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To solve the problem of real-time measurement error detection of intelligent electric meter, this paper
proposes a cloud edge collaborative online detection framework based on CNN-GRU mixed depth model
and entropy weight scoring mechanism. The system extracts the local variation characteristics by
one-dimensional convolution, and uses two-way GRU to model the time-dependent error evolution.
Meanwhile, the dynamic threshold score function is introduced to realize the self-adaptive judgment of
error alarm. The special data sets R-Elec, I-Load and S-ErrGen covering residential, industrial and rural
scenes are constructed, and pre-processed through standardization, sliding window segmentation and
statistical cleaning. The experimental results show that the average identification accuracy of the system
in the three types of data is 97.6% and the average response time is 0.62 seconds, which is significantly
superior to the performance of traditional models (such as RF, SVM, LSTM) in false alarm control and
adaptability. The ablation experiments validated the key role of multi-source feature fusion and entropy
scoring mechanisms in performance improvement. The research shows that the fusion of lightweight
depth model and cloud edge architecture can achieve efficient, low delay and extensible intelligent meter
error online detection, and has the practical engineering deployment value.

Povzetek: Sistem uporablja model CNN-GRU s kooperacijo oblak-rob in mehanizmom tockovanja utezi
entropije za detekcijo napak pametnih Stevcev v realnem casu. Omogoca ucinkovito in prilagodljivo

spletno spremljanje za pametna omrezja.

1

With the continuous promotion of the construction of
new power systems, the accuracy and intelligence of
energy metering are becoming key links to support the
efficient operation of smart grids. As the core equipment
for terminal energy consumption measurement and
monitoring, the performance of electric energy meters is
directly related to the stability and reliability of multiple
links such as power grid scheduling, load forecasting,
and electricity bill settlement. Especially in the context
of multiple load grid connections and diverse energy
consumption behaviors, traditional measurement error
detection methods that rely on manual inspection and
periodic verification are no longer able to meet the
modern power grid's demand for "real-time, accurate,
and wide area" monitoring. The decrease in the
credibility of measurement data not only affects the
fairness of electricity consumption for end-users, but
also constrains the operational efficiency of the entire
power grid dispatch and management system.

Building an online deviation testing system for
electric energy meters based on cloud platforms has
become an important implementation method to improve
the intelligence of the testing system. By connecting
distributed collection modules with cloud computing
center processing capabilities, real-time collection and
analysis of massive operational data from different
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regions and types of energy meters can be achieved,
enabling dynamic error discrimination, evolution trend
tracking, and functional warning testing purposes. This type
of system must have high-frequency data processing speed,
abnormal model recognition method, and self-feedback
mechanism to  achieve intelligent  measurement
maintenance and hierarchical management control.
Compared to traditional models, the advantage of data
storage and computing elasticity in cloud centers is that
they not only improve the overall accuracy and speed of
system inspection, but also provide a technological
foundation for future widespread applications [4]. In this
context, this article proposes an online testing system for
measurement errors in power instruments, which is driven
by data flow and constructed through multi-dimensional
integration and intelligent analysis. The system relies on the
integration and distributed deployment of cloud services,
combined with a series of core technologies such as
extracting the variation law of measurement deviation,
identifying the density of abnormal points, and
autonomously improving and optimizing the model, to
achieve efficient performance monitoring and automatic
fault diagnosis of electric energy meters in multiple
scenarios [5]. This system has built a more flexible and
anti-interference intelligent energy metering system.
Accurate measurement deviation can timely detect
information such as equipment aging, signal drift, or
external interference. It also provides data for the life
evaluation of metering devices and builds a visual digital
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asset management platform for power companies. At the
same time, this technology system has good scalability
and wide applicability, and can be applied to energy
metering in various energy application places, such as
industrial parks, residential areas, or commercial
buildings, to ensure the security of the energy network
and save costs.

In response to the shortcomings of existing error
detection technologies for electric energy meters, such
as poor real-time performance, poor simulation
specificity, and insufficient application scope, this
article focuses on the following two key technologies for
research: (1) How to design a real-time detection system
with the ability to identify errors and analyze error trends,
thereby breaking the limitations of traditional pattern
based modeling of nonlinear errors and the accuracy and
precision of dynamic scene identification? (2) How to
use 10T technology to complete the design of a data
closed-loop structure for information collection,
detection, and feedback, while reducing the hardware
investment cost at the end and improving the accuracy of
misjudgment recognition, system response speed, and
multi table consistency?

For the questions raised in the above research, this
article adopts a lightweight fault recognition mode based
on CNN and GRU fusion network, and constructs an
efficient monitoring system with high recognition
accuracy, low missed detection rate, and long-distance
deployment using multiple attribute extraction,
boundary cooperative calculation, and entropy dynamic
judgment methods. The results show that the system has
good recognition performance for electricity loads in
complex working environments, flexible application
characteristics, and wide promotion value. To this end,
this paper proposes an error detection model that
integrates the lightweight CNN-GRU network and the
entropy weight scoring mechanism, and constructs an
online detection system based on cloud-edge
collaboration. We assume that this model can effectively
increase the accuracy of electricity meter error
recognition to over 97% without increasing the terminal
computing power, control the average response delay
within 0.6 seconds, and demonstrate good generalization
ability and low false alarm rate under the condition of
multi-source data fusion. The experimental verification
will be systematically evaluated around the above
indicators.

