
 Informatica 41 (2017) 111–120 111

Software Architectures Evolution Based Merging

Zine-Eddine Bouras

LISCO Laboratory, Department of Mathematics and Computer Sciences

P.O. Box 218, EPST Annaba Algeria

E-mail: z.bouras@epst-annaba.dz

Mourad Maouche

Department of Software Engineering, Faculty of Information Technology

P.O. Box 1 Philadelphia University 19392, Jordan

E-mail: mmaouch@philadelphia.edu.jo

Keywords: software architecture, software architecture merging, sependency analysis, slicing

Received: November 12, 2015

During the last two decades the software evolution community has intensively tackled the software

merging issue. The main objective is to compare and merge, in a consistent way, different versions of

software in order to obtain a new version. Well established approaches, mainly based on the

dependence analysis techniques on the source code, have been used to bring suitable solutions. However

the fact that we compare and merge a lot of lines of code is very expensive. In this paper we overcome

this problem by operating at a high level of abstraction. The objective is to investigate the software

merging at the level of software architecture, which is less expensive than merging source code. The

purpose is to compare and merge software architectures instead of source code. The proposed

approach, based on dependence analysis techniques, is illustrated through an appropriate case study.

Povzetek: Prispevek se ukvarja z ustvarjanjem nove verzije programskega sistema iz prejšnjih na nivoju

abstraktne arhitekture.

1 Introduction
Software evolution is the response to software systems

that are constantly changing in response to changes in

user needs and the operating environment. This arises,

often, when new requirements are introduced into an

existing system, specified requirements are not correctly

implemented, or the system is to be moved into a new

operating environment [1]. One way to cope with

evolution is to carry out the software from the scratch,

but this solution is very expensive. Another way, that is

less expensive, is to proceed by merging changes.

Software practitioners are used first to manage

individually each change in a separate and independent

way leading to a new version, then to check that all

resulting individual versions do not exhibit incompatible

behaviors (non-interference), and finally to merge them

into a single version that incorporates all changes (if they

do not interfere) [2].

Such techniques, known as program merging, have

been widely used at the level of source code [2-4].

However comparing and merging a huge number of lines

of codes is very expensive. Our main motivation is to

overcome this problem by going up at the level of

software architecture where the number of comparison

and merge is smaller than in the source code.

In this way, we must address some problems like (1)

understanding what an existing architecture does and

how it works (dependency analysis), (2) how to capture

the differences between several versions of a given

architecture, and (3) how to create new architecture. The

first problem was resolved by Kim et al. [5].

The objective of this paper is to suggest an approach

to deal with the rest of problems, namely finding an

approach to compare and merge software architectures.

More precisely, we suggest reusing the well-known and

efficient program merging algorithm due to Horwitz [6].

This paper will show the applicability of this algorithm

through an appropriate example.

The rest of the paper is organized as follows. Section

2 is dedicated to related works. Section 3 presents the

notion of software architecture description and a running

example to be used throughout this paper. Section 4

introduces software merging in general and software

architecture merging in particular. Section 5 is dedicated

to the needed concepts in our approach. In section 6 we

present, detail, and illustrate our approach of software

architecture description merging.

2 Related Works
Besides differencing programs done by Horwitz [6],

there are other works that investigate differencing

hierarchical information for a large code such that

Apiwattanapong et al. in [7] and Raghavan et al. in [8].

In the context of design differencing Xing and

Stroulia in [9] use the assumption that the entities they

are differencing are uniquely named and many nodes

match exactly. A basic change due to designers is to

rename entities in order to become more expressive. In

this way the proposed approach fails.

112 Informatica 41 (2017) 111–120 Z. E. Bouras et. al

Abi-Antoun et al. in [10] propose an algorithm based

on empirical evaluation to cope with architectural

merging issue. Empirical Evaluation losses information

in some cases, merging architecture needs the study of

dependencies, formally, between components.

Finally there is an approach that copes with software

architectures evolution based merging. Bouras and

Maouche [11] use an internal form to represent software

architecture and proceed by a syntactic differentiation.

They, also, detect some type of conflicts that can fail the

process.

Our approach is more formal and precise in term of

dependency analysis. It uses the technique of slicing that

is a formal filter. Slicing permits dependency analysis of

software architecture by allowing us to find matching’s

and differences between elements of Software

Architecture Descriptions (SAD) during merging

process, and then merge components (if they are

compatibles) to obtain a new version of SAD.

