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In this study, an integrated machine learning framework is proposed to accurately predict and minimize 

CO₂ emissions and energy consumption in the manufacturing of High-Performance Concrete (HPC). The 

methodology combines K-Nearest Neighbor (KNN) and Elastic Net Regression (ENR) models with the 

Artificial Rabbits Optimization (ARO) algorithm for hyperparameter tuning, and employs Recursive 

Feature Elimination (RFE) to isolate the most influential input variables. A dataset comprising key HPC 

mix components was curated from experimental sources and subjected to rigorous preprocessing. Among 

the tested models, the hybrid ENR + ARO (ENAR) model achieved the best performance for energy 

prediction with an R² of 0.986 and RMSE of 52.63 MJ/m³, while the KNN + ARO (KNAR) model yielded 

the highest accuracy for CO₂ emission prediction with an R² of 0.992 and RMSE of 7.57 kg/m³. The 

application of RFE improved model performance by 12.4% in RMSE reduction for energy prediction and 

9.6% for CO₂ estimation, by eliminating redundant features. Cement and superplasticizer content were 

identified as the most influential predictors. These results provide a reliable and interpretable framework 

for enhancing the sustainability of concrete production through data-driven mix optimization. 

Povzetek: Študija združi KNN, Elastic Net in metahevristiko Artificial Rabbits Optimization z RFE za 

napovedovanje ter zmanjšanje CO₂ emisij in energije v visokozmogljivem betonu. Najboljša modela 

(ENAR za energijo, KNAR za CO₂) izpostavita cement in superplastifikator kot ključna dejavnika. 

 

1 Introduction 
HPC constitutes a specialized category of concrete 

characterized by superior performance relative to 

conventional concrete, as evidenced by selected properties 

such as durability, service life, and low maintenance 

requirements [1]. HPC is made up of Portland cement, 

water, coarse aggregates, and various chemical and 

mineral admixtures [2]. However, HPC manufacturing 

utilizes significant amounts of energy and adds a lot to 

𝐶𝑂2 emissions, especially from the manufacture of 

cement, which is responsible for around 8% of 𝐶𝑂2 

emissions worldwide [3]. Recently, the environmental 

impact of HPC has become a focal point, especially when 

large-scale construction projects increase demand for this 

material [4], [5]. Heavy machinery employed in 

performing tasks such as structural simulations, material 

testing, and optimization is widely used throughout the 

design and process stages of these projects [6]. Such 

machines need, by necessity, high-powered systems that 

consume considerable amounts of energy and produce  

 

 

considerable 𝐶𝑂2 emissions both during their operation 

and through the lifecycle of manufacture and use [7], [8]. 

Among other major concerns in the sustainability of 

construction projects is energy consumption, which is 

important both ecologically and economically [9]. In 

general, large computer systems used in high-performance 

applications for BIM, 3D modeling, and complex 

simulations consume a huge amount of energy [10]. DVFS 

and power capping can be two ways of managing power 

that, once optimized, could reduce energy usage without 

necessarily affecting computational performance. These 

methods allow energy resources to be used more 

efficiently while sustaining the high processing power 

required for modern construction tasks [11]. The 

construction industry has to be strengthened with green 

computing and Energy Efficiency (EE) for it to be 

sustainable. Only then would modern construction 

projects result in a minimum environmental impact 

coupled with economic viability [12]. 
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1.1 Related works 

Properties and mixture design of Ultra-High-Performance 

Concrete (UHPC) have a direct influence on the forecast 

of CO₂ emissions and energy consumption for 

manufacturing HPC. Normally, binder content between 

800-1000 kg/m³ has the highest impact on the carbon 

footprint of UHPC. In UHPC, cement hydration is not 

fully achieved, with only 30–40% of the cement reacting 

because of a reduced water-to-binder ratio. The remaining 

unreacted cement acts mainly as an inert filler [13]. The 

employment of SCMs comprising FA and GGBS results 

not only in a reduction in cement consumption but also in 

lowered carbon emissions [14], [15]. That is important 

because, by replacing the conventional cement with 

SCMs, during the manufacturing process of UHPC, 𝐶𝑂2 

emissions are greatly reduced, thus having a direct 

influence on the carbon footprint in general. Apart from 

this, binder content optimization plays a vital role in 

determining desired mechanical properties; hence, energy 

consumption is of concern. Such a dense microstructure 

and high compressive strength through SCM 

incorporation and superplasticizers increase energy 

requirements, mainly during the curing phase. For the 

curing of composites, additional methods like heat or 

autoclave curing imply greater energy use [16], [17]. On 

the other hand, the addition of SCMs like 20% FA or 3.2% 

𝑛𝑎𝑛𝑜 − 𝐶𝑎𝐶𝐶𝑂3 has been reported not only to improve 

mechanical properties but also to have a potential 

influence on the EE of the manufacturing process by 

possibly reducing the curing energy required for optimum 

performance [18], [19]. 

1.2 Objective 

This paper, therefore, aims to develop a new framework 

for the estimation of feature importance and the 

optimization of model performance with the multi-

objective approach of KNN, ENR, and ARO. This paper 

designs a new feature importance estimation framework 

and optimizes model performance for a multi-objective 

approach that makes use of a combination of KNN, ENR, 

and ARO techniques. The framework, therefore, performs 

FS and enhances predictive accuracy by making good use 

of the complementary strengths of the combined models 

on a wide range of datasets for the assurance of robustness 

and completeness when performing ML optimizations. 

