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In this study, an integrated machine learning framework is proposed to accurately predict and minimize
CO: emissions and energy consumption in the manufacturing of High-Performance Concrete (HPC). The
methodology combines K-Nearest Neighbor (KNN) and Elastic Net Regression (ENR) models with the
Artificial Rabbits Optimization (ARO) algorithm for hyperparameter tuning, and employs Recursive
Feature Elimination (RFE) to isolate the most influential input variables. A dataset comprising key HPC
mix components was curated from experimental sources and subjected to rigorous preprocessing. Among
the tested models, the hybrid ENR + ARO (ENAR) model achieved the best performance for energy
prediction with an R2 of 0.986 and RMSE of 52.63 MJ/m3, while the KNN + ARO (KNAR) model yielded
the highest accuracy for CO: emission prediction with an R? of 0.992 and RMSE of 7.57 kg/m> The
application of RFE improved model performance by 12.4% in RMSE reduction for energy prediction and
9.6% for CO: estimation, by eliminating redundant features. Cement and superplasticizer content were
identified as the most influential predictors. These results provide a reliable and interpretable framework
for enhancing the sustainability of concrete production through data-driven mix optimization.

Povzetek: Studija zdruzi KNN, Elastic Net in metahevristiko Artificial Rabbits Optimization z RFE za
napovedovanje ter zmanjSanje CO: emisij in energije v visokozmogljivem betonu. NajboljSa modela

(ENAR za energijo, KNAR za CO:) izpostavita cement in superplastifikator kot kljucna dejavnika.

1 Introduction

HPC constitutes a specialized category of concrete
characterized by superior performance relative to
conventional concrete, as evidenced by selected properties
such as durability, service life, and low maintenance
requirements [1]. HPC is made up of Portland cement,
water, coarse aggregates, and various chemical and
mineral admixtures [2]. However, HPC manufacturing
utilizes significant amounts of energy and adds a lot to
CO, emissions, especially from the manufacture of
cement, which is responsible for around 8% of CO,
emissions worldwide [3]. Recently, the environmental
impact of HPC has become a focal point, especially when
large-scale construction projects increase demand for this
material [4], [5]. Heavy machinery employed in
performing tasks such as structural simulations, material
testing, and optimization is widely used throughout the
design and process stages of these projects [6]. Such
machines need, by necessity, high-powered systems that
consume considerable amounts of energy and produce

considerable €O, emissions both during their operation
and through the lifecycle of manufacture and use [7], [8].

Among other major concerns in the sustainability of
construction projects is energy consumption, which is
important both ecologically and economically [9]. In
general, large computer systems used in high-performance
applications for BIM, 3D modeling, and complex
simulations consume a huge amount of energy [10]. DVFS
and power capping can be two ways of managing power
that, once optimized, could reduce energy usage without
necessarily affecting computational performance. These
methods allow energy resources to be used more
efficiently while sustaining the high processing power
required for modern construction tasks [11]. The
construction industry has to be strengthened with green
computing and Energy Efficiency (EE) for it to be
sustainable. Only then would modern construction
projects result in a minimum environmental impact
coupled with economic viability [12].
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1.1 Related works

Properties and mixture design of Ultra-High-Performance
Concrete (UHPC) have a direct influence on the forecast
of CO: emissions and energy consumption for
manufacturing HPC. Normally, binder content between
800-1000 kg/m?3 has the highest impact on the carbon
footprint of UHPC. In UHPC, cement hydration is not
fully achieved, with only 30-40% of the cement reacting
because of a reduced water-to-binder ratio. The remaining
unreacted cement acts mainly as an inert filler [13]. The
employment of SCMs comprising FA and GGBS results
not only in a reduction in cement consumption but also in
lowered carbon emissions [14], [15]. That is important
because, by replacing the conventional cement with
SCMs, during the manufacturing process of UHPC, CO,
emissions are greatly reduced, thus having a direct
influence on the carbon footprint in general. Apart from
this, binder content optimization plays a vital role in
determining desired mechanical properties; hence, energy
consumption is of concern. Such a dense microstructure
and high compressive strength through SCM
incorporation and superplasticizers increase energy
requirements, mainly during the curing phase. For the
curing of composites, additional methods like heat or
autoclave curing imply greater energy use [16], [17]. On
the other hand, the addition of SCMs like 20% FA or 3.2%
nano — CaCCO; has been reported not only to improve
mechanical properties but also to have a potential
influence on the EE of the manufacturing process by
possibly reducing the curing energy required for optimum
performance [18], [19].