3 Software architecture description
Understanding all aspects of complex system is very

hard. It therefore makes sense to be able to look at only

those aspects of a system that are of interest at a given

time. The concept of architecture views exists for this

purpose. According to IEEE 2007, a view is a

representation of a whole system from the perspective of

a set of concerns. Each view addresses a set of system

concerns, following the conventions of its viewpoint,

where a viewpoint is a specification that describes the

notations and modeling techniques to be used in a view

to express the architecture in question from a given

perspective [12]. Examples of viewpoints include:

Functional viewpoint, Logical viewpoint, Component-

and-connector viewpoint, etc. This paper is based on

Component-and-connector viewpoint which specify

structural properties of component and connector models

in an expressive and intuitive way. They provide means

to abstract away direct hierarchy, direct connectivity,

port names and types, and thus can crosscut the

traditional boundaries of the implementation-oriented

hierarchical decomposition of systems and sub-systems

[13, 14].

3.1 The example: Electronic Commerce

We introduce the running example, inspired from [5], to

be used throughout this paper.

An order entry form is entered, electronically by a

clerk. This form is taken by the Electronic Order

Processing System (EOPS) and transformed on several

actions through its five components: Ordering,

Order_Entry, Inventory, Shipping, and Accounting.

Components are distributed over different platforms,

have a number of connectors between them, are

independent processes, and communicate with each other

through parameterized events. EOPS is depicted in figure

1.

EOPS stores the order information through CGI, and

triggers Ordering which is the front-end of the whole

system. This triggering is done through an I_order event.

I_order generates a place_order event (internal action

depicted by a dotted arrow) at the place_order port. The

payment results from a payment_req event of Ordering

which takes place when Ordering gets notified from the

Order_Entry (implicit invocation depicted by a bold

arrow).

When the payment gets approval, Ordering gets an

order_success event and generates I_ship_info event to

notify the customer of a successful order (internal

action). Otherwise Ordering gets an order_fail event and

notifies customer of unsuccessful order through

I_order_rej event (internal action).

Order_Entry gets a take_order event from Ordering

whenever customer places an order (external

communication depicted by an arrow). An order is

broken down into several items and each information of

them is sent to Inventory through a ship_item event along

with the customer information. ship_item events are

generated whenever each ordered item is processed by

Inventory to pass next item information until all the items

for an order are processed. The done event results from a

next_item event when there is no more items to be

processed and this event triggers the payment

information request payment_req of Ordering. Inventory

generates a get_next event whenever it gets a find_item

event to get the other item information for the order.

Inventory generates two events, a ship event to Shipping

and add_item to Accounting if an item is in the inventory

it generates a back_order event to Inventory in order to

get and ship the out-of-stock item, otherwise

(concurrency). A restock_items event occurs when a

customer cancels an order, this event does not cause any

further event generation and is represented by special

symbol called internal sink.

Shipping takes care of gathering the items of an

order through recv_item events from Inventory. When it

gets a shipping approval through a recv_receipt event

from Accounting, it generates a shipping_info event to

Ordering and it ships ordered items (synchronization).

When it receives a cancel event (due to canceled order),

it generates a restock event along with the item

information it received. Accounting accumulates the total

amount for an order whenever it receives an items event

and verifies resources by communicating with outside

components when it receives a checking request and

sends the result (e.g., good/bad). Upon receiving

payment_res (i.e., good or bad), it issues either an

issue_receipt event as an approval for shipping when

successful or fail and restock events to inform the failure

of the order process to the customer.

4 Software architecture merging
Merging approaches take a form when concurrent

modifications of the same system are done by several

developers. They are able to merge changes in order to

obtain ultimately one consolidated version of a system

Software Architectures Evolution Based Merging Informatica 41 (2017) 111–120 113

again. However, they are faced to two challenges: the

representation and how to find out differentiation.

The first one concerns the representation of software

artifact on which the merge approach operates. It may

either be text-based or graph-based. The second

challenge concerns how differences are identified,

represented, and merged [14, 15].

Figure 1: Software architecture of electronic order

processing system.

Text-based merge approaches operate solely on the

textual representation of a software artifact in terms of

text files. The unit element of the text file may either be a

paragraph, a line, a word, or even an arbitrary set of

characters. Unit element of given version is compared to

the original unit element in order to create the new one.

The major advantage of such approaches is their

independence of the programming languages used in the

versioned artifacts. However, the major problem when

merging flat files, syntax and semantics of a

programming language are losses [14, 15].

