
Volume 25 Number 4 November 2001 ISSN 0350-

Informatic
An International Journal of Computing
and Informatics

Special Issue:
Component Based Software Development

Guest Editors:
M.B. Juric, I. Rozman, D. Deugo

m

(D

O
O

O

o

/{^97^

The Slovene Society Informatika, Ljubljana, Slovenia

Informatica
An International Journal of Computing and Inforaiatics

Archive of abstracts may be accessed at USA: http://, Europe: http://ai.ijs.si/informatica, Asia:
http://www.comp.nus.edu.sg/ liuh/Informatica/index.html.

Subscrlption Information Informatica (ISSN 0350-5596) is published four times a year in Spring, Summer,
Autumn, and Winter (4 issues per year) by the Slovene Society Informatika, Vožarsld pot 12,1000 Ljubljana,
Slovenia.
The subscription rate for 2001 (Volume 25) is
- USD 80 for institutions,
- USD 40 for individuals, and
- USD 20 for students
Claims for missing issues will be honored free of charge within six months after the publication date of the issue.

Mj^C Tech. Support: Borut Žnidar, Kranj, Slovenia.
Lectorship: Fergus F. Smith, AMIDAS d.o.o., Cankarjevo nabrežje 11, Ljubljana, Slovenia.
Printed by Biro M, d.o.o., Žibertova 1, 1000 Ljubljana, Slovenia.

Orders for subscription may be placed by telephone or fax using any major credit card. Please call Mr. R. Mum,
Jožef Štefan Institute: Tel (+386) 1 4773 900, Fax (+386) 1 219 385, or send checks or VISA card number or use
the bank account number 90O-2762O-5159/4 Nova Ljubljanska Banka d.d. Slovenia (LB 50101-678-51841 for
domestic subscribers only).

Informatica is published in cooperation with the following societies (and contact persons):
Robotics Society of Slovenia (Jadran Lenarčič)
Slovene Society for Pattem Recognition (Franjo Pemuš)
Slovenian Artificial Intelligence Society; Cognitive Science Society (Matjaž Gams)
Slovenian Society of Mathematicians, Physicists and Astronomers (Bojan Mohar)
Automatic Control Society of Slovenia (Borut Zupančič)
Slovenian Association of Technical and Natural Sciences / Engineering Academy of Slovenia (Igor Grabeč)

Informatica is surveyed by: Al and Robotič Abstracts, Al References, ACM Computing Surveys,' ACM Digital
Library, Applied Science & Techn. Index, COMPENDEX*PLUS, Computer ASAP, Computer Literatiire Index,
Cur. Cont. & Comp. & Math. Sear., Current Mathematical Publications, Cybemetica Newsletter, DBLP Computer
Science Bibliography, Engineering Index, INSPEC, Linguistics and Language Behaviour Abstracts, Mathematical
Reviews, MathSci, Sociological Abstracts, Uncover, Zentralblatt fiir Mathematik

Tiie issuing ofthe Informaticajoumal is financially supported by the Ministry for Science and Technology, Sloven
ska 50,1000 Ljubljana, Slovenia. ,

Post tax payed at post 1102 Ljubljana. Slovenia taxe Percue.

http://
http://ai.ijs.si/informatica
http://www.comp.nus.edu.sg/

Informatica 25 (2001) 441-442 441

Special Issue of the Informatica - An International Journal of Computing and Informatics

Dedicated to

Component based software development
Component based sofUvare development (CBSD) has
become the predominant way of developing, packing,
deploying and using software. CBSD influences ali
aspects of software development, which was reflected in
a large number of submitted articles. lnitially we
received 77 contributions, which made the revievv
process and the final selection very difficult.

For the special issue of the Journal Informatica,
dedicated to Component Based Software Development
we have selected fourteen quality papers, which cover
different aspects of CBSD, including integration,
modeling and design, patterns, agents, security, formal
specifications, fault-tolerance, discussion of management
processes for CBSD and a čase study.

The first paper, "A Language and Framework for
Supporting an Active Approach to Component-Based
Software Integration" by Suzanne W. Dietrich, Susan D.
Urban, Amy Sundermier, Vinghui Na, Ying Jin, and
Sunitha Kambhampati, presents the IRules Component
Definition Language and the environment, which acts as
a mediator in the integration process by encapsulating the
logic describing the interconnections between
components using integration rules. It also presents the
vvrapper framevvork required for supporting the IRules
active approach to component-based software
integration.

The second paper, "DEPA (Design Pattern Application)
- A Component-based Model for Applying Design
Patterns in Softvvare Developmenf, by Katrina Ji and
Sean Chen; discusses the lack of a formal model in
applying design patterns. The authors present the DEPA
model that allovvs a systematic way of applying design
patterns in software development projects, particularly to
those projects with resource constraints.

The third paper, "An Approach for Modeling
Components with Customization for Distributed
Software", by X. Xie and S. M. Shatz, discusses an
approach for blending Petri net concepts and object-
oriented features to develop a specification approach for
distributed component software systems. A key result is
the definition of a "plug-in" structure that can be used to
create "subclass" object models, which correspond to
customized components.

The fourth paper, "A Uniform Component Modeling
Space" by Duane Hybertson, presents a component
modeling space as a context for supporting component-
based software development and accumulating
component-related knowledge. It provides a uniform
structure for modeling components and modeling

systems in vviiich the components may be integrated. The
uniform structure can serve as the basis for an organized
repository of knowledge of components and systems in
which they can be used.

The fifth paper, "An Agent-Based Component Platform
for Dynamically Adaptable Distributed Environments"
by Rainer Weinreich and Reinhold Plosch, argues that
increased flexibility can be achieved by using agent
technology and agent platforms as povverful component
environments. The authors present an adaptable
component platform which incorporates mobile agent
platforms and describe how important issues of
component deployment, configuration and security are
supported by the environment.

The sixth paper, "MobiDoc: A Mobile Agent-based
Framework for Compound Documents" by Ichiro Satoh,
presents a mobile-agent-based framework for building
mobile compound documents, called MobiDoc, where
the compound document can be dynamically composed
of mobile agent-based components and can migrate itself
over a netvvork as a whole, with ali its embedded agents.

The seventh paper, "BLOCKS, a Component Framework
with Checking Facilities for Knowledge-Based
Systems", by Sabine Moisan, Annie Ressouche, and
Jean-Paul Rigault, answers the softvvare engineering
needs of the design of knowledge-based system engines
in that it presents a framework composed of reusable and
adaptable software components.

The eighth paper, "A Security Assurance Framevvork for
Component Based Software Development", by Ashvvin
Kumar M. V. N., Arun K. Singh, and Ramesh Babu S.,
presents a framevvork to assure security of components.
The framevvork ušes Aspect Oriented Programming
paradigm to capture security characteristics of the
components and vveaves the corresponding security
checks into them. It also introduces a novel verification
mechanism to ensure that the COTS components are
developed as per security contract.

The ninth paper, "The ABCs of Specification: AsmL,
Behavior, and Components" by Mike Barnett and
Wolfram Schulte, shovvs hovv to use AsmL, an
executable specification language, to provide behavioral
interfaces for components. This allovvs clients to fully
understand the meaning of an implementation vvithout
access to the source code.

The tenth paper, "Tovvards Rigorous and Effective
Functional Contract for Components" by F. J. Galan
Morillo, V. Diaz and J. M. Canete Valdeon, proposes a

442 Informatica 25 (2001) 441-442

form of type specification based on constructive terms. Guest Editors:
The form of specification is essential to consider abstract
data types as rigorous and effective contracts betvveen Matjaž B. Juric
specifiers and programmers. The paper tries to estabiish a Ivan Rozman
method, which is not only well founded but aiso Dvvight Deugo
effective.

The eleventh paper, "Approach to Component Based
Synthesis of Fault Tolerant Softvvare" by Behrooz
Parhami, present a methodology which unifies previously
proposed hybrid N-version programming and acceptance
testing schemes, which are established methods for
obtaining highly reliable results from imperfect software.
The author presents a more general view which leads to
higher reliability and/or greater cost-effectiveness
compared to the previously envisaged hybrid schemes.

The tvveifth paper, "Evolution of Fault-Prone
Components in Legacy Systems: A Čase Study", by
Magnus C. Ohlsson, presents a model for ciassification
of softvvare components according to the number of
times they required corrective maintenance over
successive releases. The čase study includes five system
releases and 80 softvvare components. Overall, the model
was successful in identif/ing the most problematic
components and provided Information about the
evolution of the system.

The thirteenth paper, "The Need for Speed: A
Practitioner's View of Rapid Application Development
in eBusiness", by Patricia Carando, reflects a
practitioner's view on the present state of component-
based software development in eBusiness. The focus is
on component types which significantly increase the
speed of development and on those types, while
promising, did not realize their potential.

The fourteenth paper, "Management Process for
Supporting the Component Developmenf, by Haeng-
Kon Kim, and Roger Y. Lee, discusses guidelines for
supporting the development of the CBSD process. The
authors focus on setting standards for components and
address the impact that CBSD has on managing
component development.

Reviewers (in alphabetical order) for the special issue of
the Informatica, dedicated to Component Based Software
Development:

Ivan J. Araiijo, Michel Barbeau, Simon Beloglavec,
Sondes Bennasri, Boštjan Brumen, Troy Buli, Particia
Carando, Robert Cattral, Jean-Pierre Corriveau, Babak
Esfandiari, Darrell Ferguson, David Flater, Grant
Gayed, J6zsefGydrkds, Marten Haglind, Abdelwahab
Hamou-Lhadj, Marjan Hericko, Doug Howe, Hannu
Jaakkola, Marko Juvancic, Fabio Kon, Andrej Kraj ne,
Ivan Lah, Timothy C. Lethbridge, James Moody, Oscar
Nierstrasz, Franz Oppacher, Vojislav D. Radonjic,
James Edward Ries, Colette Rolland, Kimmo Salmenjoki,
P. G. Sarang, Ichiro Satoh, Carine Souveyet, Vladimir
Tosic, Romana Vajde Horvat, Eugene Wallingford,
Michael Weiss, Tatjana Welzer, Lee fVhite, Aleš Zivkovic

We would like to thank once again to ali the authors who
submitted papers for this special issue. Special thanks go
to the revievvers for their excellent, but hard work. We
hope that those vvho read the special issue will enjoy our
selection.