1.2 Objective

This paper, therefore, aims to develop a new framework
for the estimation of feature importance and the
optimization of model performance with the multi-
objective approach of KNN, ENR, and ARO. This paper
designs a new feature importance estimation framework
and optimizes model performance for a multi-objective
approach that makes use of a combination of KNN, ENR,
and ARO techniques. The framework, therefore, performs
FS and enhances predictive accuracy by making good use
of the complementary strengths of the combined models
on a wide range of datasets for the assurance of robustness
and completeness when performing ML optimizations.
First, RFE is applied as an iterative feature selector that
keeps only a subset of the most informative features. RFE
eliminates the least important features according to their
ranking regarding model performance and iteratively
updates the feature importance. This recursive procedure
retains only the most relevant features, hence reducing the
dimensionality, avoiding overfitting, and improving the
efficiency of the model. From the optimization
perspective, the ARO novel metaheuristic algorithm
inspired by nature has been introduced to optimize
hyperparameters of model performance. Indeed, this new
ARO metaheuristic mimics rabbit foraging behavior in its
process of performing an effective search for near-optimal
solutions towards high-dimensional, possibly complicated
spaces. Since it optimizes models with numerous

X. Gao et al.

interactions among so many variables in the interaction,
ARO is certainly the right addition to improve
optimization model selection methodologies. The KNNs
together with ENR and ARO algorithms systematically
model refinement and ensure some combinations of opted
features and parameters by a model optimized towards
superior predictive result outcomes. In this respect, this
study presents a hybrid modeling approach, combining the
strengths of KNN, ENR, and ARO, thus building
increased model interpretability, performance, and
robustness.

2 Methodology

2.1 K-Nearest Neighbor (KNN)

The simplicity, effectiveness, and application of the KNN
algorithm are well known. It is related to both RF and
ANN in that it can be used in both regression and
classification applications. For everyday use, it was fitting
since its general concepts were obvious and simple. Both
regression and classification problems can train non-linear
decision boundaries. This makes it further flexible when
these limits are set, and thereby allows the value of K to
change. Compared to other algorithms, K-NN does not
have to have a separate training phase. In simple words, it
uses one hyperparameter, K, which also makes modifying
the rest rather easy. The main concept behind KNN
involves locating a set of K samples in the calibration data
that are similar to the unknown samples, typically using a
distance metric. For this purpose, matching groups of
samples must be determined. KNN compares the result
with a group of K samples and computes the mean value
of the response variables to find the classes of the
unknown samples [20]. Hence, the effectiveness of the
KNN algorithm depends heavily on the choice of K [21].
The three distance functions used in regression projects
for calculating the distances between the neighborhood
data points are given by Egs. (1-3).

f
F(e) = (x; — y)? 1)
2
f
Fma) = ) [x— i @
i=0
; i
Fmi) = ) (1% = %)° ©)
i=0

The Manhattan distance function is denoted by
F(ma), the Minkowski distance function by F(mi), and
the Euclidean distance function by F(e). The order
parameter g is used to calculate the distances between the
data points x and y, which are represented by the words x;
and y;, respectively, for their ith dimensions. The
flowchart for the KNN model is demonstrated in Fig. 1.
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Figure 1: The flowchart of the KNN model

2.2 Elastic Net Regression (ENR)

ENR is a high-performance linear regression technique
that combines the best features of L1 (Lasso) and L2
(Ridge) regularization techniques. Its dual regularization
technique enhances the model's interpretability and
prognostic performance, reduces multicollinearity and
overfitting in high-dimensional datasets, and encourages
sparsity and stability in coefficient estimates [22], [23].

e Direct Communication

P(y|B,0?) = N(y|XB, o2L,) this is the probability of
the article, where B is a p-vector that contains the
regression coefficients. Where predictor variables are
included in the n X p dimensional matrix X. Given that
the vector y and the columns of X are considered to be
demeaned, the model is specified without an intercept. In
this approach, the linear regression parameters are
typically estimated as follows:

L~ argmin -

B=""p G- XBTG=XR)+AB) @)

Considering a nonnegative punishment function J and
a regularization value 4 > 0.