Graph-based approaches overcome these problems;

they operate on a graph-based representation of a

software artifact for achieving more precise merging.

Such approaches translate the versioned software artifact

into a specific structure (graph) before merging. The unit

elements (e.g. components) are represented by nodes and

their relationships (e.g. connectors) by arcs. Changes

consist of adding/deleting/updating unit elements [16].

However it requires a preliminary and primordial step

which is known as software architecture understanding

[16, 17]. It is very important to understand component's

context and its running environment in order to

efficiently manage all kinds of dependencies. In general,

as soon as a new component is installed, removed, or

updated in a given software architecture, it has an impact

on a part of the system. The new component may refer to

certain components, and also be used by other

components [16-20].

5 Software architecture merging

concepts
Before starting our software architecture merging

approach, it is useful to introduce some preliminary

concepts related to software architectures and their

understanding. These concepts concern how to represent

software architecture as a graph (Software Architectural

Description Graph) and how to find matching’s and

differences between components (slicing), and finally

merging them.

5.1 Software Architectural Description

Graph

Understanding a software addresses some problems like

what it does and how it works. This is due to the implicit

relationships between lines of codes. An explicit

representation is needed.

Kim et al. in [5] propose a suitable dependence graph

to support SAD named Software Architectural

Description Graph (SADG). It consists of representing

explicitly, dependencies between architecture elements

i.e. component-connector, connector-component, and

additional dependences. Informally, SADG is an arc-

classified digraph whose vertices represent either the

components or connectors in the description, and arcs

represent dependencies between architectural design

elements. Formal definitions and illustrations of SADG

are detailed in [5].

In this paper we distinguish between two kinds of

software architectural description: Base and variants.

Base represents the original software architecture for

which changes are requested. Variants represent a family

of related and independent versions resulting from

changes done on Base by independent developers. Also

we point out that merge conflicts may occur. They take

place if one change invalidates another change, or if two

changes do not commute. Then, it is not decidable where

to integrate changes [3]. For example if software

architect of Variant A decides to update boolean

expression [=n] to [n=10] in component Ordering_Entry

(between in port next_item and out port done), while

software architect of Variant B states that the same n will

be n= 20, we are in the front of a conflict between

architects, and merging process fails. In this case conflict

is resolved manually. In this paper, we consider merging

architectures without conflicts.

5.2 Architectural slicing

When a maintenance programmer wants to modify a

component in order to satisfy new requirements, the

programmer must first investigate which components

114 Informatica 41 (2017) 111–120 Z. E. Bouras et. al

will affect the modified component and which

components will be affected by the modified component.

By using a slicing method, the programmer can extract

the parts of a software architecture containing those

components that might affect, or be affected by, the

modified component. This can assist the programmer

greatly by providing such change impact information.

Using architectural slicing to support change impact

analysis of software architectures promises benefits for

architectural evolution. Slicing is a particular application

of dependence graphs. Together they have come to be

widely recognized as a centrally important technology in

software engineering. This due to the fact they operate on

the deep rather than surface structures, they enable much

more sophisticated and useful analysis capabilities than

conventional tools [6].

Traditional slicing techniques cannot be directly used

to slice software architectures. Therefore, to perform

slicing at the architecture level, appropriate slicing

notions for software architectures must be defined with

new types of dependence relationships using components

and connectors. Some works have investigated the issue

of adapting the definition PDG to the level of software

architecture. Between them, we can cite works of

Rodrigues and Barbosa in [17] which propose the use of

software slicing techniques to support a component’s

identification process via a specific dependence graph

structure, the FDG (Functional Dependency Graph).

Zhao’s technique, in [21] is based on analyzing the

architecture of a software system given in Acme ADL.

He captures various types of dependencies that exist in

an architectural description. The considered

dependencies arise as a result of dependence

relationships existing among ports and/or roles of

components and/or connectors. Architecture slicing

technique operates by removing unrelated components

and connectors, and ensures that the behavior of a sliced

system remains unaltered.

Kim introduced an architectural slicing technique

called dynamic software architecture slicing (DSAS) in

[5]. A dynamic software architecture slice represents the

run-time behavior of those parts of the software

architecture that are selected according to the particular

slicing criterion of interest to the software architect such

as a set of resources and events.

An important distinction between a static and a

dynamic slice is that static slices is computed without

making assumptions regarding inputs, whereas the

computation of dynamic slice relies on a specific test

case. In other words, the difference between static and

dynamic slicing is that dynamic slicing assumes fixed

input, whereas static slicing does not make assumptions

regarding the input, hence smaller in size than its static

counterpart.

