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To solve the problem of real-time measurement error detection of intelligent electric meter, this paper 

proposes a cloud edge collaborative online detection framework based on CNN-GRU mixed depth model 

and entropy weight scoring mechanism. The system extracts the local variation characteristics by 

one-dimensional convolution, and uses two-way GRU to model the time-dependent error evolution. 

Meanwhile, the dynamic threshold score function is introduced to realize the self-adaptive judgment of 

error alarm. The special data sets R-Elec, I-Load and S-ErrGen covering residential, industrial and rural 

scenes are constructed, and pre-processed through standardization, sliding window segmentation and 

statistical cleaning. The experimental results show that the average identification accuracy of the system 

in the three types of data is 97.6% and the average response time is 0.62 seconds, which is significantly 

superior to the performance of traditional models (such as RF, SVM, LSTM) in false alarm control and 

adaptability. The ablation experiments validated the key role of multi-source feature fusion and entropy 

scoring mechanisms in performance improvement. The research shows that the fusion of lightweight 

depth model and cloud edge architecture can achieve efficient, low delay and extensible intelligent meter 

error online detection, and has the practical engineering deployment value.  

Povzetek: Sistem uporablja model CNN-GRU s kooperacijo oblak-rob in mehanizmom točkovanja uteži 

entropije za detekcijo napak pametnih števcev v realnem času. Omogoča učinkovito in prilagodljivo 

spletno spremljanje za pametna omrežja.  

 

 

1  Introduction 

With the continuous promotion of the construction of 

new power systems, the accuracy and intelligence of 

energy metering are becoming key links to support the 

efficient operation of smart grids. As the core equipment 

for terminal energy consumption measurement and 

monitoring, the performance of electric energy meters is 

directly related to the stability and reliability of multiple 

links such as power grid scheduling, load forecasting, 

and electricity bill settlement. Especially in the context 

of multiple load grid connections and diverse energy 

consumption behaviors, traditional measurement error 

detection methods that rely on manual inspection and 

periodic verification are no longer able to meet the 

modern power grid's demand for "real-time, accurate, 

and wide area" monitoring. The decrease in the 

credibility of measurement data not only affects the 

fairness of electricity consumption for end-users, but 

also constrains the operational efficiency of the entire 

power grid dispatch and management system. 

Building an online deviation testing system for 

electric energy meters based on cloud platforms has 

become an important implementation method to improve 

the intelligence of the testing system. By connecting 

distributed collection modules with cloud computing 

center processing capabilities, real-time collection and 

analysis of massive operational data from different 

regions and types of energy meters can be achieved, 

enabling dynamic error discrimination, evolution trend 

tracking, and functional warning testing purposes. This type 

of system must have high-frequency data processing speed, 

abnormal model recognition method, and self-feedback 

mechanism to achieve intelligent measurement 

maintenance and hierarchical management control. 

Compared to traditional models, the advantage of data 

storage and computing elasticity in cloud centers is that 

they not only improve the overall accuracy and speed of 

system inspection, but also provide a technological 

foundation for future widespread applications [4]. In this 

context, this article proposes an online testing system for 

measurement errors in power instruments, which is driven 

by data flow and constructed through multi-dimensional 

integration and intelligent analysis. The system relies on the 

integration and distributed deployment of cloud services, 

combined with a series of core technologies such as 

extracting the variation law of measurement deviation, 

identifying the density of abnormal points, and 

autonomously improving and optimizing the model, to 

achieve efficient performance monitoring and automatic 

fault diagnosis of electric energy meters in multiple 

scenarios [5]. This system has built a more flexible and 

anti-interference intelligent energy metering system. 

Accurate measurement deviation can timely detect 

information such as equipment aging, signal drift, or 

external interference. It also provides data for the life 

evaluation of metering devices and builds a visual digital 
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asset management platform for power companies. At the 

same time, this technology system has good scalability 

and wide applicability, and can be applied to energy 

metering in various energy application places, such as 

industrial parks, residential areas, or commercial 

buildings, to ensure the security of the energy network 

and save costs. 

In response to the shortcomings of existing error 

detection technologies for electric energy meters, such 

as poor real-time performance, poor simulation 

specificity, and insufficient application scope, this 

article focuses on the following two key technologies for 

research: (1) How to design a real-time detection system 

with the ability to identify errors and analyze error trends, 

thereby breaking the limitations of traditional pattern 

based modeling of nonlinear errors and the accuracy and 

precision of dynamic scene identification? (2) How to 

use IoT technology to complete the design of a data 

closed-loop structure for information collection, 

detection, and feedback, while reducing the hardware 

investment cost at the end and improving the accuracy of 

misjudgment recognition, system response speed, and 

multi table consistency? 

For the questions raised in the above research, this 

article adopts a lightweight fault recognition mode based 

on CNN and GRU fusion network, and constructs an 

efficient monitoring system with high recognition 

accuracy, low missed detection rate, and long-distance 

deployment using multiple attribute extraction, 

boundary cooperative calculation, and entropy dynamic 

judgment methods. The results show that the system has 

good recognition performance for electricity loads in 

complex working environments, flexible application 

characteristics, and wide promotion value. To this end, 

this paper proposes an error detection model that 

integrates the lightweight CNN-GRU network and the 

entropy weight scoring mechanism, and constructs an 

online detection system based on cloud-edge 

collaboration. We assume that this model can effectively 

increase the accuracy of electricity meter error 

recognition to over 97% without increasing the terminal 

computing power, control the average response delay 

within 0.6 seconds, and demonstrate good generalization 

ability and low false alarm rate under the condition of 

multi-source data fusion. The experimental verification 

will be systematically evaluated around the above 

indicators. 

This article will elaborate on the following ideas in 

the research of the paper: Chapter 2 introduces the 

current status, development, and limitations of existing 

fault localization algorithms; Chapter 3 provides a 

detailed explanation of the design concept and 

implementation of the main parts of this article; Chapter 

4: Testing and Evaluating Test Results Based on Actual 

Application Scenarios; Chapter 5 discusses how to 

improve the efficiency and optimal installation location 

of the device; Chapter 6 discusses the future applications 

and developments in the power system, as well as 

summarizes the main content of this article. 