p(BIA,@) « exp[-A {alfl*+ (1 — )IBL} (5)
This study offers a completely normalized and

explicated version of the prior, extending the Bayesian
connection to the ELR approach.
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For given values of o2 and a, the posterior mode
corresponds to the naive elastic net estimate with an
overall penalty of A, and this is expressed by the
formulation that states the penalty A's magnitude is now
202, This prior is a double-exponential distribution when
a = 0. When @ = 1, it exhibits the characteristics of a
normal distribution. As demonstrated by the integration of
Eg. (6), the normalization constant can be expressed in
closed form until the evaluation of the univariate standard
normal Cumulative Distribution Function (CDF). The
appropriate density function on a smaller scale than the

previous one.
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normal distributions, N~ and N*
functions that have been suitably
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In truncated
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modified.
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The tails of a normal distribution always contain the
univariate standard normal CDF and ¢.p; since the
location parameter for the positive component in Eq. (7)
is always negative. The following is an alternative
perspective on the previous: Let Z = {—1,1}” be the set
of all p-vectors that can have members +1 and let 0, c
RP be the orthant that corresponds to each vector z in Z.
pj = Ofor Z; = 1 and gj < Ofor Z; = —1if Z.Bj =
0. Consequently, the preceding Eq. (10) may be expressed
as follows:

p(BlA, a,0%) =
2_p¢( a—1 )_p
20 a/i
2

1
x ZN <ﬁ|az—az,%lp> 18 € 02).

ZEZ

(10)

To show that the prior is piecewise normal, an
"orthant normal" prior is constructed by describing each
piece over a separate orthant. The following results are
obtained when the prior is represented regarding A, and
Ay

2 - —h -
p(Blﬂ']JAZIO- ) = 2 pd)
204/,

(11)
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From now on, the (4,, A, ) formulation is used unless
otherwise noted. The posterior distribution is obtained by
multiplying the probability of the regression model by Eq.
(11) and using the Bayes theorem.

P(Bly, A1, 4z, 0%) = Z w N (B|u,, 0?R),

Z€EZ

1,,) 1(8 € 02).

(12)

A weighted sum of the normal distributions represents
a multivariate normal orthant integral following the
trimming of the 27 Orthant.

NEBm,s) = PEﬁ 'm s)) 1(8 € 02),
(13)
where P(z,m,s) =f N(t|m,s)dt,

Oz

Since every component is defined on a different
orthogon, the prior and posterior are both multivariate
piecewise normal. Its posterior distribution is its collection
of parameters.

R = (X"X+2,1,)"
and
PN ) Al
Wz = Pr —— Rz,
The ridge regression estimate in this instance is f; =
XTy, with a penalty of 1,. The weights for each orthostat
are the last components of the posterior.
-1 P(Z' nu‘Z’ O-ZR)

(14)

w, =

N(O|uz, 02R)
" zP(z .Uz 02R) (15)
wnere w =
N(O|uz, 02R)

2.3 Artificial Rabbits Optimization (ARO)

While the hares' natural persistence strategies inspired the
endurance algorithm, the ARO algorithm was motivated
by them. The model for this method was the bypass
exploration tactic used by hares to emerge from their
burrows in search of food. So that they are not startled
when they are approached, hares dig tunnels near their
hiding places. In cases where food is necessary or
sufficient for them, they gravitate toward it by nature. A
habit known as circumvention foraging occurs when
rabbits, when their energy levels are high enough often
look for food outside of their burrows. But, in times of low
energy, they frequently merely plunge into nearby
burrows to find cover [24].

e Vitality Decrease (Switch

Exploitation and Exploration)

Depending on their energy level, hares may decide to
purposefully conceal or postpone foraging. An energy
factor A(t), which mimics the hare's decision-making
process, is computed using Eqg. (16). The hare chooses not
to graze if A(t) > 1. Otherwise, if A(t) equals or is less
than 1, random concealment is used.

between
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t 1

Alt) =4 (1 T) In . (16)

In this case, r is a number between 0 and 1 that is
chosen at random.

e Circumvent Foraging (Exploration)

According to Eq (16), hares hunt for food at random
and distant from their burrows based on the positions of
their friends to defend themselves against potential
predators: There are several variables in the formula. x;(t)
represents the ith hare's location at time t, whereas

S_[(t + 1). Represents the candidate's position at time t +
1. T is the maximum number of cycles, and L is the hare's
speed of movement. The variable n stands for the hare
population size, and d signifies the count of variables
requiring optimization in the problem. Furthermore, 1y,
and r; represent the three random values in the interval
(0,1) and n, has a standard normal distribution. R is the
operating function that mimics the features of a hare
running, while c is the mapping vector.