Informatica 25 (2001) 443-454 443

A language and framework for supporting an active approach to
component-based software integration
Suzanne W. Dietrich, Susan D. Urban, Amy Sundemiier, Vinghui Na, Ying Jin, Sunitha Kambhampati
Department of Computer Science & Engineering
Arizona State University, Tempe, AZ 85287-5406, U.S.A.
dietrich@asu.edu, s.urban@asu.edu

Keyvvords: component-based integration, active rules, events

Received: June25, 2001

The IRules project at Arizona State University applies active rule technology to the integration of
distributed, black-box software components. The goal of 1 Rules is to provide an environment in which
an application is developed through the integration of software components using active rules that are
known as integration rules. Using the IRides Component Definition Language (CDL), the application
integrator first describes a purchased, black-box component within the IRules environment to allow
access to the properties and methods defined by the purchased component. In addition, CDL allowsfor
the definition ofnamed extents, stored and derived attributes, externalized relationships and events to
enhance the feaiures of the purchased components to support application development. After defining
the desired interface for the component, the application integrator then develops the application using
active integration rules that define the interaction of the components in response to events. This paper
presents the Component Definition Language and its resulting framework that supports the IRules
active approach to component-based software integration.

1 Introduction
Electronic commerce (e-commerce) and other Web-
based applications are inherently distributed in nature
since a client is not expected to be co-located'with the
data for the application. However, many Web-based
applications are primarily three-tiered architectures with
a presentation layer using a brovvser to interface with the
user, a middle tier generally built vvith an object-oriented
or component-based interfacing technology, and a
database as the persistence layer. Commercial component
standards such as Enterprise JavaBeans (EJB) from Sun
Microsystems or COM+ from Microsoft are typically
adopted for the middle tier, allowing the developers of an
application to focus on creating code to represent
business needs while relying upon a commercial
component container to supply infrastructure services.
The current state of middle-tier component software
primarily addresses the requirements of three-tier
architectures, simpliiying the development of Web
applications by providing an application-programming
layer betvveen the presentation and storage Iayers that
decreases development tirne. Hovvever, e-commerce
applications require access to data and softvvare from
many different sources. As a result, the simpliiying
assumption of one underlying database in the persistence
layer as in most three-tiered architectures is too
restrictive for some distributed applications.
There is a conflict between the goal of a commercial
component container vendor to make three-tier web
application development simpler and faster versus the
longer-term goal of softvvare engineering to make
component-based application development a reality.

Component-based softvvare engineering research
encourages the idea of building applications from
purchased components. Using purchased components
directly to build an application, hovvever, is difficult to
accomplish if the application developer must vvork vvith
the limitations of an interface defined by the vendor of
the component. This paper addresses some of the
challenges inherent in application development using
purchased components. We refer to these components as
"black-box" components, since we assume the
component must be used vvithout modification to source
code.

Our research focuses on adapting database technologies
to the area of softvvare component integration. As
described in (Silberschatz & Zdonik 1997), certain fonns
of database functionality need to "break out of the box"
to better serve the needs of applications that depend on
distributed sources of Information. Active rule processing
technology (Widom & Čeri 1996) is an example of a
database component that can provide useful services to
advanced applications if the appropriate technology
exists for the use of rules in distributed environments.
Traditionally, active rules have been used to transform
passive, centralized database systems into reactive
systems that respond to database and extemal events
through the use of rule processing features. Active rules
are typically formatted as Event-Condition-Action (ECA)
rules. When an event occurs, if an optional condition
holds, then a specified action is performed.

The Integration Rules (TRules) project at Arizona State
University (http://wvvvy.eas.asu.edu/~irules) is

mailto:dietrich@asu.edu
mailto:s.urban@asu.edu
http://wvvvy.eas.asu.edu/~irules

444 Informatica 25 (2001) 443-454 S. Dietrich et al.

investigating the middie-tier, rule processing technology
necessary for the use of active rules in the integration of
distributed, black-box software components (Urban et. al.
2001 a, Urban et. al. 2001 b). The intended use of this rule

•processing'technology is for the specification ofevent-
based processing logic in the development of component-
based applications for distributed environments, where
the granularity of the components can range from low-
level database objects to an entire softvvare system.

The IRules approach builds upon the use of the
Enterprise JavaBeans (EJB) softvvare component model
specification from Sun Microsystems (J2EE 2001). The
EJB component model promotes the vision of separating
component services from the business logic of the
components. Assuming that ali databases and softvvare
sources of the application environment are encapsuiated
using EJBs, the application integrator ušes the IRules
Component Definition Language (CDL) to extend the
definition of a purchased softvvare component to declare
named extents, additional attributes, extemalized
relationships and component events. Since there is no
inherent support for direct object references betvveen
distributed components, externalized relationships
(Rumbaugh 1987) play an important role in associating
the purchased components that are being integrated in the
distributed IRules environment.

Once components are defined in the IRules environment
using CDL, application integrators can create distributed
applications using the IRules Integration Rule Language
together vvith application transactions. Integration rules
provide a re-active capability to the environment so that
as distributed components and extemal sources generate
event notifications, integration rules invoke methods on
components or perfomi higher-level application
transactions. The purpose of this paper is to provide a
description of the IRules Component Definition
Language and the iramevvork of component metadata and
vvrappers that are generated to support the IRules active
rule architecture approach to the integration of purchased
softvvare components.

In the follovving sections, we outline the details of the
IRules approach to component integration. Section 2 first
provides an overvievv of related vvork. In Section 3, vve
provide an overvievv of the IRules approach, introducing
an investment example that vvill be used to illustrate
IRules concepts throughout the rest of the paper. Section
4 introduces the IRules Component Definition Language,
illustrating the definition of named extents, additional
attributes, extemalized relationships and component-
generated events. Section 5 elaborates on the static
component metadata that is generated as a result of the
compilation of CDL. Section 6 provides the details on
hovv the IRules environment supports the enhancements
to the purchased components using vvrappers. The paper
concludes in Section 7 vvith a summary of our vvork and a
discussion of future research directions.

2 Related Work
Recent vvork on component integration has focused on
the architecture of softvvare interconnection based on the
underlying component model. Softvvare architectures
such as COM+ (Microsoft 2000), ČORBA (OMG 1998),
and Enterprise JavaBeans facilitate the integration by
supporting the development of systems from
independently developed components.

One approach to the interoperability of components is
event-based. In (Barrett et. al. 1996), the Event-Based
Integration (EBI) framework vvas proposed as a high-
level, general, and flexible reference model for event-
based softvvare integration. This approach outlines
architectural concepts for interconnection through events.
In (Ma & Bacon 1998), the CORBA-Based Event
Architecture (COBEA) is a general event-driven
architecture for building distributed active systems.
COBEA extends the ČORBA Event Service by
supporting the publish-register-notify model and
provides filtering, fault-tolerance, and access control
services. COBEA is a general event-driven architecture
for distributed active systems, rather than an
implemented system.

There have been some initial results on the use of ECA
rules for integrating distributed components. In (Pissinou
& Vanapipat 1996) and (Pissinou et. al. 1997), an ECA
rule approach is used in component interoperation.
Distributed applications are modeled as Distributed
Active Objects by adding vvrappers on top of the
components that do not have triggers so that ECA rules
can be used in distributed environments. The ECA
Object Service is based on the ČORBA specification.
Objects communicate by method invocations and service
requests. The rule object is an independent ČORBA
object that is isolated from the application objects. The
vvork in (Pissinou et. al. 1997) describes an architecture
for executing rules in a distributed environment. In
(Chakravarthy & Le 1998) ECA rules are proposed to
solve distributed interoperation of components that have
an OMG IDL interface. The project focuses on the
specification, detection and management of composite
events (Le & Chakravarthy 1998). The system ušes the
ČORBA event service and implements conditions and
actions by method calls. In (Bultzingsloevven et. al. 1996,
Koschel & Lockemann 1998), the CORBA-Based
Distributed Information System named C^offein vvas
developed to use ECA rules for distributed component
interoperation. Wrappers are used for read access to the
underlying data source and primitive event detection.
The ČORBA push model is used for event detection.
C^offein provides a concrete architecture and
implementation of hovv to use ECA rules to integrate
heterogeneous information sources.

Our ovvn past vvork in the area of active database systems
has influenced the research presented in this paper. In
particular, our vvork vvith the ADOOD RANCH (Dietrich
et. al. 1992) project resulted in a declarative language for

A LANGUAGE AND FRAMEWORK FOR... Informatica 25 (2001) 443-454 445

the integration of active, deductive, and object-oriented
language concepts (Urban et. al. 1997), together with a
framevvork for capturing the metadata of such an
environment (Abdellatif et. al. 1999) and an execution
model that supports the incremental examination of the
database state during rule processing (Abdellatif 1999).
Our approach to the use of derived attributes in the
IRules Component Definition Language, as well as the
structure of integration rules, extends our results from the
ADOOD RANCH project to distributed domains. The
work in (Ayyaswamy 1999) represents our initial
investigation of a ČORBA architecture for distributed
ECA rule processing for the purpose of maintaining
constraints in a loosely-coupled, federated database
environment. More recently, we have perfonned a
comparison of ČORBA (OMG 1998), Java (J2EE 2001),
and Jini (Amold 2000) technologies for evaluating
different architectural options for the execution of
integration rules (Saxena 2000, Urban et. al. 200le).

The IRules project differs from the above research
projects in several aspects. First, IRules is based on the
Enterprise JavaBeans component model. Second, IRules
builds its own distributed environment. The compilation
of the IRules Component Definition Language
automatically generates the code for the vvrappers of the
black-box components rather than hard-coding the
vvrappers. Third, the IRules project is also investigating
transaction management, conflict resolution, and failure
handling issues in its distributed rule processing
environment.

The extemalized relationships of the IRules environment
share some similarities with the ČORBA Relationship
Service (OMG 2000). The Relationship Service supports
the definition and creation of relationships between
distributed ČORBA objects. As with IRules extemalized
relationships, the related objects do not have to be aware
of the relationship. One obvious .difference is that. the
Relationship Service is for relating ČORBA objects
•while'the IRules externalized relationships are designed
for black-box components that adhere to the EJB
component model.

application that is used throughout the remainder of this
paper. This application is depicted in Figure 1,
illustrating four different containers vvith purchased
softvvare components. The Portfolio container maintains

, current Information in the form of entity beans about
client portfolios, including Information about current and
past stock holdings and the orders under which stocks
vvere bought and sold. The Portfolio container also
provides a session bean vvith application logic to conduct
buying and selling of stocks. The Pending Order
container provides entity beans for storing pending
orders that are vvaiting for execution vvhen a particular
market condition is met. The Stocks container represents
locally managed Information about stocks and their
current prices as entity beans. This Information exists
independently of the portfolios that ovvn them. We are
assuming that the Information in the Stock container is
updated based on current stock prices fi-om extemal
sources. The Stock container can also generale events to
signal changes in value depending upon buy/sell
transactions in the stock market. Finally, the User
container ušes entity beans to store billing Information
about portfolio accounts and the users that are associated
vvith accounts. The User container also provides a session
bean vvith procedures for billing users for stock buy and
seli transactions.

