-
rial processing streams order independence is imple-
mented by processing out of order data by periodi-
cally repairing any affected archived serial processing
data. The archives are always correct with respect to
out of order data on an eventual consistency basis. It
involves two activities viz. (i) spooling all data tuples
that arrive too late into an auxiliary structure through
a system generated corrections table and (ii) a repair
process that periodically scan records from auxiliary
table and combines them with an appropriate portion
of originally arrived tuples in order to recompute and
update affected portions of archived serial processing
data. This approach is similar to the dynamic revision
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of results as illustrated in [31].

3. Streamlining computational transaction: The compu-
tations in PFRSVM are defined through transactions
which define the unit of work [24]. The transaction
is associated with well-known ACID properties viz.
atomicity, consistency, isolation and durability. The
focus here is basically on atomicity, consistency and
durability. Atomicity is vital in order to easily undo
the effects of failures in either individual computa-
tions or the entire system. Consistency leads to in-
tegrity of data processed in the system. Durability is
critical in order to recover state of the system after a
crash. These properties are key attributors in the way
data is loaded into the in-stream analytic system where
loading application batches up a dataset and loads it
in a single unit of work. This model is vital in con-
necting a transactional message queue with streaming
system such that no records can ever be lost. This
depends on the ability to abort a data loading trans-
action either based on an error condition which may
occur in the loader, network or system. On abort it is
vital that all modifications to raw and derived stream
histories must be rolled back at least eventually. It is
very challenging to support the abort requirement here
because waiting until data is committed before pro-
cessing leads to significant extra latency defeats the
purpose of the streaming system and processing dirty
uncommitted data from multiple transactions makes
it hard to unwind the effects of a single transaction.
The latter is particularly hard because archiving of se-
rial processing streams is the responsibility of archiver
threads that run their own transactions and are inde-
pendent of thread that manages the unit of work in
which data is loaded. The solution is achieved through
two stages where we push down the partial processing
and archiving results to input manager thread that han-
dles the data loading transaction and we organize the
data loading application into several concurrent units
of work each of which loads one or more chunks of
data. The data chunk is a finite subpart of stream that
arises naturally as by product, the way data is col-
lected and sent to a streaming system. Here the in-
dividual systems spool data into log files kept locally.
These files are bulk loaded through standard interfaces
and are often split at convenient boundaries based on
number of records, size or time and are sent separately
to the stream processing engine. They also serve as
natural units for data chunks with clear boundaries.

Consider an example of order independent partial
processing transaction where certain types of opera-
tions are implemented that are tolerant to appreciable
amounts of disorder in their input [24]. The trans-
action adheres to all the ACID properties stated ear-
lier. Let us take tumbling or non-overlapping window
count query with window of 6 minutes shown in fig-
ure 8 which operates over a stream of data with many

Figure 10: A transaction illustrating the Order Independent
Partial Processing adhering ACID properties.

records arriving out-of-order and input manager pro-
vides progress information on heuristic basis. This has
resulted in 6 out-of-order tuples being discarded. Here
we have 3 columns each representing the state of an
individual partition. The first window returns the be-
havior of an out-of-order processing approach. The
second window the arrival of an out-of-order tuple
with timestamp 3 (row 10) reduces the system to sec-
ond partition. When an out-of-order tuple with times-
tamp 3 arrives during that same window it is handled
in second partition as it is still in-order relative to that
partition. When tuple with timestamp 6 (in row 16)
comes in during third window its timestamp is high
enough to cause the open window of second partition
to close producing partial result of (2, 5) and process-
ing new tuple in second partition associated with sec-
ond window ending at time 10. When next two tuples
(rows 17 and 18) with timestamps 3 and 9 come in
they are too late to be processed in second partition
and requires the system to proceed to third partition
where they are sent. Next tuple with timestamp 9 (row
18) comes in and is sent to second partition. When
system receives a control tuple with timestamp 15 it
flushes second and third partitions producing partial
results of (2, 10) and (2, 5).