e Unpredictable Concealment (Exploitation)

Using Eg. (17), each rabbit burrow produces a
collection of d lairs. To find refuge and evade any
predators, the rabbit randomly selects various hiding
places:

b, () =% () +HxgxX(t),i

17
=1,..,nandj=1,..,d n
T—t+1
H= B — X Ty (18)
lifk =j
gk = { 0 else F k=14 (19)
St+D=x%x0+U
— 20
x (r4 X by 1 () — z(t))i =1,..,n (20)
lifk=|rs xd
gr(l) = { 0 ellsz | k=1...4d (21)
b, () = X (0) + H x gr x %(1),
. (22)
i=1,..,n
XMOf(x ) <5+ 1
= SOEO) S+ 0)
s;(t+ DF(xD) > f(5(t+ 1)) (23)
k=1,..,d

According to Eq. (22), where H is the hiding factor,
jth lair for the ith rabbit and r, and r5 are arbitrary values
in the interval (0,1), the arbitrarily selected lair that the ith

rabbit would take refuge in is b, (t).

2.4 Performance evaluators

To evaluate the predictive performance of the proposed

models for CO: emissions and energy consumption in

HPC manufacturing, the following metrics were
employed:

e Root Mean Square Error (RMSE): Quantifies

the square root of the average of squared

differences between predicted and observed
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values. RMSE penalizes large errors more than
small ones, which is crucial in industrial
applications where severe misestimation could
lead to significant overuse of materials or excess
emissions.

e Mean Absolute Error (MAE): Measures the
average magnitude of errors in predictions
without considering their direction. MAE is easy
to interpret in physical units (e.g., MJ/m3 or
kg/m3), which makes it particularly valuable for
production engineers.

e Mean Absolute Percentage Error (MAPE):
Indicates the average relative error as a
percentage. MAPE is helpful for understanding
how large the prediction error is compared to
actual values, which supports decision-making
for mix design optimization.

e Nash-Sutcliffe Efficiency (NSE): Compares the
predictive power of a model to the mean of
observed values. Values close to 1 indicate
excellent predictive accuracy. An NSE > 0.9 is
generally considered highly acceptable for
environmental and materials modeling.

e Coefficient of Determination (R?): Represents
the proportion of variance explained by the
model. An R2 > 0.95 was set as a practical
benchmark for high accuracy in this study, based

on prior literature in concrete property
prediction.
2
R ra(bi —b)(d; — d) -
- D - 2]
1 n
RMSE = |- (d; = by)? (25)
i=1
1 )
MSE= > (Pi=T) (26)
WAPE = max | /2=l
= max by (27)
N . — b)?

L1(bi — b)?

In the context of predicting CO, emissions and energy
consumption in HPC manufacturing, b; in this study
stands for the expected values for each measurement and
p; for the observed readings for each sample. The actual
measured values for each sample are represented by T;,
whereas the word b indicates the mean of the anticipated
values across all samples. Furthermore, (T) denotes the
mean of all measured values in the sample set, whereas m
represents the average of the observed values. These
symbols are crucial for computing and assessing the
precision of the models created to forecast CO, emissions
and energy usage during the manufacturing of HPC.
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2.5 Rationale for model selection

KNN and ENR were selected for their complementary
strengths. KNN is a non-parametric algorithm that
captures non-linear relationships, while ENR is a linear
model that can handle multicollinearity through
regularization. The use of both allows the assessment of
whether linear or non-linear models are more suitable for
the given problem. ARO was integrated to enhance the
exploration of hyperparameter space, especially for fine-
tuning the models beyond traditional grid or random
search methods.

Additionally, Recursive Feature Elimination (RFE) was
incorporated to eliminate irrelevant or redundant features,
reducing dimensionality and computational overhead
while improving generalization.

3 Data description

The data from Kaggle makes a deep simulation of a
concrete mixture with varying features that influence the
environmental consequences
(www.kaggle.com/datasets/taruneshburman/energy-
consumption-prediction). This creates more opportunities
for exploration in studies seeking to forecast concrete
compressive strength with the influence of sustainability
as an important factor. Feature descriptions are attached
below:

Cement [kg/m3]: Amount of cement utilized in the
mixture. This accounts for so much in concrete strength
but leads to high embodied CO: emissions due to the very
energy-intensive production process.