There are implied relationships betvveen the four
containers in Figure 1. Portfolios contain specific stocks.
Pending orders are related to a portfolio and represent
buy and spil transactions on stocks. Portfolios are ovvned
by a specific account, and accounts are billed for buy and
seli transactions. In general, the application programmer
must knovv of the specific relationships and vvrite
procedural code to achieve the integration. In a typical
Web-based, three-tier architecture, this approach may be
satisfactory. Advanced distributed applications, hovvever,
may require the interconnection of components in
containers' provided by multiple companies from
distributed. locations. These types of applications can
benefit from an environment that provides greater
support in understanding and establishing relationships
betvveen distributed components.

3 IRules Overview
This section provides a high-level overvievv of the IRules
project to establish the basis for a more detailed
presentation of the IRules Component Definifion
Language and its supporting metadata and vvrapper
framevvork in the follovving sections. The IRules project
adopted the Enterprise JavaBeans (EJB) server-side
component model for the Java programming language
(J2EE 2001). Due to space limitations, we assume prior
knovvledge of EJBs.

To illustrate the IRules approach to the integration of
EJB components, this section presents an Investment

In addition to illustrating the four independent containers
of our sample application. Figure I also illustrates the the
IRules approach to component interconnection. The lines
betvveen containers represent extemalised relationships
of the desired object model, defining relationships
betvveen components on different servers. For example,
vve vvish to represent the fact that a Portfolio may have
orders vvaiting for execution, vvhere the order Information
is stored in the Pending Order component. The Pending
Order component is also defined to act upon a specific
type of stock. The application integrator ušes the IRules
Definition Language to define a distributed application.

446 Informatica 25 (2001) 443-454 S. Dietrich et al.

heldBy 0.,

User Container

IrulesAccount

Account

IrulesUser

User

1 ownedBy

1 owns
IrulesPorlfolio

Portfolio
1 orderedBy

JrulesCurtentHolding

urrentHolding

IrulesOrderE ecution

IrulesPastHolding

PastHolding

OrderExecution

IrulesCIoseCutOrder

0..*s:ldBy

loseOutOrder

Portfolio Container

de rs

PendingOrder
Container

IrulesPendingOrder

PendingOrder

0..*̂

perjdingTrades

Figure 1: Investment Example

The IRules Definition Language consists of four
sublanguages: (1) the Component Definition Language
(CDL), (2) the Event Definition Language (EDL), (3)
thejntegration Rule Language (IRL), and (4) the IRules
Scripting Language (ISL). Using CDL, the application
integrator first describes a purchased, black-box
component within the IRules environment to allovv
access to the properties and methods defined by the
purchased component. In addition, CDL allows for the
definition of a named extent, stored and derived
attributes, extemalized relationships and events to
enhance the features of the purchased components to
support application development. EDL provides a
language for the definition of extemal and system-level
events. After defining the desired interface for the
components and events, the application integrator then
develops the application using active integration rules via
the IRL, which defines the interaction of the components
in response to events. ISL provides the application
integrator vvith a more complete approach to transaction
development over the object model of the distributed

application. Currently, we are investigating JACL
(DeJong & Laird 1997) and its extensions as the
foundation of the ISL.

Figure 2 illustrates a high-level architectural view of the
IRules processing environment. In the IRules
architecture, the object manager ušes component
metadata and the abstract IRules wrapper interface to
provide the rule processor with the appropriate references
to remote interfaces as needed to process rules and
transactions. Thus the object manager encapsulates the
choice of the EJB component model from the other
system components in the IRules fi-amework and
architecture. The metadata manager stores Information
about the IRules object model of the application,
resulting from the compilation of the IRules Definition
Language. The compilation of CDL also results in the
generation of vvrappers for the purchased components,
which provide required information for supporting the
IRules environment. The object manager and the
metadata manager are used by the transaction and rule

A LANGUAGE AND FRAMEWORK FOR... Informatica 25 (2001) 443-454 447

processor to execute the application logic of the
environment. Transactions specified in the scripting
language can execute methods on entity and session
beans, where the object manager is first consuhed to
locate the component required for the execution of the
method. The execution of such methods can send event
notifications via the IRuies wrappers to the event
handler, denoting the before and after points in the
execution of such methods. The event handler
communicates with the transaction and rule processor to
trigger integration rules. The execution of integration
rules triggers additional application transactions,
beginning a new cycle in the execution of methods on
EJB components. A more complete description of the
execution environment for IRules can be found in a
companion paper (Urban et. al. 2002). The following
sections elaborate on the CDL and the metadata and
wrapper framework required to support a rule-based
approach to software component integration.

T roTs cction cnd R ule
Prooesscf

Event Hcnder

Metacfcifa

Ot^ectMcnc^r

IRules VJrappat
Blad< Box
Entity becn

IRules VVrcpDer
Black Box

Session becn

Figure 2: IRules Architectural Overvievv

4 Component Definition Language
The Component Definition Language provides the
application integrator vvith a tool to describe purchased,
black-box software components to the IRules
environment. Recall that IRules assumes the EJB
component model and components can be either entity
beans or session beans. The application integrator defines
only additional properties using CDL. In other words, the
behavior of the black-box EJB is not redefined in CDL,
since it is available using reflection. Figure 3 presents the
CDL for the Investment Example presented in the
previous section. Specific examples from this figure will
be used to describe CDL in more detail.

The syntax of CDL is loosely based on the syntax of the
Object Definifion Language (ODL) of the Object Data
Management Group (ODMG) standard (Cattell et. al.
2000). ODL defines the classes that an object-oriented
database (OODB) manages in its persistent store. For
each class, the database designer may define an extent,

which is a named coUection of the objects of that type in
the database, and the properties and behavior associated
with that class. The term property refers to attributes,
describing characteristics of the object, or relationships,
defining associations betvveen objects. The relationship
between two objects is automatically maintained by the
database system. When one side of the relationship is
updated, the database system is responsible for
maintaining the inverse relationship.

The IRules Component Definition Language provides the
application integrator vvith the ability to define named
extents, attributes, relationships and events to be
associated with a black-box component deployed in the
IRules environment. The applicability of these
definitions depends on the type of the EJB, such as entity
beans or session beans.

4.1 Entity Beans
Each entity bean is described to the IRules environment
by a component declaration, giving the name of the
black-box component (ComponentName). Entity beans
are identified by the implements EntityBean clause of the
component definition. Entity beans defined within the
IRules environment may include a named extent,
additional attributes, extemalized relationships and
events. In the abstract syntax shown below, italicized
identifiers represent names that are filled in based on the
specificafion of the application:

component ComponentName implements EntityBean
(extent ExtentName)
{attribute AttributeType AttributeName

{OptionalAttributeDefinition};
relationship RelationshipType RelationshipName

merse InverseRelationshipName;
event IRuiesEventName(EventParameters)

{method EventDefinition}; }

The ExtentName provides the name of an extent that the
application integrator can use in the specification of the
integration rules to iterate over objects of the type
ComponentName. In the Investment CDL of Figure 3,
each entity bean has a defined extent. By convention, the
name of the extent is the plural of the name of the
component. For example, the component Stock has an
extent named stocks.

An attribute defined in CDL specifies default behavior to
get and set the attribute's value: the method
getAtiributeName retums AttributeType, and the method
setAtthbuteName takes an argument of AttributeType to
which the attribute value is set. This attribute will be
stored as part of the IRules wrapper for the component.
In Figure 3, the Portfolio component has a stored attribute,
named lastPortfolioValue of type float. The IRules vvrapper
automatically provides the accessor (getLastPortfolioValue
and setLastPortfolioValue) methods for the stored attribute.

448 Informatica 25 (2001) 443-454 S. Dielrich et al.

component Stock implements EntityBean
(extent stocks)
{relationship set <CurrentHolding> heldBy

inverse CurrentHolding::stockHeld;
relationship set <PendingOrder> pendingTrades

inverse PendingOrder::actUpon;
relationship set <PastHolding> soldBy

inverse PastHolding::pastStock;
event beforeSetPrice(NewPrice)
{method before setPrice(NewPrice)};};

component User implements EntityBean
(extent users){};

component Account implements EntityBean
(extent accounts)
{relationship Portfolio owns inverse Portfolio::ownedBy;};

component Portfolio implements EntityBean
(extent portfolios)
{attribute float lastPortfolioValue;
attribute float portfolioValue {

portfolioAl.calculatePortfolioValue(Portfolioself)};
relationship Account ownedBy inverse Account::owns;
relationship set<PendingOrder> orders

inverse PendingOrder::orderedBy;};

component CurrentHolding implements EntityBean
(extent currentHoldings)
{relationship Stock stockHeld inverse Stock::heldBy;};

component PastHolding implements EntityBean
(extent pastHoldings)
{relationship Stock pastStock inverse Stock::soldBy;};

component PendingOrder implements EntityBean
(extent pendingOrders)
{relationship Stock actUpon inverse Stock::pendingTrades;
relationship Portfolio orderedBy inverse Portfolio::orders;
event aflerCreatePendingOrder

(pnld,portld,stockld,numOfShares,desPrice,action)
{method after
create(pnld,portld,stockld,numOfShares,desPrice,action)};};

component OrderExecution implements EntityBean
(extent orderExecutions) {};

component CloseOutOrder implements EntityBean
(extent closeOutOrders) {};

component PortfolioSession implements SessionBean
{event afterSellStock(stockld,price,port!d,numOfShares)
{method after sellStock(stockld,priče,portId.numOfShares)};};

component PortfolioAl implements SessionBean {};

Figure 3: Component Deflnition Language for the Investnient Exainple

An attribute may also be a derived attribute, meaning that
its value is computed using a predefined method. In the
Investment example shown in Figure 3, the Portfolio
component has a derived attribute portfolioValue of type
float. When the portfolioValue attribute is referenced (using
the getPortfolioValue method), its value will be computed
using the calculatePortfolioValue method defined in the
portfolioAl session bean. The suffix Al in this example
stands for Application Integrator, since it is the
responsibility of the application integrator to define the
meaning of a derived attribute. At this point in time,
IRules allows this logic to be coded as a method of a
session bean. We have introduced the self syntax here to
indicate that the method is called on the Portfolio object
itself We are planning to allow for additional parameters
to the method call, which could include properties of the
purchased components and the properties defined as part
of the enhanced IRules environment.