First, RFE is applied as an iterative feature selector that 

keeps only a subset of the most informative features. RFE 

eliminates the least important features according to their 

ranking regarding model performance and iteratively 

updates the feature importance. This recursive procedure 

retains only the most relevant features, hence reducing the 

dimensionality, avoiding overfitting, and improving the 

efficiency of the model. From the optimization 

perspective, the ARO novel metaheuristic algorithm 

inspired by nature has been introduced to optimize 

hyperparameters of model performance. Indeed, this new 

ARO metaheuristic mimics rabbit foraging behavior in its 

process of performing an effective search for near-optimal 

solutions towards high-dimensional, possibly complicated 

spaces. Since it optimizes models with numerous 

interactions among so many variables in the interaction, 

ARO is certainly the right addition to improve 

optimization model selection methodologies. The KNNs 

together with ENR and ARO algorithms systematically 

model refinement and ensure some combinations of opted 

features and parameters by a model optimized towards 

superior predictive result outcomes. In this respect, this 

study presents a hybrid modeling approach, combining the 

strengths of KNN, ENR, and ARO, thus building 

increased model interpretability, performance, and 

robustness. 

2 Methodology 

2.1 K-Nearest Neighbor (KNN) 

The simplicity, effectiveness, and application of the KNN 

algorithm are well known. It is related to both RF and 

ANN in that it can be used in both regression and 

classification applications. For everyday use, it was fitting 

since its general concepts were obvious and simple. Both 

regression and classification problems can train non-linear 

decision boundaries. This makes it further flexible when 

these limits are set, and thereby allows the value of K to 

change. Compared to other algorithms, K-NN does not 

have to have a separate training phase. In simple words, it 

uses one hyperparameter, K, which also makes modifying 

the rest rather easy. The main concept behind KNN 

involves locating a set of K samples in the calibration data 

that are similar to the unknown samples, typically using a 

distance metric. For this purpose, matching groups of 

samples must be determined. KNN compares the result 

with a group of K samples and computes the mean value 

of the response variables to find the classes of the 

unknown samples [20]. Hence, the effectiveness of the 

KNN algorithm depends heavily on the choice of K [21]. 

The three distance functions used in regression projects 

for calculating the distances between the neighborhood 

data points are given by Eqs. (1-3). 

𝐹(𝑒) = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑓

𝑖=0

 (1) 

𝐹(𝑚𝑎) =∑|𝑥𝑖 − 𝑦𝑖|

𝑓

𝑖=0

 (2) 

𝐹(𝑚𝑖) = (∑(|𝑥𝑖 − 𝑦𝑖|)
𝑞

𝑓

𝑖=0

)

1
𝑞

 (3) 

The Manhattan distance function is denoted by 

𝐹(𝑚𝑎), the Minkowski distance function by 𝐹(𝑚𝑖), and 

the Euclidean distance function by 𝐹(𝑒). The order 

parameter q is used to calculate the distances between the 

data points x and y, which are represented by the words 𝑥𝑖 
and 𝑦𝑖 , respectively, for their 𝑖𝑡ℎ dimensions. The 

flowchart for the KNN model is demonstrated in Fig. 1. 
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Figure 1: The flowchart of the KNN model 

2.2 Elastic Net Regression (ENR) 

ENR is a high-performance linear regression technique 

that combines the best features of L1 (Lasso) and L2 

(Ridge) regularization techniques. Its dual regularization 

technique enhances the model's interpretability and 

prognostic performance, reduces multicollinearity and 

overfitting in high-dimensional datasets, and encourages 

sparsity and stability in coefficient estimates [22], [23]. 

• Direct Communication 

𝑃(𝑦|𝛽, 𝜎2) = 𝑁(𝑦|𝑋𝛽, 𝜎2𝐼𝑛) this is the probability of 

the article, where 𝛽 is a p-vector that contains the 

regression coefficients. Where predictor variables are 

included in the 𝑛 ×  𝑝 dimensional matrix 𝑋. Given that 

the vector 𝑦 and the columns of 𝑋 are considered to be 

demeaned, the model is specified without an intercept. In 

this approach, the linear regression parameters are 

typically estimated as follows: 

𝛽̂ =
𝑎𝑟𝑔𝑚𝑖𝑛

𝛽
(𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) + 𝜆𝐽(𝛽) (4) 

Considering a nonnegative punishment function 𝐽 and 

a regularization value 𝜆 >  0. 

𝑝(𝛽|𝜆, 𝛼)  ∝  𝑒𝑥𝑝[− 𝜆  {𝛼|𝛽|2 + (1 −  𝛼)|𝛽|1}] (5) 

This study offers a completely normalized and 

explicated version of the prior, extending the Bayesian 

connection to the ELR approach. 

𝑝(𝛽|𝛼, 𝜆, 𝜎2)  ∝  𝑒𝑥𝑝 [− 
𝜆

2𝜎2
  {𝛼|𝛽|2

+ (1 −  𝛼)|𝛽|1}] 
(6) 

For given values of 𝜎2 and 𝛼, the posterior mode 

corresponds to the naïve elastic net estimate with an 

overall penalty of 𝜆, and this is expressed by the 

formulation that states the penalty 𝜆's magnitude is now 

2𝜎2. This prior is a double-exponential distribution when 

𝛼 =  0. When 𝛼 ≈  1, it exhibits the characteristics of a 

normal distribution. As demonstrated by the integration of 

Eq. (6), the normalization constant can be expressed in 

closed form until the evaluation of the univariate standard 

normal Cumulative Distribution Function (CDF). The 

appropriate density function on a smaller scale than the 

previous one. 