4. Recovery from failure: Once the system fails it is re-
covered by bringing the system back to a consistent
state after a crash when all in flight transactions during
the crash are deemed aborted [24]. Here the recovery
archives of parallel processing streams are free since
all writes of raw and corresponding derived data hap-
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pen as part of the same transaction. We benefit both
from the robust recovery architecture of the storage
subsystem and also from other features such as online
backup mechanisms. The recovery operation for se-
rial processing is a more challenging because the large
amounts of runtime state managed in main memory
structures by operators in executor and the decoupled
nature in which durable state is written out originally
by the archiver. The crash recovery therefore involves
standard database style recovery of all durable state,
making all serial processing archives self-consistent
with each other as well as the latest committed data
from their underlying archive and rebuilding the run-
time state of the various operators in executor. The
ability to have robust recovery implementation that is
capable of quickly recovering from a failure is essen-
tial. Furthermore, the longer it takes to recover from a
failure the more the amount of pent-up data has gath-
ered and the longer it takes to catch up to the live data.

The recovery from failure in distributed PFRSVM is
assessed in terms of delay, process and correct (DPC)
protocol which handles crash failures of processing
nodes and network failures [24]. Here, the choice
is made explicit as the user specifies an availability
bound and it attempts to minimize the resulting in-
consistency between the node replicas while meeting
the given delay threshold. The protocol tolerates oc-
currence of multiple simultaneous failures that occur
during recovery. In DPC each node replica manages
its own availability and consistency by implementing
state machine as shown in figure 9 that has three states
viz. STABLE, UPSTREAM FAILURE (UP FAIL-
URE), and STABILIZATION.

Figure 11: The DPC State Machine.

The DPC provides eventual consistency even when
multiple failures overlap in time and with at least two

replicas of any processing node it maintains the re-
quired availability at all times. In both scenarios client
applications eventually receive stable version of all re-
sult tuples and there are no duplications. A single pro-
cessing node with no replica, no upstream and down-
stream neighbors is executed and its inputs are con-
trolled directly. The node produces complete and cor-
rect output stream tuples with sequentially increasing
identifiers as shown in figure 10.

First a failure is injected on input stream 1 (Failure 1)
and then on input stream 3 (Failure 2). Figure 11(a)
shows the output when two failures overlap in time
and figure 11(b) shows the output when Failure 2 oc-
curs exactly at the moment when Failure 1 heals and
node starts reconciling its state.

Figure 12: The Query Diagram used in Simultaneous Fail-
ures Experiments.

Here the node temporarily loses one or two of its in-
put streams and there are no other replicas that could
be reconnected to. When another replica exists for
an upstream neighbor the node tries to switch to that
replica. When a node switches to a different replica of
an upstream neighbor there is a short gap in data it re-
ceives. In this prototype implementation we measured
that it takes a node approximately 30 milliseconds to
switch between upstream neighbors once the node de-
tects failure. Failure detection time depends on the
frequency with which downstream node sends keep-
alive requests to its upstream neighbors. With a keep-
alive period of 100 milliseconds it takes at most 130
milliseconds between the time a failure occurs and the
time a downstream node receives data from a differ-
ent replica of its upstream neighbor. For many appli-
cation domains it is expected that this value is much
smaller than minimum incremental processing latency
that the application tolerates. If the application cannot
tolerate a short delay the effect of switching upstream
neighbors is same as the effect of failure 1 as shown
in figure 11(a) but without subsequent failure 2 i.e.
the downstream node first suspends and then produces
tentative tuples. Once reconnected to new upstream
neighbor the downstream node goes back and corrects
tentative tuples it produced during the switch. The
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Figure 13: Overlapping Failures.

Figure 14: Failure during Recovery

Figure 15: The Outputs with Simultaneous Failures.

maximum incremental latency is set as 3 seconds. Fig-
ure 11 shows the maximum gap between new tuples
remains below that bound at any time. However node
manages to maintain the required availability with suf-
ficiently short reconciliation time.

For longer duration failures reconciliation easily takes
longer than the maximum latency bound. The DPC
relies on replication to enable a distributed PFRSVM
to maintain a low processing latency by ensuring that
at least one replica node always processes most recent
input data within required bound. To demonstrate this
we use the experimental setup as shown in figure 12.
We create a failure by temporarily disconnecting one
of the input streams without stopping data source. Af-
ter the failure heals data source replays all missing tu-
ples while continuing to produce new tuples.