We have briefly explored the use of the Enterprise
JavaBeans Query Language (EJB QL) to declaratively
specify the meaning of a derived attribute. The current
specification of EJB QL vvithin the EJB 2.0 specification
has several limitations that discourage its use vvithin
IRules at this tirne. One limitation restricts values
retumed fi-om a query to be either an existing object or
part of an existing object. Another limitation restricts the
traversal of relationships to only those deployed in the
same container (and the same ejb-jar file). Since the goal
of IRules is to provide extemalized relationships across
distributed components in multiple containers, these
limitations are too restrictive. Therefore, we have
provided the application integrator with a more general

option to specify the required logic as a method of a
session bean.

Extemalized relationships play an important role in
speciiying the associations between the black;-box
components being integrated. In the Investment example,
the association ow/nedBy in the Portfolio component relates
a portfolio to its associated account. The inverse
relationship owns in the Account component associates the
account to its portfolio. Section 6 describes how these
extemalized relationships are maintained in the IRules
wrapper for the black-box component.

The application integrator ultimately specifies event-
based integration rules to glue the black-box components
together. When an event occurs, if an optional condition
holds, then a specified action is perfonned. At the
component level, the application integrator deflnes
IRules events that the integration rules monitor based on
method calls to the underlying black-box component.
The IRules environment supports the generation of an
event before or after a method call. For example, in
Figure 3, the component Stock defines beforeSetPrice as
an event that the IRules environment monitors, which is
raised before the call to the setPrice method in the
underlying black-box Stock component. The event
parameter nevi/Phce is obtained from the newPrice
parameter to the setPrice method call.

We also plan to have the IRules environment support the
selective monitoring of internal events from black-box
components that are compliant with the Java Message
Service API (JMS), which is the event service adopted

A LANGUAGE AND FRAMEWORK FOR.. Informatica 25 (2001) 443-454 449

for EJBs. The details for providing this support are
currently being investigated.

4.2 Session Beans
Session beans must also be declared to the IRules
environment by a component declaration using the
implements SessionBean clause, allowing IRules access to
the properties and methods defmed by the purchased
component. A session bean may also define events to be
monitored at the IRules level.

component ComponentName implements SessionBean
{ event IRulesEventName(E\/entParameters)

{method EventDefinition}; }
The EventDefinition is consistent with events defmed for
entity beans. The event is specifying the interception of a
before/after method call to the underlying black-box
session bean. In Figure 3, the CDL component deflnition
for the session bean PortfolioSession defines the IRules
event afterSellStock, which is raised after the method call
to sellStock. We are also investigating a mechanism to
support the selective monitoring of an interna) event of a
session bean by the IRules environment.

5 Component Metadata
Metadata is the data maintained by the system that
describes the data in the system itself For example,
relational databases use metadata to represent the data of
any application. In a similar manner, the IRules system
ušes metadata to represent both the components and the
processing logic (application transactions and integration
rules) of the application, allowing the system
components of the architecture to be data-driven by the
metadata describing the application. The IRules
environment will store metadata as the result of
compiling the IRules Deflnition Language. This section
describes the metadata stored by the compilation of CDL.
The current prototype of the IRules component metadata
is written using serialized Java objects. We plan to
investigate the use of the JavaSpaces service in Jini for
the distributed metadata implementation.

Figure 4 gives a UML diagram illustrating the static
component metadata generated as a result of the
compilation of the IRules Component Definition
Language. The metadata stored for an IRules Wrapper
includes its name, the name of its black-box component
and its JNDI name. JNDI is the abbreviation for the Java
Naming and Directory Interface, which provides location
and organization services in a distributed computing
environment. The wrapper includes an association to the
black-box component that it wraps. The JNDI name of
the black-box component is obtained from the
depIoyment descriptor for this purchased component.

An IRules Wrapper is itself an EJB of the same type as
the EJB that it is wrapping. An IRules Wrapper that is an
entity bean must store the name of its associated extent
and properties, which are relationships and attributes. A

relationship has a cardinality, such as single-valued or
multi-valued. In this čase, the IRulesRelationship metadata
class shows a muitivaluedPlag that is set to true for a
multivalued relationship. A relationship also has an
inverse, which is indicated by a recursive association in
Figure 4 to the IRulesRelationship class, which gives the
inverse relationship. An attribute has a type, and may be
explicitly stored or derived. A derived attribute, as shown
by the IRulesDerivedAttribute metadata class, records the
name of the method and its session bean that is called to
derive its value based on input parameters. The names of
the attributes associated with the black-box component
are also maintained in the metadata as BlackBoxAttribute
since the IRules Wrapper acts as its proxy. Similarly, the
IRulesMethod class represents the methods of the black-
box components and the default accessor methods for the
IRulesAtthbutes.

The events associated vvith a component are either
method events or intemal events, and are illustrated in
Figure 4 by an association to an eventStub. The
eventName provides an access path into the event
metadata, which also includes extemal and system-level
events that are defined using EDL.

6 Wrappers
One of the goals of the IRules project is to integrate
commercial-off-the-shelf (COTS) components using
containers produced by commercial vendors. The IRules
wrappers play an important role in enhancing the
interface of a purchased softvvare component, providing
the additional behavior required for interacting vvith the
IRules environment. The wrappers provide a mechanism
to act as a proxy to the original black-box component and
to add the definition of IRules extents, attributes,
extemalized relationships, and events. This section
describes how the IRules environment wraps both entity
beans and session beans to become part of an IRules
distributed application.

Figure 5 provides an overview of the IRules approach to
vvrapping black-box EJB components, assuming the
naming conventions for EJBs. The EJB Layer in the
diagram reinforces the description of the EJB component
model. The EJBHome interface represents the life-cycle
methods of the component. The EJBObject interface,
also known as the remote interface, defines the signature
of business methods for changing attribute values and
carrying out business logic functions that are specific to
the EJB component. The right-most column represents
the implementation of the enterprise bean. The Wrapper
Abstract Layer provides the behavior that is inherited by
every IRules wrapper. The Wrapper Implementation
Layer shows the IRules Wrapper for the BlackBox
component. The lovvest layer of the diagram is the
Component Layer and identifies the BlackBox EJB.

450 Informatica 25 (2001) 443-454 S. Dietrich et al.

IRulesWrapper
^blackBoxName
^jndiName
^componentName

IRulesMethod
^^methodName
^methodPara
^methodReturnType

Figure 4 Static Component Metadata

To develop the functionality of the wrappers, we have
implemented a prototype for the Investment application
that provides proof of concept of the technology. Since
our initial prototype, the IRules wrapper design has
a]ready been refined based on changes to the EJB
specification. The EJB 2.0 specification introduced a new
container-managed persistence (CMP) contract. For
container-managed entity beans, the depioyment
descriptor indicates which fields and relationships of the
bean are to be inaintained by the container. The actual
mapping of these container-managed fields (CMF) to a
persistent store happens in a server-specific way and is
not included in the deployment descriptor. In the čase of
the BEA Systems Weblogic Server (BEA 2001) that we
are using for our implementation, an XML file specifies
the object-to-relational mapping between the CMFs and
container-managed relationships (CMRs) to the
underlying relational database store. The only container-
managed relationships supported are those betvveen
entity beans deployed at the same time (in the same ejb-

jar file). Since this limitation on CMRs is too restrictive
for the IRules environment, the IRules vvrappers
explicitly provide a mechanism to store and retrieve the
externalized relationships from the underlying persistent
storage.

6.1 Entity Beans
Since the IRules wrapper for a deployed black-box entity
bean stores persistent data and needs to be shared
between clients, the wrapper is also an entity bean. The
IRules wrapper defines container-managed persistent
fields for (1) the reference to the black;-box entity bean it
is wrapping, (2) stored attributes, and (3) extemalized
relationships. The vvrapper also includes code that is
generated from the compilation of CDL to provide
accessor methods for attributes, manipulation methods
for relationships, a proxy to method calls, and support for
raising events to trigger rules.

A LANGUAGE AND FRAMEWORK FOR... Informatica 25 (2001) 443-454 451

Home Interface Remote Interface Bean implementatlon Class

EJB Layer

EnterpriseBean

EJBHome

~zr

EJBObject

VVrapper Abstract Layer

IRulesHome

/T

EntityBean

IRulesObject

^

SessionBean

IRulesEntityBean IRulesSessionBean

^y

association

implements

A extends

EntityBean SessionBean

Figure 5: IRules VVrapper Overvievv

The code for an IRules wrapper is generated by the
compilation of CDL. The instances of the vvrapper are
created using the create method in the Home interface of
the VVrapper. The parameters to the create method include
the primary key of the black-box EJB that the wrapper is
wrapping and any initial values for stored attributes and
extemalized relationships. Note that the primary key of
the IRules vvrapper is set to the same value (and type) as
the primary key of its wrapped purchased component.

The wrapper establishes a reference to its black-box
component storing its handle, which is a persistent
netvvork reference to an EJB object, as a CMF cailed
cmpForHandle. In a container-managed entity bean, the
data type for a CMF can be a Java primitive type or a

Java serializable type. The container is responsible for
transferring data between an entity instance and the
underlying persistent storage, and provides a get and set
method for each CMF. To store the EJB handle to the
black-box component, the EJB handle is čast to the type
java.lang.Object and used as a parameter to the
setCmpForHandle method, which is supplied by the
container. The following code snippet illustrates how the
handle to a PendingOrder entity bean, given by the
variable p, is stored in the IRules vvrapper:

Handle handleToBB = p.getHandle();
Object objHandleToBB = (Object)handleToBB;
setCmpForHandle(objHandleToBB);

To retrieve the handle as the appropriate type, the
vvrapper implements a refToBlackBox method that calls the

452 Informatica 25 (2001) 443-454 S. Dietrich et al.

getCmpForHandle method to retrieve the serialized handle
and casts it to the type of the associated purchased
component, in this čase PendingOrder:

public PendingOrder rerroBlackBox()
{Object obj = getCmpForHandleO;
Handle handle = (Handle)obj;
EJBObject ejbobj = handle.getEJBObject();
PendingOrder blackBox = (PendingOrder)ejbobj;
return blackBox;}

There is nothing added to the wrapper itself to support
named extents. When the CDL is compiled, the extent
name is entered into the static component metadata. The
extent name is only used by the application integrator in
the IRL application specification to iterate over the
extent of a component. The underlying implementation
of the IRL wili use the findAlI method provided in the
home interface to realize the extent.