𝑝(𝛽|𝜆, 𝛼, 𝜎2) =∏{(0.5). 𝑁− (𝛽𝑗|
1 −  𝛼

2𝛼
,
𝜎2

𝜆𝛼
)

𝑝

𝑗=1

+ (0.5). 𝑁+ (𝛽𝑗|

−
1 −  𝛼

2𝛼
,
𝜎2

𝜆𝛼
)} , 

(7) 

In truncated normal distributions, 𝑁− and 𝑁+ 

signifies density functions that have been suitably 

modified. 

𝑁+(𝑡|𝑚, 𝑠2) ≡  
𝑁(𝑡|𝑚, 𝑠2)

𝜙(𝑚 𝑠⁄ )
 1(𝑡 

≥  0)   𝐴𝑛𝑑    𝑁−(𝑡|𝑚, 𝑠2)  

≡  
𝑁(𝑡|𝑚, 𝑠2)

𝜙(−𝑚 𝑠⁄ )
1(𝑡 <  0), 

(8) 

The tails of a normal distribution always contain the 

univariate standard normal CDF and 𝜙. 𝛽𝑗 since the 

location parameter for the positive component in Eq. (7) 

is always negative. The following is an alternative 

perspective on the previous: Let 𝑍 = {−1, 1}𝑝 be the set 

of all p-vectors that can have members ±1 and let 𝒪𝑧 ⊂
 ℝ𝑝 be the orthant that corresponds to each vector 𝑧 in 𝑍. 

𝛽𝑗 ≥  0for 𝒵𝑗  =  1 and 𝛽𝑗 <  0for 𝒵𝑗  =  −1 if 𝑍. 𝛽𝑗 ≥

 0. Consequently, the preceding Eq. (10) may be expressed 

as follows: 

𝑝(𝛽|𝜆, 𝛼, 𝜎2) = 

2−𝑝𝜙(
𝛼 −  1

2𝜎 √𝛼/𝜆
)

−𝑝

×∑𝑁(𝛽|
𝛼 − 1

2𝛼
𝑧,
𝜎2

𝜆𝛼
𝐼𝑝) 1(𝛽 ∈  𝑂𝑧).

𝑧∈𝒵

 

(10) 

To show that the prior is piecewise normal, an 

"orthant normal" prior is constructed by describing each 

piece over a separate orthant. The following results are 

obtained when the prior is represented regarding 𝜆1 and 

𝜆2. 

𝑝(𝛽|𝜆1, 𝜆2 , 𝜎
2)  =  2−𝑝𝜙 (

−𝜆1

2𝜎 √𝜆2 
)

−𝑝

 (11) 
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×∑𝑁(𝛽| −
𝜆1
2𝜆2 

𝑧,
𝜎2

𝜆2 
𝐼𝑝) 1(𝛽 ∈  𝑂𝑧).

𝑧∈𝒵

 

From now on, the (𝜆1, 𝜆2 ) formulation is used unless 

otherwise noted. The posterior distribution is obtained by 

multiplying the probability of the regression model by Eq. 

(11) and using the Bayes theorem. 

𝑝(𝛽|𝑦, 𝜆1, 𝜆2 , 𝜎
2) =∑𝜔𝑧𝑁

[𝑧]

𝑧∈𝒵

(𝛽|𝜇𝑧, 𝜎
2𝑅), 

(12) 

A weighted sum of the normal distributions represents 

a multivariate normal orthant integral following the 

trimming of the 2𝑃 Orthant. 

𝑁[𝑧](𝛽|𝑚, 𝑠)  ≡  
𝑁(𝛽|𝑚, 𝑠)

𝑃(𝑧,𝑚, 𝑠)
1(𝛽 ∈  𝑂𝑧),   

𝑤ℎ𝑒𝑟𝑒           𝑃(𝑧,𝑚, 𝑠)  = ∫ 𝑁(𝑡|𝑚, 𝑠)𝑑𝑡,
 

𝒪𝑧

 
(13) 

Since every component is defined on a different 

orthogon, the prior and posterior are both multivariate 

piecewise normal. Its posterior distribution is its collection 

of parameters. 

𝑅 =  (𝑋𝑇𝑋 + 𝜆2 𝐼𝑝)
−1
     

𝑎𝑛𝑑     

𝜇𝑧 = 𝛽̂𝑅 −
, 𝜆1
2
𝑅𝑧, 

(14) 

The ridge regression estimate in this instance is 𝛽̂𝑅 =
𝑅𝑋𝑇𝑦, with a penalty of 𝜆2. The weights for each orthostat 

are the last components of the posterior. 

𝜔𝑧 = 𝜔
−1
𝑃(𝑧. 𝜇𝑧, 𝜎

2𝑅)

𝑁(0|𝜇𝑧 , 𝜎
2𝑅)

,  

𝑤ℎ𝑒𝑟𝑒  𝜔 =∑
𝑃(𝑧, . 𝜇𝑧, 𝜎

2𝑅)

𝑁(0|𝜇𝑧, 𝜎
2𝑅)

.