In order to illustrate the concept of dynamic slicing

consider the fact that, we are interested by the run-time

behavior of those parts of the software architecture of

EOPS that are selected according to the particular slicing

criterion when a customer wants to sell only one item

that is in the inventory. The dynamic slicing concept is

dedicated to find all implied parts of EOPS.

This triggering is done through an I_order event.

I_order generates a place_order event at the place_order

port. The payment results from a payment_req event of

Ordering which takes place when Ordering gets notified

from the Order_Entry.

Order_Entry gets a take_order event from Ordering

whenever customer places the order (wiyh n=1). The

item is sent to Inventory through a ship_item event along

with the customer information. ship_item event is

generated whenever the ordered item is processed by

Inventory. Inventory generates a ship event to Shipping.

Shipping takes care of gathering the items of an

order through recv_item events from Inventory. It

generates a shipping_info event to Ordering and it ships

ordered items. Finally Ordering gets an order_success

event and generates CGI_ship_info event to the CGI

program to notify the customer of a successful order. The

run-time behavior is depicted in Figure 2.

Our graph representation is inspired from Kim’s

researches [5] where the process of architectural slice

extraction from the software architectural description is

based on the concept of Software Architectural

Description Graph (SADG) and is a graph traversal.

Finally, comparing the behavior of Base with the

behavior of a given variant consists of comparing static

architectural slices of Base with static architectural slices

of the given variant.
Order_Req_Handler

Order_Entry

Inventory

Accounting

Shipping

place_order I_order

I_ship_info

order_success

 ship_item

take_order

done

find_item

[found]

restock_items

add_item

items

[=n]
issue_receipt

recv_receipt

shipping_info

[=n]

Clerk

Figure 2: Example of Architecture Dynamic Slice.

5.3 Graph similarities

Comparing two graphs needs at first to find, for a given

node (or edge) in a given graph, its corresponding node

(or edge) in the other. An efficient way to find out

similarity is the use of signature and structural matching

[16].

A signature is defined as a pair of corresponding

elements needs to share a set of properties such as type

Software Architectures Evolution Based Merging Informatica 41 (2017) 111–120 115

information, which can be a subset of their syntactical

information. Type information can be used to select the

elements of the same type from the candidates to be

matched because only elements with the same type need

to be compared. Signature is used as the first criterion to

match elements as proposed by [16]. If there is more than

one candidate that has been found, the signature cannot

identify a node uniquely. It is, therefore, to do further

analysis by structural matching.

Structural matching is based on calculation of Graph

Similarity using Maximum Common Edge Subgraphs

[16]. The first algorithm to find the candidate node with

maximal edge similarity for a given host node takes the

host node and a set of candidate nodes of graph 2 as

input, computes the edge similarity of every candidate

node and returns a candidate with maximal edge

similarity. The second algorithm for computing edge

similarity between a candidate node and a host node

takes two maps as, input, stores all the incoming and

outgoing edges of the host and candidate nodes indexed

by their edge signature. By examining the mapped edge

pairs between these two maps, the algorithm computes

the edge similarity as output. Graph similarities

algorithm can be summarized as the following:

Let Base and a Variant SADG’s

1. For each variant node

1.1 Use signature matching to find candidate node

If there is more than one candidate use structural

matching

Compare each node and its associated edges of

Base with its variant peer (similar).

1.2 Determine and collect sets of changed elements

If no candidate, host node belongs to Delete set

 // exists in Base and not in Variant

Remaining nodes in variant belongs to New set

 // exists in Variant and not in Base

Compare names of each pair of nodes mapping

If values are different, name belongs to Update set

// all node mapping and differences are found

2. Edges connecting to delete nodes are Delete edges

Edges connecting to new nodes are New edges

Apply signature matching to find out the edge

mapping

Remaining edges in Base belongs to Delete edges

set

Remaining edges in variant belongs to New

edges set

All nodes in N1 have been examined by signature

and structural matching; all possible node mappings

between N1 and N2 are found.

6 Software architecture merging

process
In this section we show how to reuse and adapt the

Horwitz algorithm [6] to the context of software

architecture merging. We show that this approach solves

the issue of architecture merging because both, program

and architecture merging may be brought to a graph

theory problem.