CDL allows the definition of both stored and derived
attributes. Since a stored attribute persists as a CMF of
the IRules vvrapper, the container is responsible for the
get and set methods. A derived attribute is not stored but
virtual. Its value is derived using the get method in the
vvrapper that is generated as the result of compiling CDL.
The get method calls the method of the session bean that
derives the value of the attribute. Consider as an example
the getPortfolioValue method in the vvrapper for Portfolio
that calls the calculatePortfolioValue method of the
portfolioAl session bean. The getPortfolioValue method first
gets the home interface of the wrapped portfolioAl
session bean. This lookup functionality is abstracted in
the method lookupAIHome() that ušes JNDI to locate the
home interface. The call to calculatePortfolioValue
calculates the portfolio value with the corresponding
black-box portfolio EJB as an input parameter,

public float getPortfolioValueO
{IRulesPortfolioAlHome home = lookupAIHome();
IRulesPortfolioAl ai = home.create();
Portfolio self = refroBlackBox();
float value = ai.calculatePortfolioValue(self);
return value;}

Extemalized relationships are also implemented as a
CMF in the IRules vvrapper, since the current restriction
of CMRs in the EJB 2.0 specification limits relationships
to entity beans deployed in the same ejb-jar file.
Relationships are associations that can be single-valued
or multivalued. A single-valued relationship is stored in a
manner simiiar to the reference to the black-box
component, storing the serialized handle to the related
object. Multivalued relationships use a Vector to store
the handles of the multiple related objects. Since a
Vector is serializable, it is then stored in the CMF for the
multivalued relationship. The vvrapper provides the
required translation betvveen the CMF and the required
types.

Consider as an example, the pendingTrades relationship
defined in the Stock component that represents the set of
pending orders for the stock. The foUovving code snippet

illustrates the fiinctionality of the addPendinglrades
method that adds a PendingOrder instance to this
multivalued relationship. The getCmpForPendingTrades()
method provided by the container returns the CMF for
the relationship, vvhich is called cmpForPendinglrades.
The retrieved object is čast to a Vector and the handle to
the IRules vvrapper for the pendingOrder is added to the
Vector before it is made persistent by the call to the
container-provided method setCmpForPendingTrades.

public void addPendingTrades(IRulesPendingOrder ir)
{Object obj = getCmpForPendingTrades();
Vector relatedPendingOrder = (Vector)obj;
Handle handle = ir.getHandle();
relatedPendingOrder.addElement(handle);
Object ref = (Object)re!atedPendingOrder;
setCmpFarPendingTrades(ref);}

The IRules Definition Language allovvs the application
integrator to refer to purchased components and their
methods. Therefore, the underlying implementation of
these languages must translate a call to a method on the
purchased component to its IRules vvrapper, allovving the
hooks into the IRules environment. Thus, the IRules
Wrapper acts as a proxy for calling a method on its
associated black-box component. Whenever a method on
a black-box EJB is called fi^om vvithin the IRules
environment (iroin an action of an integration rule or an
application transaction), the IRules environment passes
the control of execution to the corresponding method of
the IRules vvrapper. Every method in the black-box EJB
has a corresponding method vvith the same method name
in its IRules vvrapper. The arguments to the method in the
vvrapper include ali the parameters to the corresponding
method in the black-box component and in the same
order. There are additional parameters to pass the
transaction context.

The Component Definition Language allovvs for the
definition of events that are raised before or after a
method call on the underlying black-box component. The
IRules VVrapper for the component is responsible for
triggering these method events to the IRules
environment. Consider the čase vvhere an event is raised
after a method call. After completing aH of the
preliminary actions needed by the IRules environment,
the IRules Wrapper delegates to the business method of
the black-box component to execute the business logic.
After executing the method of the black-box component,
control returns to the IRules Wrapper, vvhich is then
responsible for triggering the after method event. The
vvrapper bundles aH the necessary infonnation including
the transaction context into a common IRules event data
structure and publishes the occurrence of the
afterEventName to the IRules topic via the JMS messaging
service. The IRules Event Handler notifies the rule
processor vvhen a new event is detected and rule
processing is done. Further detailed Information about
the execution environment can be found in a companion
paper (Urban et. al. 2002).

A LANGUAGE AND FRAMEWORK FOR.. Informatica 25 (2001) 443-454 453

6.2 Session Beans
The IRules wrapper for a deployed black-box session
bean is also a session bean. Similar to the vvrapper of an
entity bean, the IRules wrapper wraps aH of the business
methods in the underlying black-box session bean and
acts as a proxy to method calls on the purchased
component. The IRules vvrapper also generates the
method-based events that are defined in the CDL. Since
session beans do not represent persistent data, the IRules
session bean vvrapper does not support the additional
attributes or extemalized relationships supported by the
IRules entity bean vvrapper.

The IRules session bean vvrapper is a stateful session
bean. The IRules Wrapper holds a reference to the
underlying black-box stateful session bean to maintain
the conversational state across method calls. For a black-
box stateless session bean, the IRules Wrapper creates a
nevv instance of the underlying black-box component
before invoking any methods on the purchased
component. In the initial prototype that has been
implemented, aH of the required information to access
the underlying black-box session bean, like the JNDI
name of the black-box component it is vvrapping and the
EJB server URL has been stored as part of the state
information of the IRules vvrapper. The IRules session
bean vvrapper is designed as a stateful session bean to
retain this infomiation for the entire Iifecycle of the
IRules vvrapper bean. The current design could be
modifled to obtain the infomiation from environment
variables, thus opening up the possibility of having an
IRules stateless session bean vvrapper that vvraps a
stateless bIack-box session bean.

7 Summary and Future Directions
This paper presented the IRules Component Definition
Language and the metadata and vvrapper framevvork
required for supporting the IRules active approach to
component-based softvvare integration. The IRules
environment acts as a mediator (Gamma et. al. 1995) in
the integration process by encapsulating the logic
describing the intercormections betvveen components
using integration rules.

The implementation described in this paper and its
companion paper (Urban et. al. 2002) on transaction and
execution control is a prototype of the technology based
on the Investment example. Work is underway to
develop a general-purpose system that ušes Jini as the
basis of the distributed computing environment.

There are also language issues to be investigated and
implemented. We are currently developing a compiler for
CDL that ušes JavaSpaces for the storage of metadata
and automatically generates the EJB vvrapper code for
the components. Although vve have an initial design for
the IRL, vve are in the process of investigating condition
evaluation techniques for IRL rule conditions that
involve distributed query processing.

Acknowledgements
We vvant to thank Rohini Patil for her assistance in the
refinement and illustration of the component metadata
diagram.

This vvork was partially supported by a grant from
the National Science Foundation (IlS-9978217).

References
[I] T. Adbellatif An Architecture for Active Database

Systems Supporting Static and Dynamic Analysis
of Active Rules Through Evolving Database States,
Ph.D. Dissertation, ASU, Dept. of Computer
Science and Engineering, Fall 1999, 375 p.

[2] T. Abdellatif, R. Chan, S. W. Diefrich, B.
Siddabathuni, A. Sundermier, and S. D. Urban,
"Meta-Data Components in Support of an Active
Deductive Object-Oriented Database System,"
Proč. of the 3rd IEEE Meta-Data Conference,
Bethesda, MD, On-line publication:
http://computer.org/conferen/proceed/metayi999/,
paper #16, 1999.

[3] K. Amold, The Jinî "̂ Specifications: 2nd Ed.,
Addison-Wesley Publishers, NJ, 2000.

[4] K. Ayyaswamy, "The Design and Implementation
of a ČORBA based environment for Distributed
Constraint Maintenance," M.S. Thesis, Dept. of
Computer Science and Engineering, ASU, 1999.

[5] D. Bara-ett, L. Clarke, P. Tarr, and A. Wise, "An
Event-Based Softvvare Integration Framevvork,"
ACM Transactions on Softvvare Engineering and
Methodology, vol. 5, no. 4, October 1996.

[6] BEA Systems Weblogic Server,
http://edocs.beasys.com/wls/docs61/index.html

[7] G. Bultzingsloevven, A. Koschel, and R. Kramer,
"Active Information Delivery in a CORBA-based
Distributed Infomiation System," Proč. of the First
International Conference on Cooperative
Information Systems (CoopIS'96), Brussels,
Belgium, June 1996.

[8] R. G. G. Cattell, ed., The Object Database Standard,
ODMG 3.0, Morgan Kauftnann, 2000.

[9] S. Chakravarthy and R. Le, "ECA Rule Support for
Distributed Heterogeneous Environments," Proč. of
the International Conference in Data Engineering,
Orlando, 1998.

[10] M. DeJong and C. Laird, "TCL+Java = A Match
Made for Scripting,"
http://wvvw. sunworld.com/sunworldon 1 ine/swol-11 -
iacl.html.

[II] S. W. Dietrich, S. D. Urban, J. V. Harrison, and A.
P. Karadimce, "A DOOD Ranch at ASU:
Integrating Active, Deductive, and Object Oriented
Databases," Data Engineering Bulletin, Special
Issue on Active Database Systems, vol. 15, no. 1-4,
December, 1992, pp. 40-43 (see also
http://wvvw.eas.asu.edu/~adood)

http://computer.org/conferen/proceed/metayi999/
http://edocs.beasys.com/wls/docs61/index.html
http://wvvw
http://sunworld.com/sunworldon
http://wvvw.eas.asu.edu/~adood

454 Informatica 25 (2001) 443-454 S. Dietrich et al.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusabie Design,
Addison-Wesley, Reading, MA, 1995.

[13] Java™ 2 PlatfonTi Enterprise Edition 1.3,
http://java.sun.com/j2ee/

[14] A. Koschel and P. Lockemann, "Distributed Events
in Active Database Systems: Letting the Genie Out
of the Bottle," Journal of Data and Knovvledge
Engineering (DKE), vol. 25, pp. 11-28, 1998.

[15] R. Le and S. Chakravarthy, "Support for Composite
Events and Rules in Distributed Heterogeneous
Environments," Technical Report, Computer and
Infonnation Science and Engineering Dept.,
University of Florida, January 1998.

[16] C. Ma and J. Bacon, "COBEA: A ČORBA Based
Event Architecture," 4th Conference on Object
Oriented Technologies and Systems (COOTS),
New Mexico, April 1998.

[17] Microsoft Corporation. COM+,
http://www.microsoft.com/com/tech/coiTiplus.asp

[18] Object Management Group: The Common Object
Request Broker, Architecture and Specification,
Revision 2.3, December 1998.

[19] Object Management Group: Relationship Service
Specification, version 1.0, April 2000.

[20] N. Pissinou and K. Vanapipat, "Active Database
Rules in Distributed Database Systeins: A Dynamic
Approach to Solving Structural and Semantic
Conflicts in Distributed Database Systems,"
Computer Systems Science and Engineering, vol. I,
pp. 35-44, 1996.

[21] N. Pissinou , K. Makki, and R. Krishnamurthy, "An
ECA Object Service to Support Active Distributed
Objects," Informatics and Computer Science, pp.
63-104, 1997.

[22] J. Rumbaugh, "Relations as semantic constructs in
an object-oriented language," Proč. of OOPSLA,
1987, pp. 466-481.