 

𝑧∈𝑍

 

(15) 

2.3 Artificial Rabbits Optimization (ARO) 

While the hares' natural persistence strategies inspired the 

endurance algorithm, the ARO algorithm was motivated 

by them. The model for this method was the bypass 

exploration tactic used by hares to emerge from their 

burrows in search of food. So that they are not startled 

when they are approached, hares dig tunnels near their 

hiding places. In cases where food is necessary or 

sufficient for them, they gravitate toward it by nature. A 

habit known as circumvention foraging occurs when 

rabbits, when their energy levels are high enough often 

look for food outside of their burrows. But, in times of low 

energy, they frequently merely plunge into nearby 

burrows to find cover [24]. 

• Vitality Decrease (Switch between 

Exploitation and Exploration) 

Depending on their energy level, hares may decide to 

purposefully conceal or postpone foraging. An energy 

factor 𝐴(𝑡), which mimics the hare's decision-making 

process, is computed using Eq. (16). The hare chooses not 

to graze if 𝐴(𝑡)  >  1. Otherwise, if 𝐴(𝑡) equals or is less 

than 1, random concealment is used.  

A(t) = 4 (1 −
t

T
) ln

1

r
 (16) 

In this case, 𝑟 is a number between 0 and 1 that is 

chosen at random. 

• Circumvent Foraging (Exploration) 

According to Eq (16), hares hunt for food at random 

and distant from their burrows based on the positions of 

their friends to defend themselves against potential 

predators: There are several variables in the formula. 𝑥𝑖⃗⃗⃗  (𝑡) 
represents the 𝑖𝑡ℎ hare's location at time 𝑡, whereas 

𝑆𝑖⃗⃗⃗  (𝑡 + 1). Represents the candidate's position at time 𝑡 +
 1. T is the maximum number of cycles, and L is the hare's 

speed of movement. The variable 𝑛 stands for the hare 

population size, and 𝑑 signifies the count of variables 

requiring optimization in the problem. Furthermore, 𝑟1, 𝑟2 

and 𝑟3 represent the three random values in the interval 

(0,1) and 𝑛1 has a standard normal distribution. 𝑅 is the 

operating function that mimics the features of a hare 

running, while 𝑐 is the mapping vector. 

• Unpredictable Concealment (Exploitation) 

Using Eq. (17), each rabbit burrow produces a 

collection of d lairs. To find refuge and evade any 

predators, the rabbit randomly selects various hiding 

places: 

bi,j⃗⃗⃗⃗  ⃗(t)  = xi⃗⃗⃗  (t) + H × g × xi⃗⃗⃗  (t), i 

= 1,… , n and j = 1,… , d 
(17) 

H =  
T − t + 1

T
× r4 (18) 

g(k) = {
1 if k = j
0 else

    k = 1,… , d  (19) 

Si⃗⃗⃗  (t + 1) =  xj⃗⃗⃗  (t) + U 

× (r4 × bi,r⃗⃗ ⃗⃗  ⃗(t) − xi⃗⃗⃗  (t)) i = 1,… , n 
(20) 

gr(k) = {
1 if k = |r5 × d|

0 else
    k = 1,… , d  (21) 

bi,r⃗⃗ ⃗⃗  ⃗(t) =  xi⃗⃗⃗⃗ (t) + H × gr × xi⃗⃗⃗  (t),  

i = 1, … , n 
(22) 

xi⃗⃗⃗  (t + 1) =  {
xi⃗⃗⃗  (t)f(xi⃗⃗⃗  (t)) ≤ f(si⃗⃗ (t + 1))

si⃗⃗ (t + 1)f(xi⃗⃗⃗  (t)) > f(si⃗⃗ (t + 1))
 

k = 1,… , d 

(23) 

According to Eq. (22), where 𝐻 is the hiding factor, 

𝑗𝑡ℎ lair for the 𝑖𝑡ℎ rabbit and  𝑟4 and 𝑟5 are arbitrary values 

in the interval (0,1), the arbitrarily selected lair that the 𝑖𝑡ℎ 

rabbit would take refuge in is 𝑏𝑖,𝑟⃗⃗ ⃗⃗  ⃗(𝑡). 

2.4 Performance evaluators 

To evaluate the predictive performance of the proposed 

models for CO₂ emissions and energy consumption in 

HPC manufacturing, the following metrics were 

employed: 

• Root Mean Square Error (RMSE): Quantifies 

the square root of the average of squared 

differences between predicted and observed 
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values. RMSE penalizes large errors more than 

small ones, which is crucial in industrial 

applications where severe misestimation could 

lead to significant overuse of materials or excess 

emissions. 

• Mean Absolute Error (MAE): Measures the 

average magnitude of errors in predictions 

without considering their direction. MAE is easy 

to interpret in physical units (e.g., MJ/m³ or 

kg/m³), which makes it particularly valuable for 

production engineers. 

• Mean Absolute Percentage Error (MAPE): 

Indicates the average relative error as a 

percentage. MAPE is helpful for understanding 

how large the prediction error is compared to 

actual values, which supports decision-making 

for mix design optimization. 

• Nash–Sutcliffe Efficiency (NSE): Compares the 

predictive power of a model to the mean of 

observed values. Values close to 1 indicate 

excellent predictive accuracy. An NSE > 0.9 is 

generally considered highly acceptable for 

environmental and materials modeling. 