6.1 Software merging algorithm

Figure 3 resumes merging process. It starts from (1) a

Base Software Architecture Description, (2) build a set of

variants (resulting from Base changes), (3) build

Software Architectural Description Graph for each

SADG, (4) compare each variant with Base to determine

sets of changed and preserved elements, and (5) combine

these sets to form a single integrated new version (if

changes don’t interfere). Steps (1) and (2) are done

concurrently by developers, in step (3) we construct

SADG’s according to Kim’s approach.

Figure 3: Merging Process.

Step 4: Compare each variant with the base to determine

sets of changed and preserved elements

For each variant

4.1. Determine peer nodes and edges with Base by

signature and structural matching.

4.2. Extract from each SADG the associated

slices.

4.3. Determine sets of changed and preserved

elements

4.3.1. Map and compare each slice of the base

software with its peer in variant.

4.3.2. Determine and collect changed and

preserved slices.

Step 5: Combine changed and preserved slices to form a

new SADG.

5.1. Merge preserved of Base and changed slices

of variants.

5.2. Check that variants do not interfere

5.3. Derive the resulting dependency graph.

5.4. Generate the SADG of the new version of

software architecture description from the

resulting SADG.

Our contribution in this paper is to develop steps (4)

and (5) in order to merge software architecture. In the

following we formalize these sub-steps.

Base

Variant B

Variant A

New

Version
Merging

Detecting Changes

Detecting Preserves

Old Version Copies of Base

with concerned

changes

Merging process

116 Informatica 41 (2017) 111–120 Z. E. Bouras et. al

6.2 Formalization

Given SADGs SADGBase, SADGA, and SADGB, of Base,

and variants A and B respectively. The algorithm

performs three steps.

The first step identifies three subgraphs that

represent the changed behavior of A with respect to

Base(A, Base), the changed behavior of B with respect

to Base (B, Base) and the preserved behavior that is the

same in all architectures (PreA,B,Base) by using the set

of vertices whose slices in SADGBase, SADGA, and

SADGB are identical (i.e. . PPA,B,Base).

The second step unifies these subgraphs to form a

merged dependence graph SADGM.

 In the third step, a merged architecture GM is

generated from graph SADGM.

6.2.1 Construction of a slice

First, we show how to compute an architecture slice. In

this section we use the notation Component_name:

inport/outport_name in order to represent components

and connectors in an internal form. For example,

Order_Req_Handler:I_order is the input port I_order of

component Order_Req_Handler.

Each SADG is transformed in an internal form. The

internal form is a set of triplets (a, b, c) which reflects the

fact that there is an edge of type c from a to b. c can be

an implicit invocation (ii), an internal action (ia) or an

external communication (ec) while a and b are

components and connectors using the previous notation.

For example (Ordering:I_order,Ordering:place_order,ia)

means that: there is an internal action (ia) between in port

I_order of component Ordering (Ordering:I_order) and out port

place_order of Ordering (Ordering:place_order)
Table 1 represents a sample of internal form of Base

SADG.

Arch

itect

ure

Internal Form

Base ((External_Source_Clerk, Ordering:I_order,ec),

(Ordering:I_order,Ordering:place_order,ia),

(Ordering:payment_req, Ordering:I_payment_req,

ia), (Ordering:order_success,

Ordering:I_ship_info,ia), (Ordering:order_fail,

Ordering:Iorder_rej,ia), (Ordering: I_payment_req,

Ordering:payment_req,ec), (Ordering: I_ship_info,

sink1, ec),

(Ordering:I_payment_req,Accounting:items,ii),

(Ordering:place_order,Order_Entry:take_order, ii),

……)

Table 1: A sample of internal form of Base SADG.

Because of we are interested by static dependency

analysis of SADG, we extract all slices starting from

external source entry (e.g. clerck) to component that is in

the front-end of the whole system until the end of the

process (e.g. external sink). A static slice is a graph

traversal by transitive closure from external source node

to a final node from where we cannot continue the

traversal (e.g. external sink).

In our example of Figure 1 there are more than

fifteen slices that represent the complete behavior of

EOPS. Table 2 represents one of them.