Water [kg/m3]: The water used to hydrate it. While
an optimum water-to-cement ratio yields a durable
concrete mixture, excess water reduces strength and,
therefore, impairs sustainability.

Superplasticizer (kg/m3): Itis a chemical additive to
the concrete mixture, enhancing workability without
adding water. It improves performance but does not
contribute much to environmental sustainability.

Coarse Aggregate [kg/m3]: Is grit or any other
similar material in the mixture; this variable influences the
concrete strength and ecological impact due to its
consumption of raw materials.

Fine Aggregate (kg/m?): The weight of sand or other
similar materials that would affect the structural integrity
and sustainability of the mix.

Age (days): Time taken for curing concrete in days.
Early-age strength is an essential factor in the construction
schedule of concrete, as strength increases with age.

Compressive Strength (MPa): The target variable is
the axial load-carrying capacity of the concrete. Measured
in MPa, it is predicted based on input features.

Embodied €0, (kg): Lists the amount of CO, a
mixture produced through its making and material usage,
showing the carbon footprint.

Energy Consumption: Energy consumption means
the total sum of all energy required to produce concrete
mixture ingredients in megajoules. It is about features of
EE related to the mix.
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Resource Consumption (kg): This gives the sum of
the mass of all the ingredients consumed in kg for one
cubic meter of concrete production kind of resource
intensity indicator for the mix.

Table 1 shows the descriptive statistics for all
variables included in the dataset: maximum and minimum
values, means, and the value of the standard deviation. The
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correlation between the input and output data is shown in
Fig. 2 along with the matching correlation plot. Embodied
€0, and cement, for instance, shows a substantial
connection in the figure, suggesting a considerable link
between the two variables.

Table 1: The statistical properties of dataset variables

Category Variables il/}:fators Min Avg St. Dev.
Input Cement 499.9 201.4 347.1 87.6
Input Water 220.0 150.2 185.5 20.5
Input Superplasticizer 29.9 0 15.1 8.7
Input Coarse Aggregate 1099.9 800.2 947.1 85.9
Input Fine Aggregate 899.3 600 748.2 86
Input Age 364 1 178.7 105.5
Input Compressive Strength | 615.2 87.8 226.9 109.1
Input Resource Consumption | 2652.76 1857.35 2242 .98 150.27
Output Energy Consumption 2849.19 1009.03 1919.69 436.161
Output Embodied CO, 507.878 198.304 350.711 82.7324

1

Cement 0.58 0.93 0.99
0.8
Water [(.029
0.6
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0.2
FineAggregate |0.035 0.033 0.006-0.044 0.56
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Figure 2: The correlation plot for input and output
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3.1 Feature selection analysis for €O,
emissions and energy consumption in
HPC manufacturing: RFE process and
key influences

The given analysis in Fig. 3 discusses the FS results for
emissions and energy consumption in HPC
manufacturing. This plot illustrates the RFE process,
ranking features by their importance to model
performance. The ranking score is displayed on the
vertical axis, while the quantity of considered features is
shown on the horizontal axis. The highest score,
approximately 0.9679, reflects strong model performance
with a specific feature subset. Beyond a certain point,
additional features contribute minimally, suggesting that
the most relevant information is captured within the top-
ranked features. The ranking is topped by cement with
rank 1, which signifies that cement has the highest impact
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on both CO, emissions, and energy consumption.
Superplasticizer also holds the top rank, showing how
critical it is in performance enhancement and resource use.
Compressive Strength follows with a rank of 2, indicating
it has a high influence. Water ranks third, which gives it
considerable importance but less than cement and
superplasticizers. Medium influences are given to Coarse
Aggregate ranked 4 and Resource Consumption ranked 5,
while low influences are accorded to Age and Fine
Aggregate ranked 6 and 7, respectively, in this context.
The quality of the cement, superplasticizer, and mainly,
how green it can be is going to be the priority to reduce
the amount of CO, emitted. This can be further refined by
the optimization of water, compressive strength, and
aggregate for performance versus greening balance. Other
additional factors concerning resource consumption could
also be considered; interaction between several features
might also be modeled for better understanding in future
work.