[23] A. Saxena, An Evaluation of Distributed
Architectures for the Integration of Black-Box
Software Components, M.S. Thesis, ASU, Dept. of

Computer Science and Engineering, Tempe, AZ,
Fall 2000.

[24] A. Silberschatz and S. Zdonik, "Database Systems
- Breaking Out of the Box," ACM SIGMOD
Record, vol. 26, no. 3, September 1997.

[25] S. D. Urban, A. P. Karadimce, S. W. Dietrich, T.
Ben Abdellatif, and R. Chan, "CDOL: A
Comprehensive Declarative Object Language,"
Data and Knowledge Engineering, vol. 22, 1997,
pp. 67-111.

[26] S. Urban, S. Dietrich, A. Saxena, A. Sundermier,
"Interconnection of Distributed Components: An
Overvievv of Current Middleware Solutions,"
Journal of Computer and Information Science in
Engineering, vol. 1, no. 1, March 2001, pp. 23-31.

[27] S. D. Urban, S. W. Dietrich, Y. Na, Y, Jin, A.
Sundennier, and A. Saxena, "The IRules Project:
Using Active Rules for the Integration of
Distributed Software Components," Proč. of the 9""
IFIP Working Conference on Database Semantics:
Semantic Issues in E-Commerce Systems, Hong
Kong, April 2001, pp. 265-286.

[28] S. D. Urban, A. Saxena, S. W. Dietrich, and A.
Sundennier, "An Evaluation of Distributed
Computing Options for the Integration of Black-
Box Software Components," Proč. of the 3rd
International VVorkshop on Advanced Issues of E-
Commerce and Web-Based Information Systems,
June2001,pp. 100-109.

[29] S. D. Urban, S. W. Dietrich, A. Sundermier, Y. Na,
Y. Jin, and S. Kambhampati, "Distributed Software
Component Integration: A Framework for a Rule-
Based Approach," To appear in the Handbook of
Electronic Commerce in Business and Society, P.
Lowry, J. Cherrington, and R. Watson (editors),
CRC Press, 2002.

[30] J. Widom and S. Čeri, Active Database Systems:
Triggers and Rules for Advanced Database
Processing, Morgan Kaufmann Publishers, San
Francisco, 1996.

http://java.sun.com/j2ee/
http://www.microsoft.com/com/tech/coiTiplus.asp

Informatica 25 (2001) 455-463 455

DEPA (Design Pattern Application) - a component-based model for
applying design patterns in software development

Katrina Ji
SOFTITLERNET Inc., 6464 Sunset BIvd., Suite 970, Hollywood, CA 90028, USA
katrinaji@yahoo.com

Sean Chen
Department of Accounting and Legal Studies, Coliege of Charleston, Charleston, SC 29424-0001, USA
Phone: 843 953 8068, Fax 843 953 5697
seanchen@cofc.edu

Keywords: design patterns (DP), softvvare development (SD), component-based software development (CBSD)

Received: June 5, 2001

This article reports ihe DEPA (Design P_allern Application) model - a component-based model for
applying design patterns (DP) in soft\vare development (SD). Prior research has suggested the
usefulness ofDP in large, complicated SD projects. However, there is stili a lack offormal models with
which a software engineer could apply DP to SD in a systematic way. The DEPA model is one such
formal method that allows systematic applications ofDP. We have also illustrated how the DEPA model
works in a realistic setting. It shows that the model can be applied to various domains. Further research
is suggested in order to develop other models ofDP applications.

1 Introduction
Design patterns (DP) are blocks and chunks of codes that
are used to describe core solutions of recurring problems
at an abstract level, typically in jarge-scale software
development (SD) projects. When DP are used in a
specific application, oftentimes there are multiple DP
that may be applicable. To an experienced software
engineer this may not be a problem, because he can
quickly look into the DP that are available, decide on the
cause of action, and choose the one(s) that will fit the
application the best. For a novice softvvare engineer,
hovvever, such a "scanning-evaluation-selection"
process of DP may be problematic primarily due to the
folIowing two reasons:

1. The selection problem - Novice softvvare engineers
may lack the necessary knovvledge or experience in
making a sound choice as to vvhat DP are most
appropriate in a particular application.

2. The communication problem - They may not be able
to understand why is a particular DP chosen by other
more experienced softvvare engineers.

This research project is motivated by our desire to
develop a model that vvill address the above two
problems. The end result of the project is the
development of a formal model that provides a
systematic way for a novice softvvare engineer to select
DP in DP vvhile at the same time to allovv them to knovv
the underlying principles involved in the DP selection

process thus reducing communication gaps among
softvvare developers.

Keller et al. (1999) has proven that DP provide great
helps in understanding the complexity of large softvvare
systems. By applying DP, the SD process does not have
to start from scratch. It results in savings in development
time, in facilitating a productive softvvare life cycle, and
in providing a better communication among softvvare
engineers involved in the SD processes.

According to Gamma et al. (1995), DP contain the
follovving teatures that make them an excellent tool in
SD:

1. They do not give solutions in a specific application
environment, but provide detailed descriptions of
vvhere, vvhen, why and hovv a DP should be used.

2. They give key elements such as participants,
structure, and collaborations that contribute to the
solution to a problem.

3. They include discussions of consequences and
implementation details vvhen using a particular DP.
It also suggests factors to consider if other DP are to
be applied.

2 Design Pattern Application
Even though it is generally agreed that DP is a useful tool
in large-scale SD, to date there is a lack offormal models
of hovv DP can be applied in a systematic manner. In our
literature revievv, we only found a brief suggestion by
Gamma et al. (1995) on hovv to select a DP and hovv to

mailto:katrinaji@yahoo.com
mailto:seanchen@cofc.edu

456 Inforinatica 25 (2001) 455-463 K. Ji et al.

use it. Gamma et al. suggested the follovving steps in
selecting a DP:

1. Consider how design patterns solve design problems
2. Scan intent section
3. Study how patterns interrelate.
4. Study patterns of like purpose.
5. Examine a cause of redesign.
6. Consider what should be variable in your design

These steps are general guidance for correctly selecting a
DP. Hovvever, the real task of selecting a DP relies
heavily on developers' experiences, their understanding
of DP in general, and their familiarity with the target
system to be implemented

Gamma et al. (1995) also suggested the follovving
guidelines to decide the appropriateness of a DP when
that DP is selected:

1. Read the pattern once through Structure,
Participants, and Collaborations sections.

2. Look at the Sample Code section to see a concrete
example of the pattern in code

3. Choose names for pattern participants that are
meaningfiii in the application context.

4. Define the classes.
5. Define application-specific names for operations in

the pattern.
6. Implement the operations to carry out the

responsibilities and collaborations in the pattern.

The two sets of guidelines provided by Gamma et al. are
helpful to assist the identification and application of DP
to some extent. Nonetheless, there are limitations about
how we could make the best use of DP in SD projects.
That is to say that the aforementioned rules are somewhat
ad-hoc, when we take a close look at them. Just as
Gamma et al. (1995) pointed out, these steps "are just
guidelines to get you started." Softvvare design, in
general, will require more detailed guidelines than the
ones by Gamma et al. in above. The DEPA model is a
formal framevvork that we developed in order to resolve
such gap in DP application. Specifically, the DEPA
model provides a solution to the following two problems:

1. The lack of communication in software development:
Unlike a hardware product or a construction project,
an implemented softvvare product stili needs to be
upgraded, maintained, added new features, or
deleted old features. This makes it essential to
document the softvvare design . In a large software
system with thousands or even millions of lines of
source code, it is difficult to understand the system
by reading the source code that lacks proper system
documentation. Because DP teli rationales behind
software designs, such as why and how the softvvare
vvas structured, proper documentation when applying
DP in SD can ease the system understanding and
maintenance in the future. Our proposed DEPA

2.

model provides a systematic way to document the
application of DP in SD.

Midliple applicable DP: DP are descriptions of
Solutions to recurring problems at an abstract level.
They explain, in natural languages, why a particular
DP exists; where, when and how it is applied; and
potential problems and trade-offs associated with
each application. Therefore, each DP may be
applied in different ways, depending on the situation
they are applied. The follovving is an illustration of
the Singleton Pattern. It shovvs that there are more
than one way to implement the singleton pattern, a
DP described in Gamma et al. To avoid confusion in
DP application, a sound model should be able to
ensure that, vvhen the DP is used, it chooses only one
optimal DP in the softvvare project. For example, for
the singleton pattern described in Gamma et al.
(1995) (see Figure 1 in belovv), there could be at
least the follovving tvvo different ways to implement

Singleton
'5>static singletoninstance

(^SingletonO
(#getlnstance()
*^singletonOperation()

Figure 1: Structure ofa Singleton Design Pattern

Method 1:

A sample code in C++ that applies the Singleton
pattern to the MazeFactory class:

class MazeFactory{
public:

static MazeFactory*]nstance();
// existing interface goes here protected:
MazeFactory ();

private:
static MazeFactory* Jnstance;

};

The corresponding implementation is:

MazeFactory* MazeFactory::_instance = 0;
MazeFactory* MazeFactory::lnstance() {

if (_instance ==0)
{ _instance = nevv MazeFactory;
}

return _instance;
}

In addition to the above tvvo situations, this pattern could
be used to control the number of instances in an

DEPA - A COMPONENT BASED SOFTWARE., Informatica 25 (2001) 455-463 457

application as well as to implement the pattern with other
programming languages such as Java (Grand 1998).

Method 2:

The foiloNving is another way for sub-classing the
Singleton class.

class Singleton {
puhlic:

static void Register(char* name, Singleton*);
static Singleton* lnstance();

protected:
static Singleton* Lookup (const char* name);

pri vate:
static Singleton* _instance;
static List<NameSingletonPair>* _registry;

};

The above example shows that, for different applications,
the detailed implementation can vary significantly. Even
for a simple Singleton DP, there are multiple ways to
implement. A formal model in DP application needs to
provide a way to choose a DP when multiple patterns
may be applicable to a potential SD project. In our
proposed DEPA model, we will address this issue.

Research groups have been studying and compiling
common DP, and putting efforts in automating the use of
DP. But there is only little progress in the methodology
and the process of applying DP. VVithout such a
methodology, how to convert a DP that is selected in the
abstract level into software codes in the implementation
level wili stili be difficult. Khriss et al. (1999) pointed
out the need to develop a formal methodology that wi!l
direct softvvare developers in a step-by-step procedure of
how to apply DP. We believe that the DEPA model is an
early attempt to fill the need of such a formal
methodology.