 

2  Related work 

Although the importance of energy metering is increasing, 

it is not easy to accurately identify and improve the 

accuracy of energy metering in smart grids. Due to the 

complex and constantly changing environment surrounding 

the electric energy meter, its errors are not only caused by 

external electromagnetic interference, nonlinear loads, and 

harmonics, but also by the aging of its own equipment and 

insufficient design accuracy [6]. Especially when various 

types of instruments are used, the voltage they are subjected 

to is relatively high, and the frequency of input data is 

relatively high, traditional manual inspection methods can 

no longer meet the high efficiency and precision 

requirements of power grid operation. Therefore, 

researchers have started to study real-time monitoring 

systems and self-diagnostic systems in order to use digital 

means to track the changes in errors [7,8]. 

In recent years, research on energy metering errors has 

mainly focused on three technical paths: first, error analysis 

methods based on feature extraction and modeling, which 

often analyze the formation mechanism and propagation 

path of errors by establishing mathematical models or 

statistical inference systems; The second is to integrate 

artificial intelligence and machine learning error 

recognition algorithms to improve the sensitivity and 

generalization ability of error detection on a data-driven 

basis; The third is to combine the system integration 

framework of edge computing and cloud platform to realize 

remote operation and maintenance and performance 

optimization of large-scale meters. In terms of traditional 

models, Hong (2024) [9] effectively revealed the 

complexity of error sources by constructing harmonic 

analysis models, distortion identification algorithms, and a 

distortion rate quantification system under nonlinear loads. 

The low-cost wireless smart meter design framework 

proposed by Sousa et al. (2023) [10] balances error 

monitoring and power quality acquisition, and achieves 

structural integration under the smart grid architecture. At 

the same time, Lindani (2023) [11]. attempted to use a dual 

channel data acquisition method for identifying electricity 

theft, which expanded the safety function of intelligent 

metering beyond error detection  

With the development of artificial intelligence 

technology, machine learning based error detection 

methods are increasingly receiving attention. For example, 

Yuan et al. (2022) [12] constructed an error detection 

model based on random forests, demonstrating stable 

performance in small sample environments. Wals et al. 

(2024) [13] proposed a smart meter lifespan prediction 

method based on health index, introducing a device 

degradation evaluation dimension for error detection. In 

addition, Vasylets et al. (2022) [14] proposed a 

mathematical correction model for the uncertainty of 

energy metering under low load conditions, and made 

preliminary progress in identifying edge characteristics. It 

is worth mentioning that image recognition technology has 

gradually been integrated into the field of energy meter 

error detection. As described by Yang et al. (2024) [15], 

cloud edge collaboration mechanism helps to enhance 

system deployment flexibility and delay control capability, 
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and is suitable for large-scale distributed energy systems. 

and Xiaofeng et al. (2024) [16] further integrated 

maximum likelihood method and decision tree model to 

achieve structured analysis of errors. An end-to-end error 

evaluation model based on deep neural 

 

Table 1：Comparison of the performance and applicability of the methods and related research in this paper 

Author & 
Year 

Technical 
Approach 

Application 
Scenario 

Accuracy Response 
Delay 

Identified Issues 

Yu, 2022 
[12] 

Random Forest 
(RF) 

Small 
residential 
loads 

92.4% >1.1s No temporal modeling 
capability 

Jun, 2022 
[13] 

Health index + 
Random Forest 

Aging 
equipment 
degradation 

89.7% 1.2s 
Lacks modeling of anomaly 
trends 

Gu, 2023 
[15] 

Image 
recognition + 
difference calc 

Visual meter 
comparison 

85.6% 
High image 
processing 
latency 

Poor real-time performance, 
high deployment cost 

This 
paper 

CNN + GRU + 
Entropy-weighted 
scoring model 

Multi-scenario 
heterogeneous 
devices 

97.6% 0.62s — 

networks have also been proposed. Huang et al. (2024) 

[17] constructed an error recognition framework that 

integrates multi-layer convolution, significantly 

improving the accuracy and robustness of recognition. 

However, existing research still faces many limitations. 

On the one hand, most models are based on specific 

operating conditions or small sample experiments, 

making it difficult to maintain stability in the widespread 

deployment of multiple regions and types of meters. On 

the other hand, Xu et al. (2024) [18] demonstrated the 

effectiveness of the XGBoost and CNN-GRU structures 

in short-term load forecasting for temporal feature 

extraction and anomaly modeling. In addition, Zhao et al. 

[2024][19] combined CNN-GRU with factor graph 

structure to achieve error correction in GNSS signal loss 

scenarios, demonstrating the stability of the fusion 

model in strong interference environments. In recent 

years, some scholars have also begun to pay attention to 

the dynamic evolution modeling of error characteristics 

driven by big data. Wang (2023) [20] proposed a 

cloud-based method for identifying energy consumption 

in big data, which achieved innovative breakthroughs in 

data mining and error trend tracking, providing path 

support for error optimization. 

Based on the accuracy measurement methods of 

some important power metering devices in recent years 

(Table 1), establish a research path for the research 

methods and technologies in this paper. It can be seen 

that traditional methods have accuracy limitations in 

identifying nonlinear errors, and some machine learning 

methods lack temporal characteristics or are limited in 

their application fields. However, our CNN-GRU 

combination research approach demonstrates greater 

flexibility and judgment in feature extraction, temporal 

characteristics, and collaborative cooperation between 

cloud computing and edge devices. Despite significant 

research progress, online error detection still faces 

multiple challenges. This article focuses on the 

following three key challenges: 

⚫ Single feature dependency and weak modeling 

adaptability: Existing methods generally rely on 

basic parameters within a fixed window, which 

makes it difficult to dynamically reflect the evolution 

of nonlinear errors. When faced with sparse and 

discontinuous features, their generalization ability is 

insufficient. 

⚫ Limited feature expression ability and weak scene 

adaptability: Most models ignore the joint modeling 

of spatial locality and temporal dependence, making it 

difficult to adapt to complex metering scenarios. 