1.00
0954~ 1 09679 09677 09673 09669 09668 09666
11.
T /
/
0.904--e- /
_ /
/' inputs rank
e J' A 1 cement 1
0.85 / B 1] 3 water 3
] /' C 1 317 superplasticizer 1
. D 1 3172 coarse_aggregate 4
- / E 1 3712 4 fine_aggregate 7
0.80 0.8097 RS EARARRE = 5
- X EE G 1 317124 /8|6 compressive_strength 2
0.7859 H 1 317|124 8|6 5 | resource consumption 5
0.75-— T T T T T T T
A B C D E F G H
Figure 3: Feature Importance for CO, Emissions and Energy Consumption Using RFE
The raw data underwent several preprocessing steps to  manufacturing are shown in this section. Model

ensure quality and compatibility with ML models:
Missing Values: Samples with missing target
values were discarded. Missing feature values
(<5%) were imputed using mean imputation.
Normalization: All features were normalized
using min-max scaling to the range [0, 1] to avoid
dominance of features with larger magnitudes.
Outlier Detection: Z-score analysis was used to
identify extreme outliers, which were reviewed
manually and retained only if physically
plausible.

Data Splitting: The dataset was split into 70%
training and 30% testing sets using stratified
random sampling to preserve target distribution
balance.

4 Results and discussion

The outcomes of utilizing ML regression models to
forecast CO, emissions and energy usage in HPC

performance indicators like RMSE, R?, MSE, WAPE, and
NSE are displayed in the figures and tables. These metrics
demonstrate how well the models anticipate the intended
results.

e Analysis

Fig. 4 compares the performance of two optimization
models, namely ENAR and KNAR, in predicting
embodied CO, emissions, and energy consumption in
HPC manufacturing. The RMSE value across 200
iterations is used to assess the convergence trends. The
result of the embodied CO, emissions for the ENAR
model depicts a gradual convergence in terms of reducing
the RMSE value to an ending value of 12.588 after
roughly 150 iterations. It gives a good, moderate accuracy
for the prediction. For the KNAR model, a final lower
value of the RMSE was obtained at 7.952, which shows
fast and consistent convergence; hence, this proves that
the KNAR model is more efficient and more precise in
modeling the CO, emissions. On the other hand, for
energy consumption, ENAR demonstrates a very similar
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convergence pattern for an RMSE value flattened to
69.706. It performs medium in developing its accuracy
across subsequent iterations. Within this set of models, in
turn, comes the performance realized by KNAR, yielding
ultimately a better endpoint RMSE result of 83.815.
Slower convergence against higher error is indicative of
the resulting lower reliability in terms of the point
accuracy of the forecasts pertinent to energy consumption.
On the whole, KNAR performed better in predicting
35
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embodied €O, emissions than ENAR, while ENAR
outperformed in energy consumption predictions owing to
its lower RMSE values. These results further indicate that
although KNAR is more robust for modeling CO,
emissions, ENAR may be more suitable for the
optimization of energy consumption in the manufacture of
HPC.
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Figure 4: Scatter plot for the convergence Curve of the hybrid models

Energy consumption and embodied CO, analysis by
Tables 2 and 3 underlines technical performance for the
hybrid models of KNN, KNAR, EN, and ENAR through
different metrics: the RMSE, R?, MSE, WAPE, and NSE.

For energy consumption (Table 2): KNN achieves an
R? value of 0.948 during all phases and an RMSE of
103,498. KNAR shows a notable improvement with an R?
of 0.968 and an RMSE of 82.629. EN further improves
upon this with an R? of 0.973 and an RMSE of 71,490.
ENAR outperforms all models with the greatest R? of
0.986 and the lowest RMSE of 52.626, indicating superior
performance in energy consumption prediction.

For embodied CO: (Table 3): KNN performs
reasonably well with an R? of 0.977 and an RMSE of
12.588. KNAR excels in an R? of 0.992 and an RMSE of
7.573, showing significant improvement. EN achieves an
R?0f 0.961 and an RMSE of 16.348, while ENAR follows
with an R? of 0.975 and an RMSE of 13.083. KNAR
outperforms all models in predicting embodied CO,. In
Conclusion, ENAR consistently delivers the best
performance for energy consumption prediction, while
KNAR is the most accurate model for predicting
embodied CO,, providing the best balance of R? and error
(RMSE) in both cases.
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Table 2: The results of hybrid models for the EN and KNN (Energy Consumption)