This article will elaborate on the following ideas in
the research of the paper: Chapter 2 introduces the
current status, development, and limitations of existing
fault localization algorithms; Chapter 3 provides a
detailed explanation of the design concept and
implementation of the main parts of this article; Chapter
4: Testing and Evaluating Test Results Based on Actual
Application Scenarios; Chapter 5 discusses how to
improve the efficiency and optimal installation location
of the device; Chapter 6 discusses the future applications
and developments in the power system, as well as
summarizes the main content of this article.
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2 Related work

Although the importance of energy metering is increasing,
it is not easy to accurately identify and improve the
accuracy of energy metering in smart grids. Due to the
complex and constantly changing environment surrounding
the electric energy meter, its errors are not only caused by
external electromagnetic interference, nonlinear loads, and
harmonics, but also by the aging of its own equipment and
insufficient design accuracy [6]. Especially when various
types of instruments are used, the voltage they are subjected
to is relatively high, and the frequency of input data is
relatively high, traditional manual inspection methods can
no longer meet the high efficiency and precision
requirements of power grid operation. Therefore,
researchers have started to study real-time monitoring
systems and self-diagnostic systems in order to use digital
means to track the changes in errors [7,8].

In recent years, research on energy metering errors has
mainly focused on three technical paths: first, error analysis
methods based on feature extraction and modeling, which
often analyze the formation mechanism and propagation
path of errors by establishing mathematical models or
statistical inference systems; The second is to integrate
artificial intelligence and machine learning error
recognition algorithms to improve the sensitivity and
generalization ability of error detection on a data-driven
basis; The third is to combine the system integration
framework of edge computing and cloud platform to realize
remote operation and maintenance and performance
optimization of large-scale meters. In terms of traditional
models, Hong (2024) [9] effectively revealed the
complexity of error sources by constructing harmonic
analysis models, distortion identification algorithms, and a
distortion rate quantification system under nonlinear loads.
The low-cost wireless smart meter design framework
proposed by Sousa et al. (2023) [10] balances error
monitoring and power quality acquisition, and achieves
structural integration under the smart grid architecture. At
the same time, Lindani (2023) [11]. attempted to use a dual
channel data acquisition method for identifying electricity
theft, which expanded the safety function of intelligent
metering beyond error detection

With the development of artificial intelligence
technology, machine learning based error detection
methods are increasingly receiving attention. For example,
Yuan et al. (2022) [12] constructed an error detection
model based on random forests, demonstrating stable
performance in small sample environments. Wals et al.
(2024) [13] proposed a smart meter lifespan prediction
method based on health index, introducing a device
degradation evaluation dimension for error detection. In
addition, Vasylets et al. (2022) [14] proposed a
mathematical correction model for the uncertainty of
energy metering under low load conditions, and made
preliminary progress in identifying edge characteristics. It
is worth mentioning that image recognition technology has
gradually been integrated into the field of energy meter
error detection. As described by Yang et al. (2024) [15],
cloud edge collaboration mechanism helps to enhance
system deployment flexibility and delay control capability,
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and is suitable for large-scale distributed energy systems.
and Xiaofeng et al. (2024) [16] further integrated
maximum likelihood method and decision tree model to
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achieve structured analysis of errors. An end-to-end error
evaluation model based on deep neural

Table 1 : Comparison of the performance and applicability of the methods and related research in this paper

Author & | Technical Application Response e
Year Approach Scenario Accuracy Delay Identified Issues
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! residentia 4% >1.1s i
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This CNN + GRU + | Multi-scenario
aner Entropy-weighted heterogeneous 97.6% 0.62s —
pap scoring model devices

networks have also been proposed. Huang et al. (2024)
[17] constructed an error recognition framework that
integrates  multi-layer  convolution,  significantly
improving the accuracy and robustness of recognition.
However, existing research still faces many limitations.
On the one hand, most models are based on specific
operating conditions or small sample experiments,
making it difficult to maintain stability in the widespread
deployment of multiple regions and types of meters. On
the other hand, Xu et al. (2024) [18] demonstrated the
effectiveness of the XGBoost and CNN-GRU structures
in short-term load forecasting for temporal feature
extraction and anomaly modeling. In addition, Zhao et al.
[2024][19] combined CNN-GRU with factor graph
structure to achieve error correction in GNSS signal loss
scenarios, demonstrating the stability of the fusion
model in strong interference environments. In recent
years, some scholars have also begun to pay attention to
the dynamic evolution modeling of error characteristics
driven by big data. Wang (2023) [20] proposed a
cloud-based method for identifying energy consumption
in big data, which achieved innovative breakthroughs in
data mining and error trend tracking, providing path
support for error optimization.

Based on the accuracy measurement methods of
some important power metering devices in recent years
(Table 1), establish a research path for the research
methods and technologies in this paper. It can be seen
that traditional methods have accuracy limitations in
identifying nonlinear errors, and some machine learning
methods lack temporal characteristics or are limited in
their application fields. However, our CNN-GRU
combination research approach demonstrates greater
flexibility and judgment in feature extraction, temporal
characteristics, and collaborative cooperation between
cloud computing and edge devices. Despite significant
research progress, online error detection still faces
multiple challenges. This article focuses on the
following three key challenges:
® Single feature dependency and weak modeling

adaptability: Existing methods generally rely on

basic parameters within a fixed window, which

makes it difficult to dynamically reflect the evolution
of nonlinear errors. When faced with sparse and
discontinuous features, their generalization ability is
insufficient.

Limited feature expression ability and weak scene
adaptability: Most models ignore the joint modeling
of spatial locality and temporal dependence, making it
difficult to adapt to complex metering scenarios.
Although some studies have introduced attention
mechanisms, spatial and temporal modeling are still
fragmented.

Limited dataset and insufficient system evaluation:
Currently, training is mostly based on single brand or
small-scale data, ignoring dynamic behavior, which
limits the practicality and transferability of the model
in multi regional deployment.