• Coefficient of Determination (R²): Represents 

the proportion of variance explained by the 

model. An R² > 0.95 was set as a practical 

benchmark for high accuracy in this study, based 

on prior literature in concrete property 

prediction. 

𝑅2 =

(

 
∑ (𝑏𝑖 − 𝑏̅)(𝑑𝑖 − 𝑑̅)
𝑛
𝑖=1

√[∑ (𝑏𝑖 − 𝑑̅)
2𝑛

𝑖=1 ][∑ (𝑑𝑖 − 𝑑)
2𝑛

𝑖=1 ]
)

 

2

 (24) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑑𝑖 − 𝑏𝑖)

2

𝑛

𝑖=1

 (25) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑃𝑖 − 𝑇𝑖)

2
𝑛

𝑖=1
 (26) 

𝑊𝐴𝑃𝐸 = max [
|𝑏𝑖 −𝑚𝑖|

𝑏𝑖
] (27) 

𝑁𝑆𝐸 = 1 −
∑ (𝑚𝑖 − 𝑏𝑖)

2𝑁
𝑖=1

∑ (𝑏𝑖 − 𝑏̅)
2𝑁

𝑖=1

 (28) 

In the context of predicting 𝐶𝑂2 emissions and energy 

consumption in HPC manufacturing, 𝑏𝑖 in this study 

stands for the expected values for each measurement and 

𝑝𝑖  for the observed readings for each sample. The actual 

measured values for each sample are represented by 𝑇𝑖 , 
whereas the word 𝑏̅ indicates the mean of the anticipated 

values across all samples. Furthermore, (𝑇̅) denotes the 

mean of all measured values in the sample set, whereas 𝑚̅ 

represents the average of the observed values. These 

symbols are crucial for computing and assessing the 

precision of the models created to forecast 𝐶𝑂2 emissions 

and energy usage during the manufacturing of HPC. 

2.5 Rationale for model selection 

KNN and ENR were selected for their complementary 

strengths. KNN is a non-parametric algorithm that 

captures non-linear relationships, while ENR is a linear 

model that can handle multicollinearity through 

regularization. The use of both allows the assessment of 

whether linear or non-linear models are more suitable for 

the given problem. ARO was integrated to enhance the 

exploration of hyperparameter space, especially for fine-

tuning the models beyond traditional grid or random 

search methods. 

Additionally, Recursive Feature Elimination (RFE) was 

incorporated to eliminate irrelevant or redundant features, 

reducing dimensionality and computational overhead 

while improving generalization. 

3 Data description 
The data from Kaggle makes a deep simulation of a 

concrete mixture with varying features that influence the 

environmental consequences 

(www.kaggle.com/datasets/taruneshburman/energy-

consumption-prediction). This creates more opportunities 

for exploration in studies seeking to forecast concrete 

compressive strength with the influence of sustainability 

as an important factor. Feature descriptions are attached 

below: 

Cement [kg/𝒎𝟑]: Amount of cement utilized in the 

mixture. This accounts for so much in concrete strength 

but leads to high embodied CO₂ emissions due to the very 

energy-intensive production process. 

Water [kg/𝒎𝟑]: The water used to hydrate it. While 

an optimum water-to-cement ratio yields a durable 

concrete mixture, excess water reduces strength and, 

therefore, impairs sustainability. 

Superplasticizer (kg/𝒎𝟑): It is a chemical additive to 

the concrete mixture, enhancing workability without 

adding water. It improves performance but does not 

contribute much to environmental sustainability. 

Coarse Aggregate [kg/𝒎𝟑]: Is grit or any other 

similar material in the mixture; this variable influences the 

concrete strength and ecological impact due to its 

consumption of raw materials. 

Fine Aggregate (kg/𝒎𝟑): The weight of sand or other 

similar materials that would affect the structural integrity 

and sustainability of the mix. 

Age (days): Time taken for curing concrete in days. 

Early-age strength is an essential factor in the construction 

schedule of concrete, as strength increases with age. 

Compressive Strength (MPa): The target variable is 

the axial load-carrying capacity of the concrete. Measured 

in MPa, it is predicted based on input features. 

Embodied 𝑪𝑶𝟐  )kg(: Lists the amount of 𝐶𝑂2 a 

mixture produced through its making and material usage, 

showing the carbon footprint. 

Energy Consumption: Energy consumption means 

the total sum of all energy required to produce concrete 

mixture ingredients in megajoules. It is about features of 

EE related to the mix. 
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Resource Consumption (kg): This gives the sum of 

the mass of all the ingredients consumed in kg for one 

cubic meter of concrete production kind of resource 

intensity indicator for the mix. 

Table 1 shows the descriptive statistics for all 

variables included in the dataset: maximum and minimum 

values, means, and the value of the standard deviation. The 

correlation between the input and output data is shown in 

Fig. 2 along with the matching correlation plot. Embodied 

𝐶𝑂2 and cement, for instance, shows a substantial 

connection in the figure, suggesting a considerable link 

between the two variables.

Table 1: The statistical properties of dataset variables 

Category Variables 
Indicators 

Max Min Avg St. Dev. 