Although some studies have introduced attention 

mechanisms, spatial and temporal modeling are still 

fragmented. 

⚫ Limited dataset and insufficient system evaluation: 

Currently, training is mostly based on single brand or 

small-scale data, ignoring dynamic behavior, which 

limits the practicality and transferability of the model 

in multi regional deployment. 

In response to the above difficulties, this article focuses 

on the following issues for research: 

Can an online detection mechanism be built that 

integrates error recognition and trend analysis capabilities 

to break through the accuracy bottleneck of the current 

model? 

 How to rely on cloud platforms to achieve closed-loop 

data collection, recognition, and feedback for error 

detection systems, and improve recognition accuracy and 

system response without increasing terminal costs? 

Based on the above objectives, this article implements 

the following technical paths: 

Build a data-driven error recognition mechanism: By 

using sliding windows and multi-stage evolution feature 

extraction, dynamic modeling of error trends can be 

achieved to enhance the ability to warn of hidden errors.  

Integrate multi-source fusion algorithm and 

bidirectional recognition module: Adopt hierarchical 

feature fusion and outlier clustering mechanism to enhance 

the system's generalization ability under multiple types of 

tables. 

Build a cloud edge collaborative detection platform: 

lightweight collection of terminals, centralized 

identification and optimization in the cloud, improving 

system adaptability and operation efficiency, with remote 
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update and strategy synchronization capabilities, 

providing a foundation for large-scale promotion. 

3  Design of online detection 
mechanism 

In the online error detection architecture proposed in this 

article, the construction of a cloud platform based "end 

cloud collaboration" mechanism is a technical choice 

based on multiple requirements such as high frequency 

of measurement data collection, complex causes of 

errors, and diverse processing tasks. The system uses 

edge collection devices on the terminal side to monitor 

multiple types of energy meters in real time, and utilizes 

the  

 
Figure 1: Schematic diagram of the architecture of an 

online measurement error detection system for electric 

energy meters based on cloud platforms 

 

computing power of the cloud platform to complete 

multi-source data fusion, error feature extraction, and 

intelligent diagnosis tasks, thereby constructing an 

integrated detection system with efficient recognition 

and dynamic updating capabilities. 

At the system architecture level, the terminal 

collector is mainly responsible for uploading 

information including current, voltage, active power, 

power factor, and temperature and humidity at a second 

level frequency. After being standardized by the data 

preprocessing module, it is sent to the cloud recognition 

model. This model integrates multiple error feature 

channels to support the identification of possible error 

behaviors of different types of energy meters under 

different loads and environmental conditions. The error 

recognition model itself adopts a modular structure, 

including four main processing units: data cleaning, 

anomaly detection, error classification, and performance 

scoring. The modules are called and updated through a 

dynamic scheduling mechanism to ensure the adaptability 

and robustness of the model in response to data mutations 

and device replacements. As shown in Figure 1, the overall 

architecture of the proposed online error detection system is 

presented. The data is uploaded from the energy meter to 

the cloud platform through edge nodes, where a series of 

operations such as data reception, cleaning, feature 

extraction, model matching, and result feedback are 

completed in the cloud. The data paths between each 

module are clear and functionally independent, which 

facilitates flexible replacement and optimization of models 

in the later stage, as well as system expansion and 

maintenance. 

3.1 Data flow driven error monitoring 
framework 

The proposed architecture for online detection of 

measurement errors in electric energy meters is built on the 

concept of "data flow driven", and the overall system 

consists of three logical units: edge acquisition, cloud 

analysis, and feedback control. This architecture is 

designed for high-frequency, high-dimensional, and high 

noise features of power data transmission, integrating 

multiple layers of data channels and processing modules to 

achieve high-precision identification and rapid response 

correction of measurement errors. 

The data flow of the system starts from the edge 

terminal, collects raw energy meter data (such as voltage, 

current, active power, reactive power and other 

multidimensional features), and synchronizes it to the cloud 

platform through a high-speed transmission link. At the 

cloud processing layer, the system introduces asynchronous 

decoupling design and relies on a four-level logical flow 

mechanism of "pre-processing recognition classification 

evaluation" to gradually screen, extract, and annotate key 

error information. The preprocessing module first performs 

standardization operations such as noise cleaning, 

dimension normalization, and window segmentation on the 

raw data stream to adapt to subsequent model analysis. 

On this basis, the system introduces error pattern 

recognition and error cause classification modules. The 

former is responsible for identifying features such as abrupt 

anomalies, periodic shifts, and noise drifts in energy 

metering data, while the latter is based on a preset feature 

library for error type attribution, such as hardware drift, 

voltage transients, or equipment aging. The classification 

results are further fed into the error evaluation module, 

which quantifies the degree of error and provides 

decision-making basis for subsequent control strategies. 

After the model calculation is completed, the data 

stream returns to the "Data Visualization and Monitoring 

Terminal" module, enabling real-time viewing and 

management of error status by the user. At the same time, 

based on the error level and distribution, the system can link 

with the "Intelligent Edge Node Control/Automatic 

Correction Instruction" module to generate targeted 

correction strategies, which are fed back to the edge device 

end to complete error adjustment in a closed loop. 
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3.2 Cloud platform architecture and system 
function module design 

The architecture of this system aims to achieve online 

detection and dynamic optimization of measurement 

errors in electric energy meters. The overall design 

revolves around four major functions: real-time data 

acquisition, intelligent processing, remote control, and 

closed-loop optimization. Relying on cloud computing 

resources, build a unified access, distributed processing, 

and bidirectional instruction transmission path for 

heterogeneous devices, and achieve functional 

collaboration and efficient operation through modular 

deployment. The platform receives raw parameters such 

as voltage, current, power factor, and measurement 

values from power terminals, integrates historical data 

and error records, and forms a timely and structured data 

stream. The system consists of three parts: data access 

layer, model computing layer, and business control layer. 