In response to the above difficulties, this article focuses
on the following issues for research:

Can an online detection mechanism be built that
integrates error recognition and trend analysis capabilities
to break through the accuracy bottleneck of the current
model?

How to rely on cloud platforms to achieve closed-loop
data collection, recognition, and feedback for error
detection systems, and improve recognition accuracy and
system response without increasing terminal costs?

Based on the above objectives, this article implements
the following technical paths:

Build a data-driven error recognition mechanism: By
using sliding windows and multi-stage evolution feature
extraction, dynamic modeling of error trends can be
achieved to enhance the ability to warn of hidden errors.

Integrate  multi-source  fusion algorithm and
bidirectional recognition module: Adopt hierarchical
feature fusion and outlier clustering mechanism to enhance
the system’s generalization ability under multiple types of
tables.

Build a cloud edge collaborative detection platform:
lightweight  collection of terminals, centralized
identification and optimization in the cloud, improving
system adaptability and operation efficiency, with remote
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update and strategy synchronization capabilities,
providing a foundation for large-scale promotion.

3 Design of online detection

mechanism

In the online error detection architecture proposed in this
article, the construction of a cloud platform based "end
cloud collaboration” mechanism is a technical choice
based on multiple requirements such as high frequency
of measurement data collection, complex causes of
errors, and diverse processing tasks. The system uses
edge collection devices on the terminal side to monitor
multiple types of energy meters in real time, and utilizes
the
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Figure 1: Schematic diagram of the architecture of an
online measurement error detection system for electric
energy meters based on cloud platforms

computing power of the cloud platform to complete
multi-source data fusion, error feature extraction, and
intelligent diagnosis tasks, thereby constructing an
integrated detection system with efficient recognition
and dynamic updating capabilities.

At the system architecture level, the terminal
collector is mainly responsible for uploading
information including current, voltage, active power,
power factor, and temperature and humidity at a second
level frequency. After being standardized by the data
preprocessing module, it is sent to the cloud recognition
model. This model integrates multiple error feature
channels to support the identification of possible error
behaviors of different types of energy meters under
different loads and environmental conditions. The error
recognition model itself adopts a modular structure,
including four main processing units: data cleaning,
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anomaly detection, error classification, and performance
scoring. The modules are called and updated through a
dynamic scheduling mechanism to ensure the adaptability
and robustness of the model in response to data mutations
and device replacements. As shown in Figure 1, the overall
architecture of the proposed online error detection system is
presented. The data is uploaded from the energy meter to
the cloud platform through edge nodes, where a series of
operations such as data reception, cleaning, feature
extraction, model matching, and result feedback are
completed in the cloud. The data paths between each
module are clear and functionally independent, which
facilitates flexible replacement and optimization of models
in the later stage, as well as system expansion and
maintenance.

3.1 Data flow driven error monitoring
framework

The proposed architecture for online detection of
measurement errors in electric energy meters is built on the
concept of "data flow driven", and the overall system
consists of three logical units: edge acquisition, cloud
analysis, and feedback control. This architecture is
designed for high-frequency, high-dimensional, and high
noise features of power data transmission, integrating
multiple layers of data channels and processing modules to
achieve high-precision identification and rapid response
correction of measurement errors.

The data flow of the system starts from the edge
terminal, collects raw energy meter data (such as voltage,
current, active power, reactive power and other
multidimensional features), and synchronizes it to the cloud
platform through a high-speed transmission link. At the
cloud processing layer, the system introduces asynchronous
decoupling design and relies on a four-level logical flow
mechanism of "pre-processing recognition classification
evaluation” to gradually screen, extract, and annotate key
error information. The preprocessing module first performs
standardization operations such as noise cleaning,
dimension normalization, and window segmentation on the
raw data stream to adapt to subsequent model analysis.

On this basis, the system introduces error pattern
recognition and error cause classification modules. The
former is responsible for identifying features such as abrupt
anomalies, periodic shifts, and noise drifts in energy
metering data, while the latter is based on a preset feature
library for error type attribution, such as hardware drift,
voltage transients, or equipment aging. The classification
results are further fed into the error evaluation module,
which quantifies the degree of error and provides
decision-making basis for subsequent control strategies.

After the model calculation is completed, the data
stream returns to the "Data Visualization and Monitoring
Terminal” module, enabling real-time viewing and
management of error status by the user. At the same time,
based on the error level and distribution, the system can link
with the "Intelligent Edge Node Control/Automatic
Correction Instruction” module to generate targeted
correction strategies, which are fed back to the edge device
end to complete error adjustment in a closed loop.
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3.2 Cloud platform architecture and system
function module design

The architecture of this system aims to achieve online
detection and dynamic optimization of measurement
errors in electric energy meters. The overall design
revolves around four major functions: real-time data
acquisition, intelligent processing, remote control, and
closed-loop optimization. Relying on cloud computing
resources, build a unified access, distributed processing,
and bidirectional instruction transmission path for
heterogeneous devices, and achieve functional
collaboration and efficient operation through modular
deployment. The platform receives raw parameters such
as voltage, current, power factor, and measurement
values from power terminals, integrates historical data
and error records, and forms a timely and structured data
stream. The system consists of three parts: data access
layer, model computing layer, and business control layer.
Deploy multi protocol adaptation components in the data
access layer, compatible with various types of energy
meters and edge collection terminals. The encrypted
transmission data is guided to the model computation
layer, initiating the error recognition process. There are
three types of modules nested in the model layer:
anomaly detection, error recognition, and edge
collaborative updating. Anomaly detection is initially
screened by setting a threshold; Error identification is
based on the construction of a discrimination mechanism
using historical trajectories and standard deviations; The
edge collaboration module provides feedback modeling
for high-frequency error samples. Subsequently, it enters
the business control layer, where cloud based unified
scheduling and correction instructions or parameter
resets are sent to the devices through edge nodes after
parsing, achieving closed-loop control of "cloud
recognition edge control error correction”. To enhance
system agility, the platform integrates a lightweight
container management mechanism that optimizes
resource utilization through parallel deployment. Each
module can be independently scheduled and updated,
ensuring good scalability and maintainability.