Input Cement 499.9 201.4 347.1 87.6 

Input Water 220.0 150.2 185.5 20.5 

Input Superplasticizer 29.9 0 15.1 8.7 

Input Coarse Aggregate 1099.9 800.2 947.1 85.9 

Input Fine Aggregate 899.3 600 748.2 86 

Input Age 364 1 178.7 105.5 

Input Compressive Strength 615.2 87.8 226.9 109.1 

Input Resource Consumption 2652.76 1857.35 2242.98 150.27 

Output Energy Consumption 2849.19 1009.03 1919.69 436.161 

Output Embodied CO2 507.878 198.304 350.711 82.7324 

 

Figure 2: The correlation plot for input and output 
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3.1 Feature selection analysis for 𝑪𝑶𝟐 

emissions and energy consumption in 

HPC manufacturing: RFE process and 

key influences 

The given analysis in Fig. 3 discusses the FS results for 

emissions and energy consumption in HPC 

manufacturing. This plot illustrates the RFE process, 

ranking features by their importance to model 

performance. The ranking score is displayed on the 

vertical axis, while the quantity of considered features is 

shown on the horizontal axis. The highest score, 

approximately 0.9679, reflects strong model performance 

with a specific feature subset. Beyond a certain point, 

additional features contribute minimally, suggesting that 

the most relevant information is captured within the top-

ranked features. The ranking is topped by cement with 

rank 1, which signifies that cement has the highest impact 

on both 𝐶𝑂2 emissions, and energy consumption. 

Superplasticizer also holds the top rank, showing how 

critical it is in performance enhancement and resource use. 

Compressive Strength follows with a rank of 2, indicating 

it has a high influence. Water ranks third, which gives it 

considerable importance but less than cement and 

superplasticizers. Medium influences are given to Coarse 

Aggregate ranked 4 and Resource Consumption ranked 5, 

while low influences are accorded to Age and Fine 

Aggregate ranked 6 and 7, respectively, in this context. 

The quality of the cement, superplasticizer, and mainly, 

how green it can be is going to be the priority to reduce 

the amount of 𝐶𝑂2 emitted. This can be further refined by 

the optimization of water, compressive strength, and 

aggregate for performance versus greening balance. Other 

additional factors concerning resource consumption could 

also be considered; interaction between several features 

might also be modeled for better understanding in future 

work. 

 

Figure 3: Feature Importance for 𝐶𝑂2 Emissions and Energy Consumption Using RFE 

The raw data underwent several preprocessing steps to 

ensure quality and compatibility with ML models: 

• Missing Values: Samples with missing target 

values were discarded. Missing feature values 

(<5%) were imputed using mean imputation. 

• Normalization: All features were normalized 

using min-max scaling to the range [0, 1] to avoid 

dominance of features with larger magnitudes. 

• Outlier Detection: Z-score analysis was used to 

identify extreme outliers, which were reviewed 

manually and retained only if physically 

plausible. 

• Data Splitting: The dataset was split into 70% 

training and 30% testing sets using stratified 

random sampling to preserve target distribution 

balance. 

4 Results and discussion 
The outcomes of utilizing ML regression models to 

forecast 𝐶𝑂2 emissions and energy usage in HPC 

manufacturing are shown in this section. Model 

performance indicators like RMSE, 𝑅2, MSE, WAPE, and 

NSE are displayed in the figures and tables. These metrics 

demonstrate how well the models anticipate the intended 

results. 

• Analysis 

Fig. 4 compares the performance of two optimization 

models, namely ENAR and KNAR, in predicting 

embodied 𝐶𝑂2 emissions, and energy consumption in 

HPC manufacturing. The RMSE value across 200 

iterations is used to assess the convergence trends. The 

result of the embodied 𝐶𝑂2 emissions for the ENAR 

model depicts a gradual convergence in terms of reducing 

the RMSE value to an ending value of 12.588 after 

roughly 150 iterations. It gives a good, moderate accuracy 

for the prediction. For the KNAR model, a final lower 

value of the RMSE was obtained at 7.952, which shows 

fast and consistent convergence; hence, this proves that 

the KNAR model is more efficient and more precise in 

modeling the 𝐶𝑂2 emissions. On the other hand, for 

energy consumption, ENAR demonstrates a very similar 
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convergence pattern for an RMSE value flattened to 

69.706. It performs medium in developing its accuracy 

across subsequent iterations. Within this set of models, in 

turn, comes the performance realized by KNAR, yielding 

ultimately a better endpoint RMSE result of 83.815. 

Slower convergence against higher error is indicative of 

the resulting lower reliability in terms of the point 

accuracy of the forecasts pertinent to energy consumption. 

On the whole, KNAR performed better in predicting 

embodied 𝐶𝑂2 emissions than ENAR, while ENAR 

outperformed in energy consumption predictions owing to 

its lower RMSE values. These results further indicate that 

although KNAR is more robust for modeling 𝐶𝑂2 

emissions, ENAR may be more suitable for the 

optimization of energy consumption in the manufacture of 

HPC.

  

  

Figure 4: Scatter plot for the convergence Curve of the hybrid models 

Energy consumption and embodied 𝐶𝑂2 analysis by 

Tables 2 and 3 underlines technical performance for the 

hybrid models of KNN, KNAR, EN, and ENAR through 

different metrics: the RMSE, 𝑅2, MSE, WAPE, and NSE. 

For energy consumption (Table 2): KNN achieves an 

𝑅2 value of 0.948 during all phases and an RMSE of 

103,498. KNAR shows a notable improvement with an 𝑅2 

of 0.968 and an RMSE of 82.629. EN further improves 

upon this with an 𝑅2 of 0.973 and an RMSE of 71,490. 