The Table 9 in Appendix B shows the maximum pro-
cessing latency measured at client for failures with

Figure 16: The Experimental Setup for Consistency and
Availability tradeoffs for Single Node.

different durations. As the experiment is of determin-
istic nature each result is an average of three experi-
ments. All values measured are within a few percent
of the reported average. The client always receives
new data within required 4 second bound. Each node
processes input tuples as they arrive without trying to
delay them to reduce inconsistency. When the failure
first occurs both node replicas suspend for the max-
imum incremental processing bound and then return
to processing tentative tuples as they arrive. After the
failure heals DPC ensures that only one replica node
at a time reconciles its state while remaining replica
nodes continue processing the most recent input data.
Once the first replica reconciles its state and catches
up with current execution then other replica node rec-
oncile its state in turn. The client application has thus
access to the most recent data at all times. The ma-
jor overhead of DPC lies in buffering tuples during
failures in order to replay them during state reconcili-
ation. The overhead is in terms of memory and it does
not affect runtime performance. There are however
additional sources of overhead that affect runtime per-
formance [24]. To evaluate overhead of these delays
the experimental setup is shown in figure 13 which
produces appreciable results in terms of failure recov-
ery.

5. Atomicity of transaction: All the data that is generated
here through the parallel processing stream archive is
automatically consistent with respect to unit of work
into the underlying base stream. It is critical that same
atomicity property is also supported for archives of
serial processing streams in order for recovery and
high availability to work correctly. One simple ap-
proach to facilitate atomicity is to delay processing
of any data until it has been committed. Waiting for
commits unfortunately introduces latency within the
system. What is really required is the ability to of-
fer a strong guarantee about atomicity and durability
of data loaded in the system within a single unit of
work without compromising on immediate processing
of data. This calls for speculatively processing dirty
uncommitted data in a laissez-faire fashion based on
the assumption that errors and transaction aborts are
few and far between [24]. When a transaction is ac-
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Figure 17: Fault Tolerance Setup.

Figure 18: Setup without Fault Tolerance

Figure 19: The Experimental Setup for Fault Tolerance
Overhead Experiments.

tually aborted the system asynchronously repairs as-
sociated serial processing archives similar to the way
repair guarantees order-independence on an eventual
consistency basis.

6. Fault tolerance and high availability: The data driven
parallel approach used here provides a natural path
towards scalability. The next concern is towards en-
hancing it in order to provide fault tolerance and high
availability in the system [32]. The fault tolerance
is defined as the ability of system to react well from
any kind of extreme or catastrophic error which may
happen either from streaming engine itself in the ap-
plication or in some aspect of hardware or software
environment. In particular quick recovery from fail-
ure state is critical in realizing fault tolerance. The
high availability is characterized as the ability of sys-
tem to remain up even in the face of any catastrophic
error. It is generally realized using additional back-
up resources that are organized together in either an
active-standby or active-active configuration. The unit
of work and recovery functionality of the system high-
lighted earlier serve as key building blocks for fault
tolerance and high availability in PFRSVM classifica-
tion system. This implementation supports a compre-
hensive fault tolerance and high availability solution
by organizing a cluster of FRSVM nodes in the cloud
environment in a multi-master active-active configu-
ration. Here same workload are typically running on
all nodes of the cluster. Any incoming run of data
can be sent to any but only one node in the cluster. It

is then the responsibility of a special stream replica-
tor component in each computing node to communi-
cate the complete contents of each run to the peers in
the cluster. The runs of data that are populated in a
stream by peer are treated just like any other incom-
ing data except that they are not further re-replicated
to other nodes. This model has one eventual consis-
tency such that run replication procedure happens on
an asynchronous basis. In this way there is very small
amount of risk of data loss in the event of any catas-
trophic media failure between a run getting committed
and replicated to peer. The order independent infras-
tructure plays significantly in realizing simple fault
tolerant and high availability architecture. Since each
individual node in computing cluster accepts data in
any order different nodes stay loosely coupled and im-
plement simple and easy to verify protocols. When a
node recovers from failure it immediately starts ac-
cepting new transactions and patch up the data it has
missed asynchronously. As a node fails in the cluster
application layer takes the responsibility in directing
all workloads to other nodes. After the failed node
is brought back online it captures the entire data it
missed while being non-functional. This is accom-
plished by replicator component using a simple pro-
tocol that tracks both replicated and non-replicated
runs. PFRSVM executes by parallelizing in-stream
dataflow across cluster of workstations in a cost effec-
tive way by scaling the high throughput applications.
We can imagine having a large number of simulta-
neous sessions and sources. To keep up with high
throughput input rates and low latencies dataflow can
be scaled by partitioning it across a cluster. On the
cluster in-stream dataflow is a collection of dataflow
segments which may be one or more per machine. The
individual operations are parallelized by partitioning
input and processing across the cluster. When the par-
titions of an operation need to communicate to non-
local partitions of the next operation in the chain com-
munication occurs through exchange architecture [24]
as shown in figure 14.