3.3 Construction of multi-source data
fusion and anomaly error recognition
model

To improve the accuracy of error detection and the
stability of system response, this paper constructs an
anomaly error recognition model that integrates
multi-source data. Based on time series analysis, feature
entropy weight allocation, and probability statistical
inference methods, a unified framework for dynamic
monitoring and anomaly judgment is established. The
system input includes three main data sources: (1) Real
time metering data from electric energy meters (D,); (2)
Historical benchmark data ( H,); (3 the device
environment and state parameters (S,) are mapped to the
feature space F, through a data fusion mechanism

.= #(D,.H,.S) "
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Among them, @ is the multi-source fusion mapping
function, which is constructed based on feature
standardization, time alignment, and difference filling
methods to ensure data consistency and integrity. In the
error recognition stage, the system combines a dynamic
error threshold model with an entropy weighted anomaly
scoring mechanism, taking into account the degree of error
deviation, rate of change, and historical stability. To
achieve deep modeling of error features and accurate
capture of temporal structures, this paper constructs a
lightweight CNN-GRU fusion recognition model before
generating the scoring function, which serves as the core for
generating abnormal scoring values. The front-end of the
model adopts a two-layer one-dimensional convolutional
network (1D-CNN) consisting of 32 and 64

One dimensional

One dimensional

Input feature sequence convolutional

layer1(Conv1D,32kernel

| convolutional layer 2

(5 types x 10 steps)

s) (Conv1D, 64 core)
Threshold Fully Maxi
g 81 GRU aximum
i connecte
comparison ) - pooling layer
judgment (whether [ layer (output (hidden (pooling
to trigger error abnormal unit=64) kernel=2)

alarm) score A)

Figure 2: Schematic diagram of CNN-GRU fusion
model structure

convolutional kernels, with a kernel size of 3 and a stride of
1. The activation function is ReLU, which is used to extract
local variation features in the error time series; Then
connect a layer of max pooling operation (with a window
size of 2) to enhance scale robustness and compress feature
dimensions.

The convolutional output is then input into a
bidirectional GRU network (Bi GRU, with 64 hidden units
and 0.2 dropout) to model the temporal dependence of error
evolution; The final output is mapped to the abnormal score
value AtA_tAt by the fully connected layer and passed into
the threshold judgment mechanism for error recognition.

The input features include five types of multi-source
data normalized within a 10-minute sliding window:
voltage, current, active power, power factor, and historical
error values; The label is an error state identifier for binary
classification of 0/1. The model training adopts Adam
optimizer, with an initial learning rate of 0.001, 50
iterations, and a loss function of weighted cross entropy to
cope with the low proportion of error samples. As shown in
Figure 2.

In the error recognition stage, the system combines a
dynamic error threshold model with an entropy weighted
anomaly scoring mechanism, taking into account the degree
of error deviation, rate of change, and historical stability.
Let the current measurement error be:

e, ¥ M, -R| ()

Among them, M, is the actual measurement value and
R, is the reference benchmark value. The system calculates
the error increment of ¢, based on the pattern of error
changes and establishes a comprehensive anomaly rating
function of A
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Among them, p_and o, are the historical error

mean and standard deviation, E, is the entropy value of
the current state, E,,, is the maximum state entropy
value among similar devices, o;,0,,o; is the weight
coefficient obtained using entropy weighting method,
satisfyingw, +o,+w;=1. Therefore, in order to achieve
real-time alarm and accurate recognition, an adaptive
threshold of 0 and a confidence interval are set for
dynamic adjustment.

et:HA"'}\z‘GA (4)

Among them, p, and o, are the average and
standard deviation of the sliding window of the scoring
function A,, and A is the control coefficient. WhenA>6,,
it is considered as the time point when the error occurred,
that is, the error correction action was triggered. This
model combines data-driven methods with rule-based
methods, which have both robustness and sensitivity,
and can effectively identify various types of error
problems such as measurement deviation, data drift, and
sensing faults.At the same time, all indicators in the
scoring mechanism (error margin, rate of change,
historical stability) are derived from traceable statistical
features, which can serve as the basis for anomaly
tracing and feature sensitivity analysis, enhancing the
interpretability of the system.

4 Experimental research and
effectiveness verification

4.1 Dataset construction and typical
application scenario settings

The dataset used in this study comes from the operation
system of provincial power companies and the
intelligent substation sampling platform, which has the
characteristics of complete structure and high time
granularity, and is suitable for error monitoring and
performance verification tasks. The data covers the
measurement values, voltage and current waveforms,
temperature and humidity, error calibration, and
communication status uploaded by smart energy meters.
Construct three typical application scenarios based on
the deployment area of the electricity meter, power
supply capacity, and equipment type, covering the main
influencing factors of error fluctuations. The first type of
data comes from intelligent substations in urban core
areas, with commercial and residential loads as the main
power consumption structure. The collection period is 15
minutes, including three-phase voltage, current,
active/reactive power, energy metering values and error
rates. It is suitable for algorithm training under
high-frequency load fluctuations and temperature
control interference backgrounds. The second type is
selected from suburban industrial parks, deploying a
large number of high-power inductive loads with a
sampling period of 10 minutes, focusing on recording
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error changes under low power factor, monitoring
temperature, electromagnetic interference, and

communication  delay, and  characterizing the
characteristics of error surges in industrial scenarios. The
third type comes from rural low-voltage substations, mainly
consisting of agricultural water pumps and lighting. The
electric meter has a wide measurement range, unstable
communication, and is prone to transient errors and
transmission delays, reflecting the abnormal characteristics
of the edge area system.