Deploy multi protocol adaptation components in the data 

access layer, compatible with various types of energy 

meters and edge collection terminals. The encrypted 

transmission data is guided to the model computation 

layer, initiating the error recognition process. There are 

three types of modules nested in the model layer: 

anomaly detection, error recognition, and edge 

collaborative updating. Anomaly detection is initially 

screened by setting a threshold; Error identification is 

based on the construction of a discrimination mechanism 

using historical trajectories and standard deviations; The 

edge collaboration module provides feedback modeling 

for high-frequency error samples. Subsequently, it enters 

the business control layer, where cloud based unified 

scheduling and correction instructions or parameter 

resets are sent to the devices through edge nodes after 

parsing, achieving closed-loop control of "cloud 

recognition edge control error correction". To enhance 

system agility, the platform integrates a lightweight 

container management mechanism that optimizes 

resource utilization through parallel deployment. Each 

module can be independently scheduled and updated, 

ensuring good scalability and maintainability. 

3.3 Construction of multi-source data 
fusion and anomaly error recognition 
model 

To improve the accuracy of error detection and the 

stability of system response, this paper constructs an 

anomaly error recognition model that integrates 

multi-source data. Based on time series analysis, feature 

entropy weight allocation, and probability statistical 

inference methods, a unified framework for dynamic 

monitoring and anomaly judgment is established. The 

system input includes three main data sources: ① Real 

time metering data from electric energy meters (Dt); ② 

Historical benchmark data ( Ht ); ③ the device 

environment and state parameters (St) are mapped to the 

feature space Ft through a data fusion mechanism 

)S,H,(D=F tttt 
         （1） 

Among them, ∅ is the multi-source fusion mapping 

function, which is constructed based on feature 

standardization, time alignment, and difference filling 

methods to ensure data consistency and integrity. In the 

error recognition stage, the system combines a dynamic 

error threshold model with an entropy weighted anomaly 

scoring mechanism, taking into account the degree of error 

deviation, rate of change, and historical stability. To 

achieve deep modeling of error features and accurate 

capture of temporal structures, this paper constructs a 

lightweight CNN-GRU fusion recognition model before 

generating the scoring function, which serves as the core for 

generating abnormal scoring values. The front-end of the 

model adopts a two-layer one-dimensional convolutional 

network (1D-CNN) consisting of 32 and 64  

 
Figure 2: Schematic diagram of CNN-GRU fusion 

model structure 

 

convolutional kernels, with a kernel size of 3 and a stride of 

1. The activation function is ReLU, which is used to extract 

local variation features in the error time series; Then 

connect a layer of max pooling operation (with a window 

size of 2) to enhance scale robustness and compress feature 

dimensions. 

The convolutional output is then input into a 

bidirectional GRU network (Bi GRU, with 64 hidden units 

and 0.2 dropout) to model the temporal dependence of error 

evolution; The final output is mapped to the abnormal score 

value AtA_tAt by the fully connected layer and passed into 

the threshold judgment mechanism for error recognition. 

The input features include five types of multi-source 

data normalized within a 10-minute sliding window: 

voltage, current, active power, power factor, and historical 

error values; The label is an error state identifier for binary 

classification of 0/1. The model training adopts Adam 

optimizer, with an initial learning rate of 0.001, 50 

iterations, and a loss function of weighted cross entropy to 

cope with the low proportion of error samples. As shown in 

Figure 2. 

In the error recognition stage, the system combines a 

dynamic error threshold model with an entropy weighted 

anomaly scoring mechanism, taking into account the degree 

of error deviation, rate of change, and historical stability. 

Let the current measurement error be: 

∣ttt R-M∣=ε
          （2） 

Among them, Mt is the actual measurement value and 

Rt is the reference benchmark value. The system calculates 

the error increment of εt  based on the pattern of error 

changes and establishes a comprehensive anomaly rating 

function of At: 
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Among them, μ
ε
 and σε  are the historical error 

mean and standard deviation, Et is the entropy value of 

the current state, Emax  is the maximum state entropy 

value among similar devices, ω1 ,ω2 ,ω3  is the weight 

coefficient obtained using entropy weighting method, 

satisfyingω1+ω2+ω3=1. Therefore, in order to achieve 

real-time alarm and accurate recognition, an adaptive 

threshold of 0 and a confidence interval are set for 

dynamic adjustment. 

AA σλ+μ=θt 
           （4） 

Among them, μ
A

 and σA  are the average and 

standard deviation of the sliding window of the scoring 

function At, and λ is the control coefficient. WhenAt>θt, 

it is considered as the time point when the error occurred, 

that is, the error correction action was triggered. This 

model combines data-driven methods with rule-based 

methods, which have both robustness and sensitivity, 

and can effectively identify various types of error 

problems such as measurement deviation, data drift, and 

sensing faults.At the same time, all indicators in the 

scoring mechanism (error margin, rate of change, 

historical stability) are derived from traceable statistical 

features, which can serve as the basis for anomaly 

tracing and feature sensitivity analysis, enhancing the 

interpretability of the system. 

 

4 Experimental research and 
effectiveness verification 

4.1 Dataset construction and typical 
application scenario settings 

The dataset used in this study comes from the operation 

system of provincial power companies and the 

intelligent substation sampling platform, which has the 

characteristics of complete structure and high time 

granularity, and is suitable for error monitoring and 

performance verification tasks. The data covers the 

measurement values, voltage and current waveforms, 

temperature and humidity, error calibration, and 

communication status uploaded by smart energy meters. 

Construct three typical application scenarios based on 

the deployment area of the electricity meter, power 

supply capacity, and equipment type, covering the main 

influencing factors of error fluctuations. The first type of 

data comes from intelligent substations in urban core 

areas, with commercial and residential loads as the main 

power consumption structure. The collection period is 15 

minutes, including three-phase voltage, current, 

active/reactive power, energy metering values and error 

rates. It is suitable for algorithm training under 

high-frequency load fluctuations and temperature 

control interference backgrounds. The second type is 

selected from suburban industrial parks, deploying a 

large number of high-power inductive loads with a 

sampling period of 10 minutes, focusing on recording 

error changes under low power factor, monitoring 

temperature, electromagnetic interference, and 

communication delay, and characterizing the 

characteristics of error surges in industrial scenarios. The 

third type comes from rural low-voltage substations, mainly 

consisting of agricultural water pumps and lighting. The 

electric meter has a wide measurement range, unstable 

communication, and is prone to transient errors and 

transmission delays, reflecting the abnormal characteristics 

of the edge area system. 