In this configuration a scheme that naively applies
dataflow pair technique without accounting for cross
machine communication within parallel dataflow
quickly becomes unreliable. It is shown that a
cluster pair approach leads to a mean-time-to-failure
(MTTF) that falls off quadratically with number of
machines. Also the parallel dataflow must stall during
recovery thereby reducing the availability of system.
By embedding the coordination and recovery logic
within exchange architecture speeds up mean-time-
to-recovery (MTTR) thereby improving both avail-
ability and MTTF. The improved MTTF falls off lin-
early with the number of machines. The flux design
achieves the desired MTTF [24] as shown in figure
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Figure 20: Exchange Architecture.

15.

Figure 21: The Flux Design and Normal Case Protocol.

Now we illustrate benefits accrued from the design
of PFRSVM by examining performance of paral-
lel implementation of dataflow which highlights its
fault tolerant behavior [24]. We implemented stream-
ing group-by aggregation operations, boundary opera-
tions and flux within in-stream open source code base.
We partition this dataflow across five machines in a
cluster and place the operators to perform operations
on a separate sixth machine. The operators are sup-
plemented by a duplicate elimination buffer. The flux
is inserted after the first group-by operator to reparti-
tion its output. Initially we place a partition of each
operator on each of the five machines 0 to 4 and repli-

cate them using a chained declustering strategy. Thus
each primary partition has its replica on the next ma-
chine and last partition has its replica on the first. In
this configuration when a single machine fails all five
survival scenarios occur in different partitions. At the
beginning we introduce a standby machine with op-
erators in their initial state. We did not implemented
the controller as it has been implemented by standard
cluster management software [24]. We simulate fail-
ure by killing the in-stream process on one of those
machines which causes connections to that machine to
close and raise an error. Each machine is connected to
a 100 mbps switch. To approximate workload of high
throughput network monitoring the operator generates
sequentially numbered session start and end events as
fast as possible. With this setup figure 16 shows the
total output rate (throughput) and average latency per
tuple.

Here the main bottleneck is the network. At t = 20
sec when steady state is reached one of the five ma-
chines is killed. The throughput remains steady for
some time and then suddenly drops. The drop occurs
because during state movement the partition being
recovered is stalled and eventually causes all down-
stream partitions to also stall. Here about 8.9 MB of
state was transferred in 941 msec. Once catch up is
finished at t = 21 seconds a sudden spike in throughput
is observed. This spike occurs because during move-
ment all queues to the unaffected partitions are filled
and ready to be processed once catch-up completes.
Figure 16 shows an increase in latency because input
and in-fight data are buffered during movement. Then
the output rate and average latency settle down to nor-
mal. During this entire process the input rate stayed at
constant 42000 tuples/sec with no data dropped.

This investigation illustrates that with piecemeal re-
covery and sufficient buffering we can effectively
mask the effects of machine failures. To understand
the overheads of flux we added enough CPU process-
ing to the lower level group-by to make the bottle-
neck. Here for single parallel dataflow the input rate
was 83000 tuples/sec; for cluster pairs it was 42000
tuples/sec and for flux it was 37000 tuples/sec. Addi-
tional processing only reduces flux overhead relative
to others.