Slice Internal form

 ((External_Source_Clerk, Ordering:I_order),

(Ordering:I_order,Ordering:place_order,ia),

(Ordering:place_order,Order_Entry:take_order,ii),

(Order_Entry:take_order,

Order_Entry:ship_item,ia), (Order_Entry:ship_item,

Inventory:find_item,ii), (Inventory:find_item,

Inventory:get_next,ia), (Inventory:get_next,

Order_Entry:next_item,ii), (Order_Entry:next_item,

Order_Entry:done,ia), (Order_Entry:done,

Ordering:payment_req,ii), (Ordering:payment_req,

Ordering:Accounting_payment_req,ia), (Ordering,

Accounting _payment_req, Accounting:cancel,ii),

(Accounting:cancel, Accounting:fail,ia),

(Accounting:fail, Ordering:order_fail,ii),

(Ordering:order_fail, Ordering:I_order_rej, ia),

(Ordering:I_order_rej, Sink2,ec))

Table 2: Internal form of a static slice.

Note that this slice reflects the behavior of canceling

an order.

At the end of this step, each one (Base and variants)

SADG’s is transformed into a set of slices and the

process of comparison can starts.

6.2.2 Changed slices

Let X, Base the set of changed slices between variant X

and Base. Changed slices are computed as the following:

APA, Base = {v V(SADGA) (SADGBase/v) ≠ (SADGA/v)}

APB, Base = {v V (SADGB) (SADGBase/v) ≠ (SADGB/v)}

A, Base = b(SADGA, APA, Base)

B, Base = b(SADGB, APB, Base).

Where

V(SADGx) denotes the set of vertices in SADG of

variant X.

SADGX/v is a vertex in the SADG of X from where

we want to inspect its impact in the overall SADG of X.

b(SADGX, APX, Base) is the set of peer changed slices

in SADGBase and SADGX.

In other words, internal forms of peer slices are

compared. As a result they haven’t the same graph

traversal (different internal forms).

An example of changed slices is introduced in the

section dedicated to application (6.3).

6.2.3 Preserved slices

Preserved architectural slices (PreA, Base, B) are computed

as the following:

PPA, Base, B = {v V (SADGBase) (SADGA/v) =

(SADGBase/v) = (SADGB/v)}.

PreA, Base, B = (SADGBase, PPA, Base, B).

The same graph traversal exists in both Base and

variants.

Software Architectures Evolution Based Merging Informatica 41 (2017) 111–120 117

We find an example of preserved slices in the section

of application.

6.2.4 Forming the merged SADG

The merged graph GM characterizes the SADG of the

new version of the software architecture. GM is computed

as the following:

GM = A, Base B, Base PreA, Base, B

Informally, GM is composed of slices that are

changed in SADG’s of variants A and B with respect to

Base and those that are unchanged.

6.3 Application

In this section we illustrate and validate the suggested

merging approach through the running example of figure

1.

Starting from an initial software architecture

description (Base) we introduce two independent

requirement changes that are expected to be compatible.

For this purpose two independent copies of Base are first

created and modified concurrently (Variant A and

Variant B). We will proceed as follows:

a. Generate the SADG of Base, Variant A, and

Variant B.

b. Extract slices from these SADG’s.

c. Determine the set of changed slices and the set

of preserved slices.

d. Show that Variant A and Variant B do not

interfere.

e. Merge the set of changed slices and the set of

preserved slices in order to get the SADG of the

new version.

6.4 Building SADG’s of variants A and B

Two non-interfering variants are considered. In Variant

A, a credit card payment option is added while in Variant

B and in case stocks are empty at the order time, the

request is handled through a back order mechanism.

6.4.1 Variant A SADG

In Variant A, Software Architect A inserts a new

component that will take in charge the credit card

payment option. This leads to the following changes in

the architectural description of the software: (1) adding a

new component (Credit_Checker), (2) creation of new

connectors (from Ordering to Credit_Checker, and from

Credit_Checker to Accounting), and (3) removing

external connection (from Credit_res_out to

Credit_res_in). Figure 4 represents the SADG of variant

A.

6.4.2 Variant B SADG

In Variant B, Software Architect B inserts a new

component that will take in charge the back order

mechanism. This leads to the following changes in the

architectural description of the software: (1) adding a

new component (Back_order), (2) creation of new

connectors (from Inventory to Back_order, from

Back_order to Accounting, from Back_order to

Shipping). Figure 5 depicts the SADG of variant B.

Figure 5: SADG of variant B.

6.5 Slice Extractions

Slice extraction process outcomes more than fifteen

slices per SADG. For lack of space, only a pertinent

sample of computed slices is presented in this paper.

Selected sample involves an example of changed slices

Figure 4: SADG of variant A.