4.2 Data collection and error feature
extraction process
To ensure the effectiveness and robustness of the model in
error identification and performance optimization, this
paper constructs a systematic data collection and error
feature extraction process from the data source. Firstly, by
deploying collection nodes at the cloud platform access
layer, key parameters of the running energy meter are read
in real-time, including active energy, reactive energy,
voltage, current, power factor, and internal clock
information of the meter. All types of raw data are
synchronized according to a unified timestamp standard,
with a sampling interval set at 1 minute to ensure temporal
consistency and analytical integrity of the data. Due to the
different dimensions and variations of different types of
data, in order to improve feature comparability and model
training efficiency, the minimum maximum normalization
method is used to standardize all input variables. The
calculation formula is as follows:
X' = X = Xmin (5)
X max ~ Xmin

Among them, X represents the original data value, x,
and x,., respectively represent the minimum and
maximum values of the feature in the dataset, and x* isthe
normalized value. Linear interpolation is used to fill in
missing data (accounting for less than 2%) to ensure the
continuity of the time series; For extreme outliers that
exceed the mean by three standard deviations, upper bound
reduction processing is performed to compress them to
within the 99th percentile of the feature, in order to weaken
the disturbance effect of extreme values on the error
recognition model.

In terms of feature extraction, this article is based on a
multi-source data fusion strategy to construct an electric
energy feature set from raw samples, including high-order
statistical features such as instantaneous power difference,
cumulative electricity offset rate, and meter to meter same
period deviation indicators. Combined with the time
dimension, behavior patterns such as intraday periodic
changes and weekly trend fluctuations are extracted,
providing a comprehensive and reliable input basis for
subsequent error recognition and performance evaluation
models.The data in this study mainly includes three sources:
the first source is the measurement log data (labeled R-Elec)
from the actual operation system of provincial power grid
companies; The second source is the experimental
simulation system collecting power load data (I-Load)
under working condition jumps; The third source is the
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anomalous data generated by the generator (S-ErrGen),
all of which are unpublished data. However, we have
anonymized them and provided sample structural
descriptions in the attachment. Each group's data
includes 20000 to 50000 records, each with ten
characteristics such as voltage, current, active power,
reactive power, power factor, and error markers. Convert
all data into the same format (CSV) and input it into the
processing flow, and split it in a time sliding window
with ten-time steps in each sliding box. For data with a
missing rate less than 2%, linear interpolation techniques
are used to fill in the missing data; For data above 3 o,
upper and lower bound normalization is used for filling.
Selecting the minimum and maximum scaling for data
standardization; When dividing subsets, maintain the
order of the time series to avoid interference from the
training set on the test results and to avoid the use of data
augmentation techniques. Finally, all data were divided
into training set, validation set, and testing set in
chronological order, with a ratio of 70%: 15%: 15%.
This sequential preservation partitioning method can
effectively simulate the data flow logic of error detection
systems in real operation, ensuring the model's
generalization ability and practicality.

4.3 Evaluation of core indicators such as

detection accuracy and response time
In order to evaluate the overall performance of the
proposed real-time detection system for measuring
errors in electric energy meters in practical applications,
this paper uses four main indicators: accuracy, error
recognition recall, average response time, and precise
location for quantitative evaluation.

Accuracy and recall are two basic indicators, which
evaluate the system's recognition ability and error
catching ability, respectively. High accuracy indicates a
lower likelihood of making low-level errors, which
means that the results of online evaluations are more
convincing; The recall rate can measure the system's
error detection and bias detection, and can reflect the
sensitivity of the model to detail correction in handling
complex scenes. The two together determine the
sensitivity and stability of the detection mechanism. The
average response time and error localization accuracy
are also very important. The former is the average time
from data acquisition to decision-making and response,
while the latter is mainly used to measure whether the
system can accurately locate the wrong location. This is
of great significance for accelerating problem-solving
speed and improving the adaptive ability of the platform
itself.

This study uses the following calculation formula
for evaluation:

Accuracy:

_ TP+TN

Acc =
TP+TN+FP+FN

(6)

Recall rate:
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TP
Rec =
TP+FN (7)
Average response time:
- 1 i
T=-S't,
N3 (8)
Error positioning accuracy:
L= 9
E (9)

Among them, TP represents the number of correctly
identified error samples, TN represents the number of
correctly identified normal samples, FP and FN
respectively represent the number of false positives and
false negatives; t; represents the processing time from
receiving to feedback for the i-th sample, and N is the total
number of samples; C is the number of samples with
accurately located errors, and E is the total number of error
samples. These indicators have shown stable performance
in multiple rounds of system testing, indicating that the
proposed platform not only has strong anomaly detection
capabilities, but also has the advantages of real-time
feedback and precise positioning, providing strong support
for building a high reliability and low latency energy meter
detection and management system.

4.4 Ablation study

To further validate the effectiveness of the "multi-source
data fusion and depth error recognition model™ proposed in
this paper, a series of ablation experiments were designed to
analyze the specific contributions of each module to the
overall detection performance. This section selects four
types of models for comparison: (1) traditional statistical
models (such as decision tree DT, support vector machine
SVM); (2) Single deep network models (such as LSTM,
CNN); (3) Fusion based deep models (such as CNN-GRU);
(4) This article fully integrates the model. The comparison
dimensions include key performance indicators such as
detection accuracy, false positive rate, average response
time, and error localization accuracy.