A model directing the vvhole process of applying DP,
which defines how they evoJve from the abstract level to
the implemented code level, makes the best use of design
patterns. The documentation of the vvhole process will
store the rationale behind the software design, vvhich will
make it easier for software maintenance once it is
implemented.

3 The DEPA Model
3.1 Objectives
We proposes a model that details and defines the process
between the abstract level and the implemented level.
This model also describes a step-by-step guidance for
applying DP. The DEPA model will provide the
follovving three objectives:
1. To provide a step-by-step process of applying the

solutions in DP in the abstract level to the

programming language codes in the implementation
level. Ali steps in the DEPA model should be easily
followed by softvvare engineers.

2. To provide a way of tracing the design process.
Every step in the DEPA model should be
documented to make it possible of tracing back to
the original design specifications.

3. To establish a guidance for the future automation of
the DEPA model that will be a tool with easy access
and usage of DP in SD.

3.2 The Five Steps in DEPA
The DEPA model proposes the follovving five steps when
applying DP in a specific SD: generic and domain-
specific, concrete, specific, integrated, and implemented
design patterns. The follovving sections define each of the
five steps in the DEPA model.

3.2.1 Generic design patterns
Generic DP are descriptions of solutions in natural
languages. They are generally published DP compilations
(e.g. Gamma et al. 1995, Grand 1998) that are readily
available to general public.

According to Gamma, elements of DP include intent or
purpose, motivation, applicability, structure, participants,
coUaborations, consequences, implementation, sample
code, knovvn ušes and related patterns. There are also
other ways to describe DP. The purpose of the
descriptions is to help understanding ali aspects of a
particular DP. Since the solutions given in DP are at the
abstract level, they can not be used directly vvithout
considering the context in different applications. Only
vvhen a softvvare developer understands a DP thoroughly
and knovvs why it can be used in a specific context can
he use that DP be effectively and correctly.

in the proposed DEPA model, the original DP vvith
descriptions of solutions are converted into more detailed
forms in order for them to be used in SD.

3.2.2 Domain-specific design patterns
Domain specific DP are core solutions to problems in a
specific domain. They are similar to generic DP and are
at the same level of abstraction as generic DP. The
difference betvveen the tvvo is that generic DP are
applicable in ali areas, vvhile domain specific DP may
only be applicable to a certain area.

For example, the Master-Slave pattern, found in the
development of mobile agents, is a domain specific
design pattern (Lange et al. 1998). It defines a scheme
whereby one agent, called master, can delegate a task to
a slave agent. Figure 2 in belovv shows the structure of
this pattern.

458 Informatica 25 (2001) 455-463 K. Ji et al.

sen6Message-Resu!i

Master

cfeaieAgletO ConcreteSlave
^initialzeTaskO
^doTaskO

Figure 2: Structure ofmaster-slavepattern

The description of the Master-Slave pattern consists of
same elements as those of generic DP: i.e. intent,
applicability, participants, collaboration, consegiiences,
implementation, and sample code. But this pattern is
only for applications in mobile agents, and it may not be
applicable beyond this domain.

There are also other DP for different domain-specific
applications. For example, patterns for network and
communication (Schmidt 1996) and for the modeling
of building simulators (Schutze et al. 1999).

The reason why we put a domain-specific DP at the same
abstract level vvith a generic DP is that the former is also
core Solutions in a description of natural languages.
Therefore, the process of applying a domain-specific DP
is similar to that of a generic DP.

3.2.3 Concrete design patterns
Concrete DP eliminate the ambiguities in the
generic/domain-specific DP level. In order to eliminate
ambiguities involved in the selection DP from the
generic/domain-specific DP level, the DEPA model
vveights the trade-offs, pitfalls, hints, and techniques
associated with the selected DP to come up with concrete
DP that will clearly show their intent.

The following is an example of several possible concrete
DP derived from one generic DP - the Observer pattern:

Subject
*Attach(Obsetver)
^Detach(Obseiver)
*Notily()

I
observer

0..'
Observer

^UpdateO

X
ConcreteSubject

^subjectState

^GetStateO
^SetStateO

subject
<

CorcreteObseiver
^observerState

^UpdateO

Figure 3: The Structure of Observer Pattern

The Observer pattern (Gamma et al. 1995) in Figure 3
defines a one-to-many dependency between objects, so
that when a subject changes its state, ali its dependants
are notified and updated automatically. The Observers, in
turn, will update their states after receiving the
notification. The benefit of this pattern is to keep abstract
coupling between the Subjects and the Observers, and to
avoid being tightly-coupled. The Subject keeps a list of
Observers, but do not know further details of any
particular Observer.

There are several ways to convert this original
Observer DP to a concrete DP:

1. An Observer may depend on several Subjects. In
such čase, an update interface should include the
Obsei-ver. When the Observer updates its state, it
will know vvhich Subject has changed its state.

2. The update method may be triggered by a Subject
or by a Client. The difference is that the Client
may wait until a series of states being changed
before notiiying the Observer.

3. When the Subject broadcasts additional
Information about changes, the Subject may send
Observers detailed Information about the
changes.' Otherwise the Subject may send only
notifications, and Observers ask for details
explicitly thereafter.^

4. The Observers may register in a Subject as only
interested in specific events. In such čase, the
Attach and Update methods must have a
parameter indicating the Observers' initv^sis.

The above example illustrates that, when applying a
generic/domain-specific DP, it is necessary to generate
concrete DP will eliminate ambiguities involved in the
generic/domain-specific DP. The concrete DP will not be
represented by descriptions in natural languages as those
in generic/domain-specific DP.

3.2.4 Specific design patterns
After the concrete DP eliminated ambiguities in the
generic design states, the next step is to consider the
specific requirements and situations for specific
applications. In this step, Specific DP, it includes not
only key solutions from concrete DP, but also detailed
designs for specific applications.

The solutions in the concrete DP contain only key
elements including classes, methods, and relationships
among classes that have contributed to solving the
problem. They are not directly related to the current

' Such process is called the push mode. See Gamma et al.
(1995, p. 298)
^ Such process is called tht puli mode. Also in Gamma et
al. (1995, p. 298)

DEPA - A COMPONENT BASED SOFTWARE.. Informatica 25 (2001) 455-463 459

application. For different applications, the concrete DP
must be modified to fit into the environment of the
specific system. This is a process of renaming those
elements in concrete DP, and adding new elements for
system requirements. After the specific design step, the
DP are ready to be implemented.

The foUovving is an example of applying the Observer
pattern in a design for a gas station system. In a gas
station, pumps control the dispensing of petrol, and
screens show a volume of the petrol delivered. Figure 4
in belovv (Khriss et al. 1999) is a UML diagram for a
specific design pattern ofthe Observer pattern.

In Figure 4, Ptimp class and Screen class are concrete
classes or subclasses of Subject and Observer classes,
respectively. Compared to Figure 3, some ofthe classes
and methods in the concrete DP are renamed, and some
application-specific methods are added to the classes.

Subject
*Attach()
*Detach()
»Notifvt)

observer Observer
^Update()

\

Pump
Polurne

*create()
*setVolunne()
*getVolume()
*gunRemove()
*squeezeTrigger()
*reieaseTrigger()
*gunReplace()

subject
<

Z \

Screen
Polurne

*creste()
*on()
*off()
^Update()

Figure 4: UML diagram ofa specific Observer pattern.

The specification of DP includes renaming of classes and
methods, cloning of classes, and changing and adding
attributes, methods, and classes. The specific DP are
detailed softvvare designs before implementation, and the
DP are embedded in the applied environment.

The above figure is a UML class diagram. The specific
DP may also include sequence diagrams for the specific
application that is based on the concrete DP. These
diagrams form the analysis part ofthe specific DP.

3.2.5 Integrated design patterns
Integrated DP combine more than one specific DP. One
DP may provide solutions to only one problem. For
more complex systems, there may be more than one
applicable DP. Integration is a process to combine ali
those applicable DP.

Various ways to integrale DP may be applicable,
including aggregation, composition, and containment.
Fowler & Scott (2000) describe aggregation as the ''part-
of relationship, and composition as the "part object"

belonging to only one "whole". Containment
incorporates layers of DP into a particular DP

After the concrete and specific DP stages, the integration
step needs to consider only the interfaces and
relationships aniong specific DP.- The integrated DP is a
completed software design. In this paper, we will provide
an exaiTiple of an integrated DP usingtwo specific DP.

3.2.6 Implemented design patterns
The implemented DP are programming codes. The
implementation is based on the integrated DP, which
may be implemented in C++, Java, or other object-
oriented programming languages. ft will be hard to
recognize the original DP in the programming codes.
But with the documentation of the whole process in the
DEPA model, it will be easier to understand and
maintain the implemented product.

3.2.7 Putting ali things together - the DEPA model
Figure 5 in below shovvs the DEPA model and the five
steps in the model:

Generic
Design Pattern

Domain Specific
Design Pattern

Inslanliate

Concrete Design Pattern

1

Fit toEnviionment

Specific Design Pattern

^
Integrale

Integrated Design Pattern

\
Coding

Implementation

Describedin

Natural Language

DisCo Language

(Truuition tabk)

UML

UML

Implemented In speci5c
programming language,
such as C++, Java, etc.

Figure 5: The DEPA Model

4 The DEPA Model - An Illustration
Figure 5 above shovvs that the generic DP are described
in natural languages with ambiguities. Jn the DEPA
model, different states of DP must be expressed in
certain specifications. With the detailed specifications,
DEPA is not only a tool for DP selection guidance, but
also is a method to document every step in such selection
process

In the DEPA model, the DisCo language is used to
represent concreteDP. DisCo is a clear, easy to use
language for representing concrete DP. With DisCo, the
concrete DP can extract aH key elements from the
generic DP without ambiguities for the concrete DP.

Table 1 in belovv shovvs the representation of elements in
a concrete DP:

460 Informatica 25 (2001) 455-463 K. Jietal.

Name
Class

Extended-
class
Relation

Method

Extended-
method

Inheritan
ce class

Method in
Inheritan
ce class

Expression
Class class-name = { class-
attributes}
class. class-name = class-name +
{class-attribute}
Relation
(n-instance-classl) • Relation-
name • (m-instance-class2):
class-name 1 X class-name2
Method-name(roIe-name: class-
name; parameter):
enabling_conditions -^
result States
Method-name(role-name; class-
name; parameter):
Refines method-name(role-

name: class-name; parameter):
enabling_conditions •>
result States
class subclass-name =
superclass-name + { class-
attributes}
Method-name (role-name, class-
name; parameter):
Reflnes method-name 1 (role-

name 1: class-name 1;
parameterl)

for role-name 1 e class-name

Table 1: Representation a Concrete DP

As a middle state of DP in the DEPA model, the concrete
DP does not have ambiguities comparing with the
generic DP. After considering the applicability,
structure, participants, collaborations, consequences, and
implementation in the generic DP, decisions concerning
trade-offs, hints, suggestions, and the applied system
were made. The resulting concrete DP is a concrete
solution for the application system being developed. The
concrete DP complete the following two tasks:

1. Keeping aH the key information in generic design
pattems.

2. Choosing a concrete solution for the applied system
based on considerations of the trade-offs, hints, and
suggestions in generic design patterns.