118 Informatica 41 (2017) 111–120 Z. E. Bouras et. al

.case (A, Base = b(SADGA, APA, Base) and an example of

preserved slices case (PreA, Base, B = (GBase, PPA, Base, B)).

These examples focus on the following two behaviors of

interest: (1) slice traversals that leads to the canceling

orders (payment unspecified and credit payment), and (2)

slice traversal that leads to a successful ordering.

Figures 6 and 7 illustrate changed slice of canceling

order in Base and Variant A respectively. Differences

between these peer slices are depicted with double

arrows in figures 6 and 7. In this case the slice of Variant

A will belong to A, Base set and is one of slices

forming the SADG of the new version of Software

architecture.

Figure 8 reflects the same behavior in the three

SADG. The graph traversal of successful ordering slice is

the same in Base and variants.

Thus they will be classified in the category of

preserved slices. They belong to:

PPA, Base, B = {v V (SADGBase) (SADGA/v)

= (SADGBase/v) = (SADGB/v)}

Intersection of changed slices between Base and

Variant A and changed slices between Base and Variant

B gives an empty set, consequently there is no

interference between changes. We can continue the

process.

6.6 Forming the merged SADG

This step involves forming a new SADG by using the

result of previous steps. It consists of merging all

changed architectural slices between SADG of Base and

variants, and thus preserved in these SADGs. The union

of changed and preserved slices forms the SADG of the

new version of software architectural description.

GM = A, Base B, Base PreA, Base, B

Figure 9 depicts the SADG of the new version of

software architectural description.

7 Conclusion
First, it is important to situate our works according to

Horwitz’s works.

The main contribution of Horwitz’s work was to

propose a new process of software evolution. This

process was formalized and implemented at the program

level. So Horwitz opened a new way for future research

in evolution through the life cycle of software. This way

involves mainly the facts (1) make explicit the

Figure 6: Slice of canceling order of Base.

Figure 7: Slice of canceling order of Variant A.

Figure 8: Slice of successful ordering in Base,

Variants A and B.

Software Architectures Evolution Based Merging Informatica 41 (2017) 111–120 119

dependencies between elements (e.g. data and control)

which are usually implicit, (2) extract all behaviors

(influence of one element over the other) for each version

(Variants and Base), and (3) compare the behavior of

each variant according to the Base program and finally

form the new version that consists of the elements that

remained preserved in all versions and those that have

created differences in the variants.

Since, several studies have been made by exploiting

this process. We also followed this process, but at the

level of software architectures. We solved the problem of

the similarity of graphs, ignored by Horwitz. We

investigate and found the best way to represent the

dependencies between elements of architectures that are

different than those of programs. From there we followed

the process. So, we showed that software evolution based

merging at the level of software architecture is possible.

Consequently this will lessen the cost of evolution.

Nowadays we continue in the theoretical aspects of

this approach. Particularly, we are planning to

investigate, consolidate and implementing this approach

by involving conflicts. Another promising investigation

consists of tackling the Software Architecture Merging

where software architectures are described by well-

known Architecture Description Languages (ADLs).

Indeed in some cases architectures are provided in terms

of ADLs. The question is "is it possible to merge

architectures from ADLS or passing, first, by the graph

transformation?”

References
[1] Tom Mens (2008). “Introduction and Roadmap:

History and Challenges of Software Evolution”.

Eds Tom Mens · Serge Demeyer, Springer-Verlag

Berlin Heidelberg, pp. 1-14.

[2] T. Mens (2002), “A State-of-the-Art Survey on

Software Merging”, IEEE Transactions on Software

Engineering, vol 28, no 5, pp. 449–462.

[3] D. Binkley, S. Horwitz, and T. Reps (1995).

“Program Integration for Languages with Procedure

Calls”, ACM Transactions on Software Engineering

and Methodology, vol 4, no 1, pp. 3-35.

[4] T. Khammaci, and Z. Bouras (2002). “Versions

of Program Integration”, Handbook of Software

Engineering and Knowledge Engineering, vol 2,

World Scientific Publishing: Singapore, pp. 465-

486.

[5] T. Kim, Y. Song, and L. Chung (2000). “Software

architecture analysis: a dynamic slicing approach”,

International Journal of Computer & Information

Science, vol 1, no 2, pp. 91-103, 2000.

[6] S. Horwitz, and T. Reps, “The use of dependence

graph in software engineering”, Proceedings of the

14th International on software engineering,

Melbourne, Australia, 1992, pp. 392-411.