During the ablation process, this article sequentially
removes the multi-source feature fusion module, error
distribution discrimination unit, and response optimization
mechanism to observe their impact on performance
indicators. As shown in Figures 3 to 5, our proposed model
achieves consistently superior performance across multiple
evaluation metrics. Compared with traditional models,
whose average accuracy remains below 90% and false
positive rates exceed 7%, the complete CNN-GRU fusion
model reaches an accuracy of 97.6% and maintains a false
positive rate of 2.4%. To assess component-wise
contributions, ablation experiments were conducted by
independently removing key modules. Removing the error
boundary discrimination unit reduced accuracy to 91.2%,
while excluding the feature fusion module further dropped
performance to 89.5%. These results confirm the
integrative value of all model components.Regarding
efficiency, our model achieves an average response latency
of 0.62 seconds, outperforming all tested baselines,
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including CNN, LSTM, and SVM.To evaluate
adaptability across different application scenarios, we
conducted experiments on three datasets: the Typical
Residential Electricity Scenario Dataset (R-Elec),
Variable Industrial Electricity Dataset (I-Load), and
Synthetic Dataset of Abnormal Energy Measurement
Records (S-ErrGen). On R-Elec, our model achieved a
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root mean square error (RMSE) of 0.019 and a localization
error rate (L-EPR) of 0.043, demonstrating high accuracy in
detecting subtle and periodic anomalies. On S-ErrGen, our
model outperformed a BiGRU baseline by 6.8% in accuracy,
indicating  enhanced  robustness in identifying
low-frequency mutation errors.

M Accuracy (%)

5 I I

decision tree vector machine

LSTM CNN-GRU Model in this article

Figure 3 : Comparison of accuracy of different models in energy meter error detection task
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5 Performance optimization and
system improvement paths

5.1 Improving error recognition accuracy
and false alarm rate control
To improve the accuracy of error recognition, this paper
introduces a multidimensional sampling mechanism in
the feature modeling stage, which high-frequency
collects and synchronously calibrates multi-source
parameters such as voltage, current, active power, and
temperature.  Through  feature  crossover and
normalization processing, Improved the ability to
distinguish abnormal discriminative features. In addition,
in the model construction, an improved Convolutional
Gated Recurrent Neural Network (CNN-GRU) structure
is adopted, which can not only extract the temporal
dynamic features of electrical energy data, but also
enhance the sensitivity of the model to abnormal
mutations. To address the issue of false alarm rate
control, the system embeds confidence judgment and
sliding window verification mechanisms. After the
model preliminarily identifies the error signal, the
system will automatically evaluate its confidence level.
If it is below the set threshold, the output will be
temporarily suspended; Simultaneously combining the
trend changes of adjacent time periods for secondary
verification to avoid short-term fluctuations being
misjudged as abnormal events. This mechanism
significantly reduced the false alarm rate in multiple
scenario experiments and remained stable at below 2%.

5.2 Reduce detection system response
latency and computational costs

To reduce system response latency, this article optimizes
the detection process by layering and deploying the three
stages of ™"anomaly detection error discrimination
positioning feedback" separately under the cloud edge
collaborative architecture. Edge nodes prioritize
preliminary screening and low complexity judgment,
significantly reducing the amount of data that needs to be
transmitted to the cloud and shortening the data
processing link. Experimental results have shown that
with the introduction of edge processing mechanisms,
the average response latency has decreased from 1.25
seconds to 0.61 seconds, and the response speed has
been improved by over 50%. At the same time, to reduce
computational costs, a lightweight network structure is
adopted in the model design and dynamic convolution
operations are integrated, effectively reducing the
number of model parameters and floating-point
operations (FLOPs). In addition, online inference
optimization of the model is achieved through pruning
strategy and TensorRT acceleration engine, which
improves GPU resource utilization and significantly
increases the number of processed samples per unit of
computation. At the scheduling level of cloud platforms,
load balancing and asynchronous processing
mechanisms are introduced to automatically divert
processing requests during peak data periods to low load
nodes, effectively preventing the formation of
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"bottleneck points” and ensuring the stable operation of
multi-point synchronous detection tasks. The above
optimization measures have successfully reduced the
average energy consumption per batch of system
processing by about 23% while maintaining basic
recognition accuracy, significantly improving overall
operational efficiency and economy.

5.3 Enhance the adaptability of the system to
multiple types of energy meters
This article designs a modular adaptation framework to
build compatibility mechanisms from three levels: data
access, protocol parsing, and model input standardization.
On the one hand, by defining a unified data access interface
standard, the system can automatically identify the
communication type of the energy meter (such as DL/T645,
Modbus, RS485, etc.), and dynamically load corresponding
driver modules based on device attributes, achieving
low-cost protocol parsing and data preprocessing. On the
other hand, a parameter adaptive module is introduced at
the model end to automatically adjust the size of the
convolution kernel and detection threshold based on the
sampling period, waveform density, and feature
distribution of the input data, effectively improving the
adaptability of the model to different device data patterns.
Simultaneously utilizing data collected from different
types of electric energy meters from various manufacturers
to enhance the training process of the system, there are a
total of 12 main types of instances. In order to enhance the
system's generalization ability to unknown new types of
electricity meter data, transfer learning and data
augmentation techniques are adopted. The experimental
results show that the model still maintains an accurate
recognition rate of 86% for new types of electric energy
meter data from other manufacturers that it has never
encountered before, indicating that its applicability and
stability on various models of electric energy meters are
reliable. By utilizing the centralized upgrade and remote
setting features of the cloud platform, this system can also
achieve regional division through hot upgrades and
adaptation strategies during operation, ensuring that the
energy meters connected to the platform can be quickly
integrated into the system and saving matching time. This
greatly expands the system's ability to be installed and
operated in various environments and on various devices,
providing feasibility for building an online error
measurement system with strong compatibility that can be
widely used.