Index values
Model Phase Train Validation Test All
RMSE 104.996 99.290 95.218 103.498
R? 0.947 0.958 0.949 0.948
KNN MSE 11024.228 9858.529 9066.412 10711.876
WAPE 0.044 0.042 0.041 0.044
NSE 0.942 0.952 0.946 0.944
RMSE 83.815 79.345 76.026 82.629
R? 0.967 0.974 0.968 0.968
KNAR MSE 7025.029 6295.656 5779911 6827.580
WAPE 0.035 0.034 0.033 0.035
NSE 0.963 0.969 0.966 0.964
RMSE 75.491 56.511 48.207 71.490
R? 0.970 0.986 0.987 0.973
EN MSE 5698.893 3193.454 2323.951 5110.855
WAPE 0.030 0.024 0.020 0.028
NSE 0.970 0.984 0.986 0.973
RMSE 55.364 40.752 38.896 52.626
R? 0.984 0.993 0.991 0.986
ENAR MSE 3065.210 1660.707 1512.922 2769.531
WAPE 0.022 0.018 0.017 0.021
NSE 0.984 0.992 0.991 0.985
Table 3: The outcomes of hybrid models for the EN and KNN (Embodied CO2)
Index values
Model Phase Train Validation Test All
RMSE 13.230 9.228 9.956 12.588
R? 0.975 0.988 0.984 0.977
KNN MSE 175.028 85.158 99.119 158.450
WAPE 0.030 0.021 0.023 0.029
NSE 0.975 0.988 0.984 0.977
RMSE 7.952 5.607 6.012 7.573
R? 0.991 0.996 0.994 0.992
KNAR MSE 63.237 31.439 36.148 57.348
WAPE 0.018 0.013 0.014 0.017
NSE 0.991 0.996 0.994 0.992
RMSE 15.951 18.338 17.342 16.348
R? 0.963 0.953 0.952 0.961
EN MSE 254.433 336.276 300.753 267.249
WAPE 0.038 0.046 0.044 0.040
NSE 0.963 0.952 0.950 0.961
RMSE 12.589 15.124 14.665 13.083
R? 0.977 0.968 0.965 0.975
ENAR MSE 158.471 228.733 215.051 171.155
WAPE 0.030 0.038 0.037 0.032
NSE 0.977 0.968 0.965 0.975

Fig. 5 provides comparisons in train versus test and
validation data related to energy use and embodied CO,,
having as the line at the center the perfect prediction, while
two dotted lines reflect + 10% margin, showing the
boundaries for the prediction errors. For energy
consumption, KNN performed well in moderate clustering
around the central line, though it generally featured
substantial scatter, especially in the validation and test
datasets, with higher prediction errors for extreme values.

Even though similar results were obtained with KNN for
the embodied CO, due to its lower RMSE, the wider
scatter limits its accuracy for a proper prediction of
consumption. The results show that KNAR offers
improved clustering, with reduced scatter and smaller
error margins, reflecting a higher robustness across
datasets. Furthermore, it consistently remains nearer to the
centerline, resulting in enhanced predictive capabilities for
both energy usage and embedded CO,. EN produces
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tighter clustering than KNN, especially for lower and
moderate energy consumption values, while it lacks the
robustness of KNAR. The ENAR produces the best
clustering with the least scatter and the highest accuracy
in prediction on all datasets. Stability and precision in the
outcomes, with respect to energy consumption and
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embodied CO,, are superior in the current model when
compared with other models. Overall, KNAR and ENAR
show the highest reliability and accuracy, hence the best
to use in assessing environmental impacts in HPC
manufacturing.
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Figure 5: The scatter and line symbol plot for developed hybrid models

Fig. 6 is a violation plot that compares the four ML
model errors according to KNN, KNAR, EN, and ENAR
across Train Validation and Test in a way that densities
may be visualized at different error values.

For Embodied CO,: KNN is highly variable, with
larger error margins, especially when it comes to
validation and test datasets, a feature that ascribes to the
low reliability of this method. The results indicate that the
error distributions for all datasets are tighter, and better
stability is displayed, especially at the validation and
testing phases by KNAR. EN decreases error variance
further than KNN, achieving higher accuracy and stability.
Yet, it has a slightly weaker robustness performance than
KNAR. ENAR achieves the tightest error distributions

with the highest accuracy and robustness on all the
datasets.