4.2 Data collection and error feature 
extraction process 

To ensure the effectiveness and robustness of the model in 

error identification and performance optimization, this 

paper constructs a systematic data collection and error 

feature extraction process from the data source. Firstly, by 

deploying collection nodes at the cloud platform access 

layer, key parameters of the running energy meter are read 

in real-time, including active energy, reactive energy, 

voltage, current, power factor, and internal clock 

information of the meter. All types of raw data are 

synchronized according to a unified timestamp standard, 

with a sampling interval set at 1 minute to ensure temporal 

consistency and analytical integrity of the data. Due to the 

different dimensions and variations of different types of 

data, in order to improve feature comparability and model 

training efficiency, the minimum maximum normalization 

method is used to standardize all input variables. The 

calculation formula is as follows: 

minmax

min

x-x

x-x
=x           （5） 

Among them, x represents the original data value, xmin 

and xman  respectively represent the minimum and 

maximum values of the feature in the dataset, and x， is the 

normalized value. Linear interpolation is used to fill in 

missing data (accounting for less than 2%) to ensure the 

continuity of the time series; For extreme outliers that 

exceed the mean by three standard deviations, upper bound 

reduction processing is performed to compress them to 

within the 99th percentile of the feature, in order to weaken 

the disturbance effect of extreme values on the error 

recognition model. 

In terms of feature extraction, this article is based on a 

multi-source data fusion strategy to construct an electric 

energy feature set from raw samples, including high-order 

statistical features such as instantaneous power difference, 

cumulative electricity offset rate, and meter to meter same 

period deviation indicators. Combined with the time 

dimension, behavior patterns such as intraday periodic 

changes and weekly trend fluctuations are extracted, 

providing a comprehensive and reliable input basis for 

subsequent error recognition and performance evaluation 

models.The data in this study mainly includes three sources: 

the first source is the measurement log data (labeled R-Elec) 

from the actual operation system of provincial power grid 

companies; The second source is the experimental 

simulation system collecting power load data (I-Load) 

under working condition jumps; The third source is the 
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anomalous data generated by the generator (S-ErrGen), 

all of which are unpublished data. However, we have 

anonymized them and provided sample structural 

descriptions in the attachment. Each group's data 

includes 20000 to 50000 records, each with ten 

characteristics such as voltage, current, active power, 

reactive power, power factor, and error markers. Convert 

all data into the same format (CSV) and input it into the 

processing flow, and split it in a time sliding window 

with ten-time steps in each sliding box. For data with a 

missing rate less than 2%, linear interpolation techniques 

are used to fill in the missing data; For data above 3 σ, 

upper and lower bound normalization is used for filling. 

Selecting the minimum and maximum scaling for data 

standardization; When dividing subsets, maintain the 

order of the time series to avoid interference from the 

training set on the test results and to avoid the use of data 

augmentation techniques. Finally, all data were divided 

into training set, validation set, and testing set in 

chronological order, with a ratio of 70%: 15%: 15%. 

This sequential preservation partitioning method can 

effectively simulate the data flow logic of error detection 

systems in real operation, ensuring the model's 

generalization ability and practicality. 

4.3 Evaluation of core indicators such as 
detection accuracy and response time 

In order to evaluate the overall performance of the 

proposed real-time detection system for measuring 

errors in electric energy meters in practical applications, 

this paper uses four main indicators: accuracy, error 

recognition recall, average response time, and precise 

location for quantitative evaluation. 

Accuracy and recall are two basic indicators, which 

evaluate the system's recognition ability and error 

catching ability, respectively. High accuracy indicates a 

lower likelihood of making low-level errors, which 

means that the results of online evaluations are more 

convincing; The recall rate can measure the system's 

error detection and bias detection, and can reflect the 

sensitivity of the model to detail correction in handling 

complex scenes. The two together determine the 

sensitivity and stability of the detection mechanism. The 

average response time and error localization accuracy 

are also very important. The former is the average time 

from data acquisition to decision-making and response, 

while the latter is mainly used to measure whether the 

system can accurately locate the wrong location. This is 

of great significance for accelerating problem-solving 

speed and improving the adaptive ability of the platform 

itself. 

This study uses the following calculation formula 

for evaluation: 

Accuracy: 

FN+FP+TN+TP

TN+TP
 =Acc

    （6） 

Recall rate: 

FN+TP

TP
 =Rec

         （7） 

Average response time: 


=

=
N

1i

it
N

1
T

          （8） 

Error positioning accuracy: 

E

C
 =L

             （9） 

Among them, TP represents the number of correctly 

identified error samples, TN represents the number of 

correctly identified normal samples, FP and FN 

respectively represent the number of false positives and 

false negatives; ti  represents the processing time from 

receiving to feedback for the i-th sample, and N is the total 

number of samples; C is the number of samples with 

accurately located errors, and E is the total number of error 

samples. These indicators have shown stable performance 

in multiple rounds of system testing, indicating that the 

proposed platform not only has strong anomaly detection 

capabilities, but also has the advantages of real-time 

feedback and precise positioning, providing strong support 

for building a high reliability and low latency energy meter 

detection and management system. 

4.4 Ablation study 
To further validate the effectiveness of the "multi-source 

data fusion and depth error recognition model" proposed in 

this paper, a series of ablation experiments were designed to 

analyze the specific contributions of each module to the 

overall detection performance. This section selects four 

types of models for comparison: (1) traditional statistical 

models (such as decision tree DT, support vector machine 

SVM); (2) Single deep network models (such as LSTM, 

CNN); (3) Fusion based deep models (such as CNN-GRU); 

(4) This article fully integrates the model. The comparison 

dimensions include key performance indicators such as 

detection accuracy, false positive rate, average response 

time, and error localization accuracy. 