5.4 Optimizing human-computer interaction
design to enhance operation and
maintenance management experience

This study is based on the characteristics of cloud platforms,

and reconstructs the interactive system from three

dimensions: user-friendly interface, information
visualization, and simplified operation process. At the
interface level, a responsive layout design is adopted,
supporting adaptive display on both PC and mobile devices.

Operations personnel can flexibly monitor device status on

different terminals. The core interface layout focuses on
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three major modules: "device abnormal alarm", "error
trend analysis”, and "model detection results". All
functional operations are achieved with one click direct
access and modular calling, significantly reducing
learning costs and operational barriers. In terms of
information presentation, the system integrates dynamic
charts and thermal distribution maps to fuse and display
multidimensional data such as the time period,
geographical location, and meter number of errors.
Operations  personnel can intuitively grasp the
distribution pattern of errors, identify abnormal sources,
and quickly locate them. The system also supports
filtering records based on error level, device model,
region, and other conditions, greatly improving the
efficiency of data retrieval and  operation
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decision-making. In terms of optimizing the operation
process, the system introduces an "operation suggestion
auxiliary engine" that automatically recommends fault
handling solutions or scheduling suggestions based on
historical data analysis, reducing the burden of manual
judgment. For batch data processing tasks, a task flow
visualization management module is provided, which
supports graphical configuration of batch detection,
grouping strategies, and model call parameters,
significantly improving management efficiency and system
transparency.

6 Discussion and performance analysis

Table 2: Detection performance of our method and comparative models on multiple datasets

data set detection model |  Accuracy (%) Re?S%%gsF]edgi)me F?E‘éa}l%m Systen(wo/s;]t)ability
DS1 Method-C 87.2 2.40 7.3 78.5
Method-A 91.6 0.94 4.6 88.7
Method-B 94.5 0.65 3.1 914
This system 98.1 0.25 1.4 96.8
DS2 Method-C 86.5 2.32 8.2 74.3
Method-A 92.3 0.89 4.8 87.2
Method-B 95.2 0.63 2.9 90.6
This system 98.6 0.27 1.2 95.9
DS3 Method-C 89.1 2.47 6.9 76.1
Method-A 93.0 0.88 4.3 89.3
Method-B 95.7 0.68 2.7 92.1
This system 98.4 0.26 1.3 97.2
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Figure 6 : Comparison of performance indicators of different methods on the DS2 dataset
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6.1 Analysis of optimization effect and
technical maturity of detection system

To comprehensively evaluate the performance
advantages of the cloud based online detection system
for energy meter measurement errors proposed in this
study, a systematic comparison was made with current
mainstream detection methods, including the rule engine
detection model (Method-A), shallow neural network
model (Method-B), and traditional manual inspection
strategy (Method-C). Comparative experiments were
conducted on three typical energy meter datasets (DS1,
DS2, DS3), with a focus on evaluating accuracy, latency,
false positive rate (FPR), and system stability from four
dimensions.

As shown in Table 2, the method proposed in this
paper exhibits high stability on three typical datasets,
with a recognition rate of 98.6% on the DS2 dataset,
which is higher than Method-A (92.3%) and Method-C
(86.5%); At the same time, the average running time of
the system is 0.27 seconds, which is better than the
traditional model of 0.82 seconds, and manual detection
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is 2.4 seconds; And the system can run stably for more than
95% of the time, demonstrating high deployment reliability.

To further demonstrate the performance advantages of
the system in various indicators, as shown in Figure 6, the
core performance of the four methods under the DS2
dataset is compared. It can be seen that the method
proposed in this paper is significantly better than the three
compared methods in terms of accuracy, false alarm control,
and response time, demonstrating stronger adaptability and
engineering practicality, and verifying the effectiveness of
the proposed CNN-GRU fusion structure and cloud edge
collaboration mechanism.

Analysis shows that the implementation of the system's
super performance mainly relies on three core elements:
Firstly, the use of lightweight multi-channel convolution
modules effectively extracts error evolution features,
greatly improving the accuracy of error recognition.
Secondly, the use of cloud computing for distributed
processing greatly improves efficiency; Thirdly, automatic
adjustment of dynamic thresholds is

Table 3: Evaluation results of resource utilization and processing capability in different cloud platform environments

Maximum :
Simtorm Far 208 O Usage | Gy rate concurrent access | 2 rEc)
plibaba Cloud 52.8% 59.1% 5,000 980
gencent Cloud 47.2% 62.5% 12,000 1,200
Private Cloud 38.5% 55.3% 8,500 1,050

Table 4: Evaluation results of system adaptation capability in different application scenarios

At Deployment Average Error
Qgﬁgg%uton e environment response time Identification Qﬁet:ggg load a(%ﬂLolﬁinent
yp characteristics (s) RMSE Yy
- Large data
Monitoring of .
urban core volume, high 1.23 0.045 tall centre
substations concurrency,
and stable link
Independent :
distribution Medium data
node in ) intermittent 151 0.062 centre centre
er%gway SErvIce | communication
Sparse data,
Measurement unstable
points in rural communication, 2.09 0.084 low low
terminal areas low power
consumption

used to reduce false alarm rates and improve system
adjustability. This article compares the correctness of
different techniques on three different datasets using the
Wilkoxon sign rank test. After significance level
analysis, it was found that all p values were<0.01,
indicating that the systematic improvement of detection
accuracy in this article has practical significance and
statistical basis.