7. Bootstrapping the system: When a live workload is
added to the streaming classification system on an ad-
hoc basis it is easy to see only the data that arrives after
the request is submitted. This approach is quite rea-
sonable if the request involves small windows involv-
ing few seconds only. In many situations this is not the
case as requests may continue for hours and a naive
streaming implementation does not produce complete
results until steady state is reached. This entails boot-
strapping feature requirement from the system [24].
This exploits any available archives of the underly-
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ing raw or derived stream that workload is based on
by reaching into the archive and replaying history in
order to build up runtime state of the request and pro-
duce complete results as early as possible. In addition,
if a new workload has an associated archive there is
often a need for the system to populate this archive
with all data already in the system prior to the request.

Figure 22: System Performance (Throughput and Average
Latency per Tuple).

9 Conclusion
In this work we propose a robust parallel version of fuzzy
support vector machine i.e. PFRSVM to classify and ana-
lyze useful information from huge datasets present in cloud
environment. It is an in-stream data classification engine
which adheres to the fundamental rules of stream pro-
cessing. The classifier is sensitive to noisy data samples.
The fuzzy rough membership function brings sensitivity to
noisy samples and handles impreciseness in training sam-
ples giving robust results. The decision surface sampling is
achieved through membership function. The larger mem-
bership function value increases the importance of corre-
sponding point. The classification success lies in proper
selection of fuzzy rough membership function. PFRSVM
success is attributed towards choosing appropriate param-
eter values. The training samples are either linear or non-
linear separable. In nonlinear training samples, using lin-
ear separating input space is mapped into high dimensional

feature space to compute separating surface. PFRSVM ef-
fectively addresses nonlinear classification and imbalance
and overlapping class problems. It generalizes to unseen
data and relaxes dependency between features and labels.
PFRSVM performance is also assessed in terms of num-
ber of support vectors. We use MapReduce technique to
improve scalability and parallelism of split dataset train-
ing. The research work is performed on cloud environ-
ment available at University of Technology and Manage-
ment, India on real datasets from UCI Machine Learning
Repository. The experiments illustrate the convergence of
PFRSVM. The performance and generalization of the algo-
rithm are evaluated through Hadoop. The algorithm works
on cloud systems dealing with large scale dataset training
problems without having any knowledge about the number
of computers connected to run in parallel. The experimen-
tal results have been reported here for C = 8 and 128 us-
ing Gaussian RBF and Bayesian kernels. For Gaussian ker-
nel both PFRSVM and FRSVM achieve highest test rate.
For Bayesian kernel both algorithms have better general-
ization performance for Ionosphere and Semeion Hand-
written Digit datasets. Further PFRSVM has better gen-
eralization ability than FRSVM. PRFSVM also has better
performance on reducing the outliers’ effects. Empirically
prediction variability, generalization performance and risk
minimization of PFRSVM is better than existing SVMs.
The average classification accuracy of PFRSVM is better
than SVM, FSVM and MFSVM for Gaussian RBF and
Bayesian kernels. The experimental results on both syn-
thetic and real datasets clearly demonstrate the superiority
of proposed technique. The stream classification engine is
scalable and reliable and maintains order independence in
data processing, streamlines computational transaction, re-
covers from failure, generates atomic transactions and are
fault tolerant and highly available in nature.
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Appendix A
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Appendix B

Dataset Characteristics No. of Instances No. of Attributes
German Credit Multivariate, Categorical,

Integer
1000 20

Heart Disease Multivariate, Categorical,
Integer

303 75

Ionosphere Multivariate, Integer 351 34
Semeion Handwritten
Digit

Multivariate, Integer 1593 256

Landsat Satellite Multivariate, Integer 6435 36

Table 2: The UCI Machine Learning Datasets used.

SVM PFRSVM 0.5 % samples
Number of data points 114996 572 602
SVM training time (sec) 160.796 0.002 0.002
Sampling time (sec) 0.0 9.569 3.114
Number of false predictions (Number of false pos-
itives, Number of false negatives)

75 (50, 25) 69 (58, 11) 237 (219, 18)

Table 3: Experimental Results on Synthetic Dataset (Number of Training Data = 124996, Number of Testing Data =
107096).