During the ablation process, this article sequentially 

removes the multi-source feature fusion module, error 

distribution discrimination unit, and response optimization 

mechanism to observe their impact on performance 

indicators. As shown in Figures 3 to 5, our proposed model 

achieves consistently superior performance across multiple 

evaluation metrics. Compared with traditional models, 

whose average accuracy remains below 90% and false 

positive rates exceed 7%, the complete CNN-GRU fusion 

model reaches an accuracy of 97.6% and maintains a false 

positive rate of 2.4%. To assess component-wise 

contributions, ablation experiments were conducted by 

independently removing key modules. Removing the error 

boundary discrimination unit reduced accuracy to 91.2%, 

while excluding the feature fusion module further dropped 

performance to 89.5%. These results confirm the 

integrative value of all model components.Regarding 

efficiency, our model achieves an average response latency 

of 0.62 seconds, outperforming all tested baselines, 
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including CNN, LSTM, and SVM.To evaluate 

adaptability across different application scenarios, we 

conducted experiments on three datasets: the Typical 

Residential Electricity Scenario Dataset (R-Elec), 

Variable Industrial Electricity Dataset (I-Load), and 

Synthetic Dataset of Abnormal Energy Measurement 

Records (S-ErrGen). On R-Elec, our model achieved a 

root mean square error (RMSE) of 0.019 and a localization 

error rate (L-EPR) of 0.043, demonstrating high accuracy in 

detecting subtle and periodic anomalies. On S-ErrGen, our 

model outperformed a BiGRU baseline by 6.8% in accuracy, 

indicating enhanced robustness in identifying 

low-frequency mutation errors. 

 

Figure 3：Comparison of accuracy of different models in energy meter error detection task 

 

Figure4：shows the decrease in accuracy after removing key modules 

 

Figure 5: Comparison of average response time of different models (seconds) 
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5 Performance optimization and 
system improvement paths 

5.1 Improving error recognition accuracy 
and false alarm rate control 

To improve the accuracy of error recognition, this paper 

introduces a multidimensional sampling mechanism in 

the feature modeling stage, which high-frequency 

collects and synchronously calibrates multi-source 

parameters such as voltage, current, active power, and 

temperature. Through feature crossover and 

normalization processing, Improved the ability to 

distinguish abnormal discriminative features. In addition, 

in the model construction, an improved Convolutional 

Gated Recurrent Neural Network (CNN-GRU) structure 

is adopted, which can not only extract the temporal 

dynamic features of electrical energy data, but also 

enhance the sensitivity of the model to abnormal 

mutations. To address the issue of false alarm rate 

control, the system embeds confidence judgment and 

sliding window verification mechanisms. After the 

model preliminarily identifies the error signal, the 

system will automatically evaluate its confidence level. 

If it is below the set threshold, the output will be 

temporarily suspended; Simultaneously combining the 

trend changes of adjacent time periods for secondary 

verification to avoid short-term fluctuations being 

misjudged as abnormal events. This mechanism 

significantly reduced the false alarm rate in multiple 

scenario experiments and remained stable at below 2%. 

5.2 Reduce detection system response 
latency and computational costs 

To reduce system response latency, this article optimizes 

the detection process by layering and deploying the three 

stages of "anomaly detection error discrimination 

positioning feedback" separately under the cloud edge 

collaborative architecture. Edge nodes prioritize 

preliminary screening and low complexity judgment, 

significantly reducing the amount of data that needs to be 

transmitted to the cloud and shortening the data 

processing link. Experimental results have shown that 

with the introduction of edge processing mechanisms, 

the average response latency has decreased from 1.25 

seconds to 0.61 seconds, and the response speed has 

been improved by over 50%. At the same time, to reduce 

computational costs, a lightweight network structure is 

adopted in the model design and dynamic convolution 

operations are integrated, effectively reducing the 

number of model parameters and floating-point 

operations (FLOPs). In addition, online inference 

optimization of the model is achieved through pruning 

strategy and TensorRT acceleration engine, which 

improves GPU resource utilization and significantly 

increases the number of processed samples per unit of 

computation. At the scheduling level of cloud platforms, 

load balancing and asynchronous processing 

mechanisms are introduced to automatically divert 

processing requests during peak data periods to low load 

nodes, effectively preventing the formation of 

"bottleneck points" and ensuring the stable operation of 

multi-point synchronous detection tasks. The above 

optimization measures have successfully reduced the 

average energy consumption per batch of system 

processing by about 23% while maintaining basic 

recognition accuracy, significantly improving overall 

operational efficiency and economy. 

5.3 Enhance the adaptability of the system to 
multiple types of energy meters 

This article designs a modular adaptation framework to 

build compatibility mechanisms from three levels: data 

access, protocol parsing, and model input standardization. 

On the one hand, by defining a unified data access interface 

standard, the system can automatically identify the 

communication type of the energy meter (such as DL/T645, 

Modbus, RS485, etc.), and dynamically load corresponding 

driver modules based on device attributes, achieving 

low-cost protocol parsing and data preprocessing. On the 

other hand, a parameter adaptive module is introduced at 

the model end to automatically adjust the size of the 

convolution kernel and detection threshold based on the 

sampling period, waveform density, and feature 

distribution of the input data, effectively improving the 

adaptability of the model to different device data patterns.  

Simultaneously utilizing data collected from different 

types of electric energy meters from various manufacturers 

to enhance the training process of the system, there are a 

total of 12 main types of instances. In order to enhance the 

system's generalization ability to unknown new types of 

electricity meter data, transfer learning and data 

augmentation techniques are adopted. The experimental 

results show that the model still maintains an accurate 

recognition rate of 86% for new types of electric energy 

meter data from other manufacturers that it has never 

encountered before, indicating that its applicability and 

stability on various models of electric energy meters are 

reliable. By utilizing the centralized upgrade and remote 

setting features of the cloud platform, this system can also 

achieve regional division through hot upgrades and 

adaptation strategies during operation, ensuring that the 

energy meters connected to the platform can be quickly 

integrated into the system and saving matching time. This 

greatly expands the system's ability to be installed and 

operated in various environments and on various devices, 

providing feasibility for building an online error 

measurement system with strong compatibility that can be 

widely used. 