ENAR outperforms all models with the greatest 𝑅2 of 

0.986 and the lowest RMSE of 52.626, indicating superior 

performance in energy consumption prediction. 

For embodied CO₂ (Table 3): KNN performs 

reasonably well with an 𝑅2 of 0.977 and an RMSE of 

12.588. KNAR excels in an 𝑅2 of 0.992 and an RMSE of 

7.573, showing significant improvement. EN achieves an 

𝑅2of 0.961 and an RMSE of 16.348, while ENAR follows 

with an 𝑅2 of 0.975 and an RMSE of 13.083. KNAR 

outperforms all models in predicting embodied  𝐶𝑂2. In 

Conclusion, ENAR consistently delivers the best 

performance for energy consumption prediction, while 

KNAR is the most accurate model for predicting 

embodied 𝐶𝑂2, providing the best balance of 𝑅2 and error 

(RMSE) in both cases.
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Table 2: The results of hybrid models for the EN and KNN (Energy Consumption) 

Model Phase 
Index values 

Train Validation Test All 

KNN 

RMSE 104.996 99.290 95.218 103.498 

R2 0.947 0.958 0.949 0.948 

MSE 11024.228 9858.529 9066.412 10711.876 

WAPE 0.044 0.042 0.041 0.044 

NSE 0.942 0.952 0.946 0.944 

KNAR 

RMSE 83.815 79.345 76.026 82.629 

R2 0.967 0.974 0.968 0.968 

MSE 7025.029 6295.656 5779.911 6827.580 

WAPE 0.035 0.034 0.033 0.035 

NSE 0.963 0.969 0.966 0.964 

EN 

RMSE 75.491 56.511 48.207 71.490 

R2 0.970 0.986 0.987 0.973 

MSE 5698.893 3193.454 2323.951 5110.855 

WAPE 0.030 0.024 0.020 0.028 

NSE 0.970 0.984 0.986 0.973 

ENAR 

RMSE 55.364 40.752 38.896 52.626 

R2 0.984 0.993 0.991 0.986 

MSE 3065.210 1660.707 1512.922 2769.531 

WAPE 0.022 0.018 0.017 0.021 

NSE 0.984 0.992 0.991 0.985 

Table 3: The outcomes of hybrid models for the EN and KNN (Embodied CO2) 

Model Phase 
Index values 

Train Validation Test All 

KNN 

RMSE 13.230 9.228 9.956 12.588 

R2 0.975 0.988 0.984 0.977 

MSE 175.028 85.158 99.119 158.450 

WAPE 0.030 0.021 0.023 0.029 

NSE 0.975 0.988 0.984 0.977 

KNAR 

RMSE 7.952 5.607 6.012 7.573 

R2 0.991 0.996 0.994 0.992 

MSE 63.237 31.439 36.148 57.348 

WAPE 0.018 0.013 0.014 0.017 

NSE 0.991 0.996 0.994 0.992 

EN 

RMSE 15.951 18.338 17.342 16.348 

R2 0.963 0.953 0.952 0.961 

MSE 254.433 336.276 300.753 267.249 

WAPE 0.038 0.046 0.044 0.040 

NSE 0.963 0.952 0.950 0.961 

ENAR 

RMSE 12.589 15.124 14.665 13.083 

R2 0.977 0.968 0.965 0.975 

MSE 158.471 228.733 215.051 171.155 

WAPE 0.030 0.038 0.037 0.032 

NSE 0.977 0.968 0.965 0.975 

 

Fig. 5 provides comparisons in train versus test and 

validation data related to energy use and embodied 𝐶𝑂2, 

having as the line at the center the perfect prediction, while 

two dotted lines reflect ± 10% margin, showing the 

boundaries for the prediction errors. For energy 

consumption, KNN performed well in moderate clustering 

around the central line, though it generally featured 

substantial scatter, especially in the validation and test 

datasets, with higher prediction errors for extreme values. 

Even though similar results were obtained with KNN for 

the embodied 𝐶𝑂2 due to its lower RMSE, the wider 

scatter limits its accuracy for a proper prediction of 

consumption. The results show that KNAR offers 

improved clustering, with reduced scatter and smaller 

error margins, reflecting a higher robustness across 

datasets. Furthermore, it consistently remains nearer to the 

centerline, resulting in enhanced predictive capabilities for 

both energy usage and embedded 𝐶𝑂2. EN produces 
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tighter clustering than KNN, especially for lower and 

moderate energy consumption values, while it lacks the 

robustness of KNAR. The ENAR produces the best 

clustering with the least scatter and the highest accuracy 

in prediction on all datasets. Stability and precision in the 

outcomes, with respect to energy consumption and 

embodied 𝐶𝑂2, are superior in the current model when 

compared with other models. Overall, KNAR and ENAR 

show the highest reliability and accuracy, hence the best 

to use in assessing environmental impacts in HPC 

manufacturing.
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Figure 5: The scatter and line symbol plot for developed hybrid models

Fig. 6 is a violation plot that compares the four ML 

model errors according to KNN, KNAR, EN, and ENAR 

across Train Validation and Test in a way that densities 

may be visualized at different error values. 

For Embodied CO2: KNN is highly variable, with 

larger error margins, especially when it comes to 

validation and test datasets, a feature that ascribes to the 

low reliability of this method. The results indicate that the 

error distributions for all datasets are tighter, and better 

stability is displayed, especially at the validation and 

testing phases by KNAR. EN decreases error variance 

further than KNN, achieving higher accuracy and stability. 