6.2 Resource occupancy and scalability
evaluation under cloud platform
deployment

In order to verify the resource utilization efficiency and

horizontal scalability of the constructed online detection

system for electric energy meter measurement errors in
actual deployment, this study evaluates its performance
from the dimensions of CPU usage, memory utilization, and
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concurrent request processing capability based on a
typical cloud platform architecture. This part of the
testing was conducted in three environments: Alibaba
Cloud ECS instance (4 cores 8G), Tencent Cloud CVM
instance (8 cores 16G), and local Kubernetes private
cloud cluster. The testing tool used Apache JMeter to
simulate data access loads of different scales, with a
testing period set to 24 hours to ensure data stability and
comparability. As shown in Table 3, lists the resource
usage in three deployment environments. It can be seen
that the overall resource utilization level of the system is
maintained at a relatively low level, and there are no
significant performance bottlenecks even during peak
periods of concurrent data requests.

Taking Tencent Cloud environment as an example,
the average CPU usage remains at 47.2%, the peak
memory usage does not exceed 62.5%, and a single node
can stably process about 1200 measurement data streams
per second. This result indicates that the system design
has good lightweight and distributed compatibility, and
is suitable for large-scale grid metering terminal access.
At the same time, the system architecture adopts
modular microservice design, supporting dynamic
container scaling mechanism. In practical deployment,
with the help of Kubernetes' automatic scaling strategy,
when the inbound data volume or the number of access
terminals exceeds the set threshold, the computing
resource nodes can be automatically expanded to achieve
elastic response. Among the three platforms, the private
cloud cluster has the best resource elasticity and
scalability in high-frequency data burst scenarios,
indicating that this system has good scalability and
deployment flexibility.

6.3 Comparative analysis of adaptability in
different application scenarios
The cloud platform electric energy meter measurement
error online detection system proposed in this study has
strong cross scenario adaptability and can meet diverse
needs from urban high-voltage transmission monitoring
to rural low-voltage distribution management. In the
urban smart grid scenario, the system can process
large-scale electricity consumption information in
real-time through high concurrency data access and
multi  node collaboration, achieving accurate
identification of abnormal fluctuations; In rural and
remote areas, the system can rely on edge computing
nodes to achieve fault tolerant processing of intermittent
communication and low-frequency data acquisition,
ensuring detection stability and delay controllability.To
verify the adaptability of the system, this article
conducted deployment tests in three typical power
application scenarios, namely: urban core power grid
monitoring, highway service area substation, and small
rural substations. Evaluate from dimensions such as
deployment  convenience, response time, error
recognition accuracy, and platform load tolerance (see
Table 4). Experiments have shown that the system
exhibits good stability and compatibility in various
environments, especially in remote low resource
environments where it still maintains high recognition
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accuracy (RMSE not higher than 0.084), fully
demonstrating the adaptability and resilience of the system
architecture. To further enhance the compatibility of the
system with heterogeneous terminal devices, a software
hardware decoupling architecture design was introduced in
the study, allowing the core functions of the system to be
tailored or expanded based on platform performance. For
example, in resource constrained situations, high load
modules such as historical data clustering and multi model
comparison can be disabled, while retaining the error
judgment mainline function to achieve minimum runnable
unit deployment.

6.4  System  scalability and  model

interpretability analysis

The CNN-GRU integrated monitoring system has achieved
excellent and stable recognition performance on multiple
datasets. In order to test the universality of the system under
different metering devices, geographical locations, and load
conditions, the system was applied to seven different types
of electronic energy meters for verification. The maximum
difference in recognition rate was only + 2%, and the
maximum delay time was only 0.12 seconds longer than the
minimum recognition time. Therefore, the system has
strong cross device generalization ability. At the same time,
the use of feature entropy decomposition and anomaly
rating visualization strategies enhances the interpretability
of the model. For example, for data samples with erroneous
changes, we can track their change time, main feature
channels (such as power factor anomalies), and entropy
enhancement channels, which are of great significance for
helping engineers locate potential problem sources. In the
future, methods such as SHAP values and attention weight
maps can also be used to help the model provide higher
interpretability for "black box decisions”.

7 Conclusion

This article focuses on the online detection and
performance optimization of measurement errors in electric
energy meters, proposing an intelligent recognition method
that integrates CNN-GRU model and entropy weight
anomaly scoring mechanism, and constructing a remote
error monitoring system with cloud edge collaborative
features. By introducing multi-source data fusion and
dynamic scoring threshold control mechanism, the system
achieved an average recognition rate of over 98% and a
false alarm rate controlled within 1.5% on three typical
datasets, DS1, DS2, and DS3, which is significantly better
than existing mainstream methods and verifies the
robustness and wide area adaptability of this method. The
main contribution of this study lies in: (1) constructing a
data closed-loop error recognition architecture for end
cloud fusion; (2) Proposed an error scoring mechanism that
combines temporal modeling and feature entropy; (3)
Implemented an online deployment system with low
latency and high usability.

However, the current model still has some limitations,
such as the significant impact of sample imbalance on
boundary recognition performance, the interpretability of
error types still relying on rule assisted interpretation, and
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the sensitivity of deployment processes to network
stability. In the future, in-depth research can be
conducted from the following aspects: firstly,
introducing multi task joint modeling to enhance the
ability to distinguish complex composite errors; The
second is to strengthen the interpretability mechanism of
model output, such as attention heatmap and feature
importance backtracking; The third is to promote the
deployment of the system in actual power terminals and
the design of remote fault-tolerant strategies to meet the
real-time monitoring and fault self-healing needs in
complex scenarios of smart grids.
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