5.4 Optimizing human-computer interaction 
design to enhance operation and 
maintenance management experience 

This study is based on the characteristics of cloud platforms, 

and reconstructs the interactive system from three 

dimensions: user-friendly interface, information 

visualization, and simplified operation process. At the 

interface level, a responsive layout design is adopted, 

supporting adaptive display on both PC and mobile devices. 

Operations personnel can flexibly monitor device status on 

different terminals. The core interface layout focuses on 
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three major modules: "device abnormal alarm", "error 

trend analysis", and "model detection results". All 

functional operations are achieved with one click direct 

access and modular calling, significantly reducing 

learning costs and operational barriers. In terms of 

information presentation, the system integrates dynamic 

charts and thermal distribution maps to fuse and display 

multidimensional data such as the time period, 

geographical location, and meter number of errors. 

Operations personnel can intuitively grasp the 

distribution pattern of errors, identify abnormal sources, 

and quickly locate them. The system also supports 

filtering records based on error level, device model, 

region, and other conditions, greatly improving the 

efficiency of data retrieval and operation 

decision-making. In terms of optimizing the operation 

process, the system introduces an "operation suggestion 

auxiliary engine" that automatically recommends fault 

handling solutions or scheduling suggestions based on 

historical data analysis, reducing the burden of manual 

judgment. For batch data processing tasks, a task flow 

visualization management module is provided, which 

supports graphical configuration of batch detection, 

grouping strategies, and model call parameters, 

significantly improving management efficiency and system 

transparency. 

6 Discussion and performance analysis 

Table 2: Detection performance of our method and comparative models on multiple datasets  

data set detection model Accuracy (%) 
Response time 

(seconds) 
False alarm 

rate (%) 
System stability 

(%) 

DS1 Method-C 87.2 2.40 7.3 78.5 

 Method-A 91.6 0.94 4.6 88.7 

 Method-B 94.5 0.65 3.1 91.4 

 This system 98.1 0.25 1.4 96.8 

DS2 Method-C 86.5 2.32 8.2 74.3 

 Method-A 92.3 0.89 4.8 87.2 

 Method-B 95.2 0.63 2.9 90.6 

 This system 98.6 0.27 1.2 95.9 

DS3 Method-C 89.1 2.47 6.9 76.1 

 Method-A 93.0 0.88 4.3 89.3 

 Method-B 95.7 0.68 2.7 92.1 

 This system 98.4 0.26 1.3 97.2 

 
Figure 6：Comparison of performance indicators of different methods on the DS2 dataset 
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6.1 Analysis of optimization effect and 
technical maturity of detection system 

To comprehensively evaluate the performance 

advantages of the cloud based online detection system 

for energy meter measurement errors proposed in this 

study, a systematic comparison was made with current 

mainstream detection methods, including the rule engine 

detection model (Method-A), shallow neural network 

model (Method-B), and traditional manual inspection 

strategy (Method-C). Comparative experiments were 

conducted on three typical energy meter datasets (DS1, 

DS2, DS3), with a focus on evaluating accuracy, latency, 

false positive rate (FPR), and system stability from four 

dimensions. 

As shown in Table 2, the method proposed in this 

paper exhibits high stability on three typical datasets, 

with a recognition rate of 98.6% on the DS2 dataset, 

which is higher than Method-A (92.3%) and Method-C 

(86.5%); At the same time, the average running time of 

the system is 0.27 seconds, which is better than the 

traditional model of 0.82 seconds, and manual detection 

is 2.4 seconds; And the system can run stably for more than 

95% of the time, demonstrating high deployment reliability. 

To further demonstrate the performance advantages of 

the system in various indicators, as shown in Figure 6, the 

core performance of the four methods under the DS2 

dataset is compared. It can be seen that the method 

proposed in this paper is significantly better than the three 

compared methods in terms of accuracy, false alarm control, 

and response time, demonstrating stronger adaptability and 

engineering practicality, and verifying the effectiveness of 

the proposed CNN-GRU fusion structure and cloud edge 

collaboration mechanism. 

Analysis shows that the implementation of the system's 

super performance mainly relies on three core elements: 

Firstly, the use of lightweight multi-channel convolution 

modules effectively extracts error evolution features, 

greatly improving the accuracy of error recognition. 

Secondly, the use of cloud computing for distributed 

processing greatly improves efficiency; Thirdly, automatic 

adjustment of dynamic thresholds is  

 

 

Table 3: Evaluation results of resource utilization and processing capability in different cloud platform environments  

deployment 
platform 

Average CPU usage 
rate 

Peak memory 
occupancy rate 

Maximum 
concurrent access 
terminals 

Data processing 
speed (strips/s) 

Alibaba Cloud 
4-core 8GB 

52.8% 59.1% 5,000 980 

Tencent Cloud 
8-core 16GB 

47.2% 62.5% 12,000 1,200 

Private Cloud 
Cluster Node 

38.5% 55.3% 8,500 1,050 

Table 4: Evaluation results of system adaptation capability in different application scenarios 

Application 
scenario type 

Deployment 
environment 
characteristics 

Average 
response time 
(s) 

Error 
Identification 
RMSE 

Platform load 
tolerance 

Deployment 
difficulty 

Monitoring of 
urban core 
substations 

Large data 
volume, high 
concurrency, 
and stable link 

1.23 0.045 tall centre 

Independent 
distribution 
node in 
highway service 
area 

Medium data 
flow, 
intermittent 
communication 

1.51 0.062 centre centre 

Measurement 
points in rural 
terminal areas 

Sparse data, 
unstable 
communication, 
low power 
consumption 

2.09 0.084 low low 

 

used to reduce false alarm rates and improve system 

adjustability. This article compares the correctness of 

different techniques on three different datasets using the 

Wilkoxon sign rank test. After significance level 

analysis, it was found that all p values were<0.01, 

indicating that the systematic improvement of detection 

accuracy in this article has practical significance and 

statistical basis. 