Yet, it has a slightly weaker robustness performance than 

KNAR. ENAR achieves the tightest error distributions 

with the highest accuracy and robustness on all the 

datasets. 

For Energy Consumption: KNN has a high variability 

in error, especially in validation and testing datasets, 

which means it has a poor generalization capability. 

KNAR has reduced variability, particularly tighter error 

clustering in the test dataset, which represents an increased 

reliability in predictive capabilities. EN has tighter error 

distributions than KNN, especially for smaller values, but 

is slightly worse than KNAR. ENAR performs the best 

with the lowest error margins and is consistent on all 

datasets. Conclusion: ENAR is the most accurate in 

energy consumption prediction, while KNAR is the best 

in embodied 𝐶𝑂2 prediction.
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Figure 6: Comparing the errors of the developed models 

The Taylor diagram in Fig. 7 provides a way to 

evaluate model performance against a reference dataset, 

combining the correlation coefficient, 𝑟, and standard 

deviation, 𝜎, in one diagram. It can be applied to evaluate 

the accuracy of prediction in HPC manufacturing. In HPC 

manufacturing, this figure works very well for evaluating 

forecast accuracy. KNAR performs best in terms of 

embodied 𝐶𝑂2 since it is closest to the diagram's reference 

point, indicating a strong correlation and low RMSE. On 

the other hand, ENAR performs better than ENAR, 

whereas K-NN and KNAR, which are less accurate, 

perform worse. Additionally, ENAR outperforms all 

competing models in energy consumption predictions, 

obtaining the greatest correlation and lowest RMSE. 

While EN scores lowest, showing the largest RMSE and 

the shortest 𝑅2 value, KNN and KNAR perform 

moderately. While KNAR performs better in estimating 

embodied 𝐶𝑂2, ENAR is shown to be the most accurate 

model overall for energy consumption forecasts.
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Figure 7: The Taylor diagram of related models with measured value 

4.1 Practical use of the model in real-life 

building and planning 

The proposed predictive framework provides a data-

driven decision-support tool for real-world applications in 

concrete production and sustainable construction 

planning. By accurately forecasting CO₂ emissions and 

energy consumption based on HPC mix compositions, the 

model enables: 

1. Environmentally Conscious Mix Design: 

Engineers can identify and minimize high-

emission ingredients (e.g., excess cement or 

superplasticizer) during the early design stage, 

aligning material selection with carbon footprint 

targets. 

2. Energy-Efficient Manufacturing Planning: By 

predicting energy demands of specific mix 

designs, batch plants can optimize their 

production schedules, reduce energy peaks, and 

lower operational costs. 

3. Compliance with Green Building Standards: The 

model helps project teams evaluate whether 

proposed concrete mixes meet environmental 

criteria defined by certifications such as LEED, 

BREEAM, or China’s Green Building 

Evaluation Label. 

4. Lifecycle Sustainability Assessment: When 

integrated into Building Information Modeling 

(BIM) or digital twins, the model contributes to 

estimating the embedded carbon and energy 

profiles of structures early in the planning 

process, aiding urban planners and policymakers 

in meeting climate mandates. 

Ultimately, the model acts as a predictive sustainability 

lens through which building materials can be assessed, 

optimized, and selected, without trial-and-error or over-

reliance on empirical tables. 

5 Conclusion 
Most of the manufacturing processes for HPC systems are 

critical in terms of 𝐶𝑂2 emission and energy consumption, 

which should be minimized to support the 

environmentally responsive construction industry. Correct 

prediction of such factors is highly important for the 

optimization process of production and in maintaining 

complete harmony with sustainability considerations and 

the EE of the process. This work is focused on 

investigating the most influential ML models and the most 

influential features that have a great effect on the accuracy 

of the prediction in 𝐶𝑂2 emissions and energy 

consumption during the manufacturing process of HPC. 

ML techniques, including KNN, ENR, and ARO, were 

used to create predictive models. These models were 

further refined with optimizers to enhance prediction 

accuracy and identify the best solutions. Additionally, 

RFE was employed for FS, ensuring that only the most 

relevant variables were used to make precise predictions. 

The best performance for the estimation of energy 

consumption was given by the ENAR model, yielding an 

𝑅2 value of 0.986 and an RMSE of 52.626. The KNAR 

model performed best in estimating 𝐶𝑂2 emission, giving 

an 𝑅2 value of 0.992 and an RMSE of 7.573. Therefore, 

the relevant features that most influenced the performance 

of the models were cement and superplasticizer. These 

were important in enhancing the predictive accuracy of 

energy consumption and 𝐶𝑂2 emissions for the models. 

The results have shown how important it is to consider the 

optimization of models along with input features in 

enhancing sustainability within HPC manufacturing. 

There are several drawbacks to utilizing ML to anticipate 

𝐶𝑂2 emissions and HPC energy use. These include data 

quality and availability, as erroneous or inadequate 

datasets might impair model accuracy. Furthermore, it is 

challenging to generalize forecasts due to the intricacy of 

HPC systems and their diverse operating environments. 

Complex interactions between variables may be difficult 
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for ML models to capture, which might result in 

overfitting or underfitting. Lastly, scalability and real-time 

use in dynamic industrial contexts are limited by the 

computational cost and time needed to train big models on 

complicated datasets. 
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