Sampling rate (%) Number of data Number of errors Training time Sampling time
0.0001 24 6423 0.000114 823.00
0.001 230 2399 0.000969 825.00
0.01 2344 1125 0.02 828.00
0.1 23475 1009 6.286 834.25
1 234386 1014 1189.786 838.86
5 1151719 1019 20705.4 842.69
MFSVM 2308 859 2.969 2796.214
PFRSVM 3896 862 1.422 2236.219

Table 4: Experimental Results on Large Synthetic Dataset (Number of Training Data = 24069196, Number of Testing
Data = 242896).
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PFRSVM with Gaussian RBF Kernel
Datasets Support

Vectors
Training
Rate %

Test
Rate %

German Credit 606 85.0 86.0
Heart Disease 137 65.5 73.7
Ionosphere 160 69.0 77.7
Semeion Hand-
written Digit

737 89.4 93.5

Landsat Satel-
lite

1384 95.0 97.0

FRSVM with Gaussian RBF Kernel
German Credit 636 79.7 78.9
Heart Disease 165 60.7 69.0
Ionosphere 180 65.0 74.9
Semeion Hand-
written Digit

765 84.5 86.8

Landsat Satel-
lite

1407 93.0 93.7

PFRSVM with Bayesian Kernel
German Credit 640 89.0 85.7
Heart Disease 145 67.7 69.9
Ionosphere 157 70.7 75.0
Semeion Hand-
written Digit

735 89.0 89.7

Landsat Satel-
lite

1396 96.9 96.9

FRSVM with Bayesian Kernel
German Credit 645 83.0 78.0
Heart Disease 175 64.8 65.8
Ionosphere 177 67.0 70.7
Semeion Hand-
written Digit

755 86.8 83.8

Landsat Satel-
lite

1425 96.0 89.8

Table 5: Experimental Results of PFRSVM and FRSVM
on different Datasets with C = 8.

PFRSVM with Gaussian RBF Kernel
Datasets Support

Vectors
Training
Rate %

Test
Rate %

German Credit 596 95.2 96.0
Heart Disease 127 77.5 88.7
Ionosphere 142 82.0 92.7
Semeion Hand-
written Digit

727 97.9 94.5

Landsat Satel-
lite

1362 96.0 97.2

FRSVM with Gaussian RBF Kernel
German
Credit

625 94.0 93.5

Heart Disease 154 75.0 84.7
Ionosphere 172 80.9 89.7
Semeion Hand-
written Digit

754 97.7 91.5

Landsat Satel-
lite

1392 94.2 94.6

PFRSVM with Bayesian Kernel
German
Credit

632 97.2 95.7

Heart Disease 147 82.7 82.8
Ionosphere 145 86.7 87.2
Semeion Hand-
written Digit

725 98.0 98.6

Landsat Satel-
lite

1386 97.0 97.6

FRSVM with Bayesian Kernel
German
Credit

635 96.9 93.7

Heart Disease 165 79.9 80.0
Ionosphere 165 83.0 85.0
Semeion Hand-
written Digit

745 97.7 97.0

Landsat Satel-
lite

1402 95.2 95.7

Table 6: Experimental Results of PFRSVM and FRSVM
on different Datasets with C = 128.
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Dataset SVM FSVM MFSVM PFRSVM
German Credit 78.3 80.5 82.9 94.8
Heart Disease 83.5 86.9 87.0 95.9
Ionosphere 85.7 87.7 89.0 96.5
Semeion Handwritten Digit 82.7 86.0 86.5 95.5
Landsat Satellite 86.8 86.9 87.2 96.2

Table 7: The Average Classification Accuracy Percentage of different versions of SVM with Gaussian RBF Kernel.

Dataset SVM FSVM MFSVM PFRSVM
German Credit 77.7 78.0 80.7 94.2
Heart Disease 83.4 85.5 86.0 94.9
Ionosphere 85.5 86.0 87.9 95.5
Semeion Handwritten Digit 80.8 85.0 85.8 94.7
Landsat Satellite 86.9 87.2 87.8 96.6

Table 8: The Average Classification Accuracy Percentage of different Versions of SVM with Bayesian Kernel.

Failure Duration
(seconds)

Maximum Processing La-
tency (seconds)

2 2.1
4 2.7
6 2.7
8 2.7
10 2.7
12 2.7
14 2.7
16 2.7
30 2.7
45 2.7
60 2.7

Table 9: The Maximum Processing Latency for different Failure Durations and for Single Node Deployment with One
Replica.