6.2 Resource occupancy and scalability 
evaluation under cloud platform 
deployment 

In order to verify the resource utilization efficiency and 

horizontal scalability of the constructed online detection 

system for electric energy meter measurement errors in 

actual deployment, this study evaluates its performance 

from the dimensions of CPU usage, memory utilization, and 
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concurrent request processing capability based on a 

typical cloud platform architecture. This part of the 

testing was conducted in three environments: Alibaba 

Cloud ECS instance (4 cores 8G), Tencent Cloud CVM 

instance (8 cores 16G), and local Kubernetes private 

cloud cluster. The testing tool used Apache JMeter to 

simulate data access loads of different scales, with a 

testing period set to 24 hours to ensure data stability and 

comparability. As shown in Table 3, lists the resource 

usage in three deployment environments. It can be seen 

that the overall resource utilization level of the system is 

maintained at a relatively low level, and there are no 

significant performance bottlenecks even during peak 

periods of concurrent data requests. 

Taking Tencent Cloud environment as an example, 

the average CPU usage remains at 47.2%, the peak 

memory usage does not exceed 62.5%, and a single node 

can stably process about 1200 measurement data streams 

per second. This result indicates that the system design 

has good lightweight and distributed compatibility, and 

is suitable for large-scale grid metering terminal access. 

At the same time, the system architecture adopts 

modular microservice design, supporting dynamic 

container scaling mechanism. In practical deployment, 

with the help of Kubernetes' automatic scaling strategy, 

when the inbound data volume or the number of access 

terminals exceeds the set threshold, the computing 

resource nodes can be automatically expanded to achieve 

elastic response. Among the three platforms, the private 

cloud cluster has the best resource elasticity and 

scalability in high-frequency data burst scenarios, 

indicating that this system has good scalability and 

deployment flexibility. 

6.3 Comparative analysis of adaptability in 
different application scenarios 

The cloud platform electric energy meter measurement 

error online detection system proposed in this study has 

strong cross scenario adaptability and can meet diverse 

needs from urban high-voltage transmission monitoring 

to rural low-voltage distribution management. In the 

urban smart grid scenario, the system can process 

large-scale electricity consumption information in 

real-time through high concurrency data access and 

multi node collaboration, achieving accurate 

identification of abnormal fluctuations; In rural and 

remote areas, the system can rely on edge computing 

nodes to achieve fault tolerant processing of intermittent 

communication and low-frequency data acquisition, 

ensuring detection stability and delay controllability.To 

verify the adaptability of the system, this article 

conducted deployment tests in three typical power 

application scenarios, namely: urban core power grid 

monitoring, highway service area substation, and small 

rural substations. Evaluate from dimensions such as 

deployment convenience, response time, error 

recognition accuracy, and platform load tolerance (see 

Table 4). Experiments have shown that the system 

exhibits good stability and compatibility in various 

environments, especially in remote low resource 

environments where it still maintains high recognition 

accuracy (RMSE not higher than 0.084), fully 

demonstrating the adaptability and resilience of the system 

architecture. To further enhance the compatibility of the 

system with heterogeneous terminal devices, a software 

hardware decoupling architecture design was introduced in 

the study, allowing the core functions of the system to be 

tailored or expanded based on platform performance. For 

example, in resource constrained situations, high load 

modules such as historical data clustering and multi model 

comparison can be disabled, while retaining the error 

judgment mainline function to achieve minimum runnable 

unit deployment. 

6.4 System scalability and model 
interpretability analysis 

The CNN-GRU integrated monitoring system has achieved 

excellent and stable recognition performance on multiple 

datasets. In order to test the universality of the system under 

different metering devices, geographical locations, and load 

conditions, the system was applied to seven different types 

of electronic energy meters for verification. The maximum 

difference in recognition rate was only ± 2%, and the 

maximum delay time was only 0.12 seconds longer than the 

minimum recognition time. Therefore, the system has 

strong cross device generalization ability. At the same time, 

the use of feature entropy decomposition and anomaly 

rating visualization strategies enhances the interpretability 

of the model. For example, for data samples with erroneous 

changes, we can track their change time, main feature 

channels (such as power factor anomalies), and entropy 

enhancement channels, which are of great significance for 

helping engineers locate potential problem sources. In the 

future, methods such as SHAP values and attention weight 

maps can also be used to help the model provide higher 

interpretability for "black box decisions". 

7  Conclusion 
This article focuses on the online detection and 

performance optimization of measurement errors in electric 

energy meters, proposing an intelligent recognition method 

that integrates CNN-GRU model and entropy weight 

anomaly scoring mechanism, and constructing a remote 

error monitoring system with cloud edge collaborative 

features. By introducing multi-source data fusion and 

dynamic scoring threshold control mechanism, the system 

achieved an average recognition rate of over 98% and a 

false alarm rate controlled within 1.5% on three typical 

datasets, DS1, DS2, and DS3, which is significantly better 

than existing mainstream methods and verifies the 

robustness and wide area adaptability of this method. The 

main contribution of this study lies in: ① constructing a 

data closed-loop error recognition architecture for end 

cloud fusion; ② Proposed an error scoring mechanism that 

combines temporal modeling and feature entropy; ③ 

Implemented an online deployment system with low 

latency and high usability. 

However, the current model still has some limitations, 

such as the significant impact of sample imbalance on 

boundary recognition performance, the interpretability of 

error types still relying on rule assisted interpretation, and 
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the sensitivity of deployment processes to network 

stability. In the future, in-depth research can be 

conducted from the following aspects: firstly, 

introducing multi task joint modeling to enhance the 

ability to distinguish complex composite errors; The 

second is to strengthen the interpretability mechanism of 

model output, such as attention heatmap and feature 

importance backtracking; The third is to promote the 

deployment of the system in actual power terminals and 

the design of remote fault-tolerant strategies to meet the 

real-time monitoring and fault self-healing needs in 

complex scenarios of smart grids. 
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