For Energy Consumption: KNN has a high variability
in error, especially in validation and testing datasets,
which means it has a poor generalization capability.
KNAR has reduced variability, particularly tighter error
clustering in the test dataset, which represents an increased
reliability in predictive capabilities. EN has tighter error
distributions than KNN, especially for smaller values, but
is slightly worse than KNAR. ENAR performs the best
with the lowest error margins and is consistent on all
datasets. Conclusion: ENAR is the most accurate in
energy consumption prediction, while KNAR is the best
in embodied CO, prediction.
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Figure 6: Comparing the errors of the developed models

The Taylor diagram in Fig. 7 provides a way to
evaluate model performance against a reference dataset,
combining the correlation coefficient, r, and standard
deviation, g, in one diagram. It can be applied to evaluate
the accuracy of prediction in HPC manufacturing. In HPC
manufacturing, this figure works very well for evaluating
forecast accuracy. KNAR performs best in terms of
embodied CO, since it is closest to the diagram's reference
point, indicating a strong correlation and low RMSE. On

the other hand, ENAR performs better than ENAR,
whereas K-NN and KNAR, which are less accurate,
perform worse. Additionally, ENAR outperforms all
competing models in energy consumption predictions,
obtaining the greatest correlation and lowest RMSE.
While EN scores lowest, showing the largest RMSE and
the shortest R? value, KNN and KNAR perform
moderately. While KNAR performs better in estimating
embodied C0O,, ENAR is shown to be the most accurate
model overall for energy consumption forecasts.
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4.1 Practical use of the model in real-life

building and planning
The proposed predictive framework provides a data-
driven decision-support tool for real-world applications in
concrete production and sustainable construction
planning. By accurately forecasting CO: emissions and
energy consumption based on HPC mix compositions, the
model enables:

1. Environmentally Conscious Mix Design:
Engineers can identify and minimize high-
emission ingredients (e.g., excess cement or
superplasticizer) during the early design stage,
aligning material selection with carbon footprint
targets.

2. Energy-Efficient Manufacturing Planning: By
predicting energy demands of specific mix
designs, batch plants can optimize their
production schedules, reduce energy peaks, and
lower operational costs.

3. Compliance with Green Building Standards: The
model helps project teams evaluate whether
proposed concrete mixes meet environmental
criteria defined by certifications such as LEED,
BREEAM, or China’s Green Building
Evaluation Label.

4. Lifecycle Sustainability Assessment: When
integrated into Building Information Modeling
(BIM) or digital twins, the model contributes to
estimating the embedded carbon and energy
profiles of structures early in the planning
process, aiding urban planners and policymakers
in meeting climate mandates.

Ultimately, the model acts as a predictive sustainability
lens through which building materials can be assessed,
optimized, and selected, without trial-and-error or over-
reliance on empirical tables.
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5 Conclusion

Most of the manufacturing processes for HPC systems are
critical in terms of CO, emission and energy consumption,
which  should be minimized to support the
environmentally responsive construction industry. Correct
prediction of such factors is highly important for the
optimization process of production and in maintaining
complete harmony with sustainability considerations and
the EE of the process. This work is focused on
investigating the most influential ML models and the most
influential features that have a great effect on the accuracy
of the prediction in CO, emissions and energy
consumption during the manufacturing process of HPC.
ML techniques, including KNN, ENR, and ARO, were
used to create predictive models. These models were
further refined with optimizers to enhance prediction
accuracy and identify the best solutions. Additionally,
RFE was employed for FS, ensuring that only the most
relevant variables were used to make precise predictions.
The best performance for the estimation of energy
consumption was given by the ENAR model, yielding an
R? value of 0.986 and an RMSE of 52.626. The KNAR
model performed best in estimating CO, emission, giving
an R? value of 0.992 and an RMSE of 7.573. Therefore,
the relevant features that most influenced the performance
of the models were cement and superplasticizer. These
were important in enhancing the predictive accuracy of
energy consumption and €O, emissions for the models.
The results have shown how important it is to consider the
optimization of models along with input features in
enhancing sustainability within HPC manufacturing.
There are several drawbacks to utilizing ML to anticipate
€O, emissions and HPC energy use. These include data
quality and availability, as erroneous or inadequate
datasets might impair model accuracy. Furthermore, it is
challenging to generalize forecasts due to the intricacy of
HPC systems and their diverse operating environments.
Complex interactions between variables may be difficult
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for ML models to capture, which might result in
overfitting or underfitting. Lastly, scalability and real-time
use in dynamic industrial contexts are limited by the
computational cost and time needed to train big models on
complicated datasets.
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