[7] T. Apiwattanapong, A. Orso, and M. Harrold

(2004), “A Differencing Algorithm for Object-

oriented Programs”, Automated Software

Engineering, vol. 14, no 1, pp. 3-36.

[8] S. Raghavan, R. Rohana, D. Leon, A. Podgurski,

and V. Augustine (2004). “A semantic-graph

differencing tool for studying changes in large code

bases” Proceedings of 20th IEEE International

Conference on Software Maintenance, pp. 188-197.

[9] Z. Xing, and E. Stroulia (2005), “UMLDiff: An

Algorithm for Object–Oriented Design

Differencing”, Proceedings of the 20th IEEE/ACM

International Conference on Automated Software

Engineering (ASE 2005), pp. 54-65.

[10] M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl

and D. Garlan (2006). “Differencing and Merging

of Architectural Views”, proceedings of the 21st

IEEE International Conference on Automated

Software Engineering (ASE'06), pp. 47-58.

[11] Z. Bouras, M. Maouche (2015). "Merging software

architectures with conflicts detections”,

International Journal of Information Systems and

Change Management, Eds. Inderscience Publisher,

Vol 7, No 3, pp. 242-260.

[12] K. Kobayashi, M. Kamimura; K. Yano; and K.

Kato (2013). “SArF map: Visualizing software

architecture from feature and layer viewpoints”, in

Proceedings of International Conference on

Program Comprehension (ICPC’2013), San

Fransisco USA, 2013, pp. 43 – 52.

[13] S. Maoz, J. Ringert, and B. Rumpe (2013).

“Synthesis of Component and Connector Models

from Crosscutting Structural Views”, Proceedings

of ACM SIGSOFT Symposium on the Foundations

of Software Engineering (ESEC/FSE'13), Eds. B.

Meyer, pp. 444-454.

[14] B. Westfechtel (2010). “A Formal Approach to

Three-Way Merging of EMF Models”, Proceedings

of the 1st International Workshop on Model

Comparison in Practice, IWMCP ’10, Malaga,

Spain, pp. 31-41.

Ordering

Order_Entry

Inventory

Back_Order

Credit_Checker

Accounting

Shipping

I_payment_info

I_payment_req

payment_req

place_orderI_order

I_ship_info

order_success

order_fail

I_order_rej

[first] ship_item

take_order
[<n]

[=n]

next_item done

find_item
get_next

[found]

[not found]

take_back_order

restock_items
back_order

add_item

ship

ship

add_item

check_req credit_res

items

cancel

Payment_res

[=n]

[good]

[bad]

issue_receipt

fail

restock

recv_item

recv_receipt

cancel

restock

shipping_info

[=n]

Clerk

[cancel]

check_res_in
check_res_out

check_res_out check_res_in

Figure 9: SADG of the new version.

120 Informatica 41 (2017) 111–120 Z. E. Bouras et. al

[15] P. Brosch, M. Seidl, M. Wimmer and G. Kappel

(2012). “Conflict Visualization for Evolving UML

Models”, Journal of Object Technology, vol 11, no

3, pp. 1–30.

[16] P. Langer, K. Wieland, M. Wimmer, and J. Cabot

(2011), “From UML Profiles to EMF Profiles and

Beyond”, eds. TOOLS. LNCS, vol. 6705, Springer,

Heidelberg, pp. 52–67.

[17] F. Rodrigues, and S. Barbosa(2006), “Component

Identification Through Program. Slicing”,

Proceedings of the International Workshop on

Formal Aspects of Component Software (FACS

2005), Electronic Notes in Theoretical Computer

Science, pp. 291-304.

[18] J. Guo, Y. Liao, and R. Pamula (2006). “Static

Analysis Based Software Architecture Recovery”,

Computational Science and Its Applications Lecture

Notes in Computer Science, 3982, pp. 974-983.

[19] B. Li, Y. Zhou, Y. Wang, and J. Mo (2005).

“Matrix-based component dependence

representation and its applications in software

quality assurance” SIGPLAN Notices, vol 40, no

11, pp. 29–36.

[20] J. Lalchandani (2009). “Static Slicing of UML

Architectural Models”, Journal of Object

Technology, vol 8, no 1, pp. 159-188.

[21] J. Zhao (2000). “A Slicing-Based Approach to

Extracting Reusable Software

Architectures," Proceedings of the. 4th European

Conference on Software Maintenance and

Reengineering, IEEE Computer Society Press,

Zurich, Switzerland . pp.215-223.