The concrete DP in the DEPA model have the follovving
two unique features:

1. They provide reasons for the existence of aH classes
and methods.

2. The require documentation in the abstract level in
the softvvare design. Without the concreteness of
eliminating the ambiguities in generic DP, it is
unfeasible to apply the generic DP to softvvare
design.

The follovving sections provide a step-by-step illustration
of how the DEPA model works.

4.1 From Generic/Domain-specific DP to Concrete
DP
Generic/domain-specific design patterns include ali
helpful information for the concreteness. Concrete DP is
the first step to apply generic sign pattems. The concrete
DP only focuses on those elements that contribute to
Solutions in Generic/Domain-specific DP. The elements
are:

• Classes in the DP.
• Relationships between the classes in the DP.
• Methods and attributes which contribute to the

purpose of the DP.

The following is an example of concrete DP from an
Obsei-ver DP introduced in Section 3.2.3.

From the action Notify(s:Subject, d) in the formalizing
expression; we have

Exnression 1

Notiiy(s:Subject, d):
—> -iS.Updated . class Observer

A s.Data' = d

The subject is responsible to trigger the update.
The Update(s:Subject; o:Observer; d)
Update (s:Subject; o:Observer; d):

s.Attached.o
A-i. Updated.o
A d = s.Data
—> s.Updated'.o
A o.Data'=d.

This expression indicates that this is a puli model. First,
the Subject sends the notification, then the Observer asks
for details later.

The follovving is another possible concrete DP from the
same Observer pattern: the concrete solution is that the
Observer is attached to the Subject according to the
specific events of interest.

ExDression 2

class Subject = {Data},
class Observer = {Data}.

Relation (0..1). Attached
Relation (0..1).Updated

. (*): Subject X Oserver.
.(*): Subject X Observer.

Attach(s:Subject; o:Observer; interest):
-is. Attached.0 '^ o.interest

-^ s.Attached'.0
Detach(s:Subject; o:Observer; interest):

s.Attached.o '^ o.interest

DEPA - A COMPONENT BASED SOFTWARE.. Informatica 25 (2001) 45 5-463 461

-^-iS.Attached'.o
A -iS.Updated'.o

Notify(s:Subject, o.Observer; d; interest):
o.interest

—> —is.Updated' . class Observer
A s.Data' = d,

Update (s:Subject; o*:Observer; d: interest):
s.Attached.o ^ o.interest

A-i. Updated.o
A d = s.Data
-^ s.Updated.o
A o.Data'=d.

As we have introduced in section 3.2.6 about the
concrete DP, there are multiple Concrete DP from the
generic/domain-specific DP. The above expressions are
only two possible Concrete DP from the Observer DP.
With DisCo language, the concrete DP can express the
solution clearly without ambiguities, and emphasize on
the behaviors among classes. The concrete DP will then
evolve to the specific DP with details in the individual
classes.

4.2 From Concrete DP to Specific DP
The specific DP is the next step after the concrete DP
with Solutions for a problem. The specific DP direct
softvvare developers to focus on applying the concrete
DP to the specific environment and on adding other
features for the applied system.

The considerations in the specific DP are different from
those in the concrete DP. While the former focuses on
eliminating ambiguity in the generic/domain-specific DP
and, the later concentrates on the application of the
concrete DP to SD.

Modifications included in the specification are:
• Rename elements in the concrete DP, such as

class, method, attributes, and parameters.
• Extend the • classes and methods, when it is

necessary for the applied system.
• Add classes or methods for other system

requirements.
• Add more details in the classes or methods

according to the specific applied system.

After the modification, the concrete DP will be
embedded in the specific DP, and it will be hard to
distinguish key elements originated from the concrete
DP. To keep documentation of the evolution of a generic
DP, the DEPA model keeps a tramition table between
the concrete DP and the specific DP, which is a mapping
from class names, method names, and attribute names in
the concrete DP to those in the specific DP. This table
helps tracing back from the specific DP to the concrete
DP.

In the DEPA model, the specific DP is expressed by
UML, because UML emphasizes on the individual
classes and their behaviors. After detailed design for the

application requirements is established, the specific DP is
ready to be implemented.
To use UML language, there is a transformation from the
DisCo language to the UML. Table 2 in beIow gives
more details about such transformation process:

DisCo Language
Class-name
Method-name
Attribute, parameter
Conditions and results
Role name

UML language
Class-name
Operation-name
Parameter
Pseudo code
Role name

Table 2: Transformation from DisCo language to UML

In a specific DP, the structure given in the generic DP
has been embedded. By keeping the concrete DP in the
DisCo language and the transition table, the contribution
of the classes, methods, and why they exist in the
specific DP are clearly documented. The documentation
provides a method to understand the design during and
after the SD.

The evolution of a DP from the Generic/Domain-
specific, to the Concrete, and then to the Specific state is
a process for applying ali individual DP. The integration
of more than one DP in the system development is the
next step in the DEPA model.

4.3 From Specific DP to Integrated DP
DP provide core soIutions for some recurring probiems.
However, most of the time, there are many probiems to
be solved in software design. After the Concrete and the
Specific DP steps, integration of the Specific DP is the
last step to form a component in SD.

Figure 6 in below shows an example of integrating
Template Method and Builder Pattern in an application
of the data set construction. Both the Template Method
and the Builder Pattern are Generic DP in Gamma et al.
(1995). The purpose of this design is to create a data set
independent of the datasource (Masudaet al. 1998)

Transiator

*co(i5lructDat3Set()
^leateAltributeCollectionO
^createTrainingCaseCollectionO

OataSetBuilder

TransIatorOnDalahase

^createATlribuleColleclionO
^reateTrainingCaseColleclionO

DataSet

TranslatorOnFile

^createAltributeColktionO
^createTrainingCaseCollecfion()

Figure 6; Integration of Template Method & Builder DP

462 Informatica 25 (2001) 455^63 K. Ji et al.

In Figure 6, the Builder Pattern solves the problem of
separating the construction of a complex object from its
representation for the creation of Dataset. This solution
makes it possible to change the internal representation of
a data set object. The Template Pattern is applied to
solving the problem of creating the Dataset from
different data sources. It reuses the skeJeton of the data
creation algorithm.

By foliovving the DEPA model, the software design is a
process of problem solving with available solutions in
Generic DP. In the Integration phase, ali problems have
been solved and the softvvare design is ready to be
implemented.

4.4 Implementing the Integrated DP
After integrating aH the DP, the next step is to implement
the design in object-oriented programming code. The
implementation can be coded in specific programming
languages such as C++ or Java.

With the guidance in the DEPA model and the
documentation at each step, softvvare developers have
understood why and how the system is designed before
implementation.

5 Conclusion and Future Directions
This research reports the DEPA (Design Pattern
Application) model, a component-based model for
applying design patterns (DP) in software development
(SD). We have discussed the lack of a formal model in
applying DP as an area that merits further research, and
have developed the DEPA model that allows a
systematic way of applying DP in SD projects,
particularly to those SD projects with resource
constraints. We have also provided a step-by-step
illustration to show how such model will work in a
realistic setting.

The DEPA model is a guidance of a procedure of
clariiying the ambiguities and imprecision in the original
DP. Without eliminating those ambiguities, the
Generic/Domain-specific DP cannot be applied in a
specific softvvare design context. We believe that the
DEPA model has achieved our objectives by supplying
ways to convert Generic/Domain-specific DP to
Concrete DP, to Specific DP, and to Integrated DP. With
the developed Integrated DP, the last stage in SD -
implementation and coding - will be easily achievable
even for novice softvvare engineers.

Although there has been prior research that intends to
come up with a general method of formalizing design
patterns, there stili lacks a standardized DP
representation. For example, Pree (1994) introduced the
concept of meta-patterns. He used seven basic meta-
patterns to represent design patterns on a meta-level.
Florijn (1999) proposed fragment model that ušes
fragments to represent the structure of DP. Mikkonen

(1998) discussed how to formalize DP by using DisCo
Language. Eden & Hirsheld (1999) used meta-language
and proposed a pattern-vvizard of transforming DP from
one language to another. However, none of the above
research settles the formal representation issue.

According to Eden & Hirsheld (1999), there
following reasons for the formalization of DP:

are

1. Existing specifications contribute little or
nothing to the understanding of when and how
to use a design pattern.

2. Patterns are abstractions, or generalizations,
and therefore are vague, ambiguous, and
imprecise.

3. Formalization is impossible because there is no
fixed elements in patterns, and everything can
be changed.

4. Patterns are core solutions or concepts whose
essence is intangible, elusive, and hence
beyond the scope of a literal expression.

We believe that the aforementioned reasons fully justiiy
the need of a generalized and standardized DP
presentation, so that software engineers and researchers
alike could use the presentation to develop more DP in
the future.

6 REFERENCES

[1] Eden, A. E. & Hirsheld Y (1999)
understanding of software
http://www.math.tau.ac.il/~eden.

On the
patterns.

[2] Forijn, G. (1999) Tool support for object-oriented
(design) patterns.
http://www.serc.nl/people/florijn/work/patterns.html

[3] Fowler, M. & Scott, K. (2000) UML DistiUed: A
Brief Guide to the Standard Object Modeling
Language. Addison-Wesley Publishing Co.

[4] Gamma, E., Helm, R., Johnson, R., & Vlissides, J.
(1995) Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Publishing Co.

[5] Grand, M. (1998) Patterns in Java (Vol. 1). John
Wiley & Sons, Inc.

[6] Khriss, I., Keller, R. K. & Hamid, I. A. (1999)
Supporting Design by Pattern-based Transformations.
Proceedings of the Second International Workshop
on Strategic Knowledge and Concept Formation, pp.
157-167.

http://www.math.tau.ac.il/~eden
http://www.serc.nl/people/florijn/work/patterns.html

DEPA - A COMPONENT BASED SOFTWARE.. Informatica25 (2001) 455-463 463

[7] Keller, R. K., Schauer, R., Robitaille, S. & Page, P
(1999) Pattern-based Reverse-Engineering of Design
Components. Proceedings of the International
Conference on Software Engineering, pp. 226-235.

[8] Lange, B. L. & Oshima, M. (1998) Programming
and Deploying Java Mobil Agents wilh Aglets.
Addison-WesIey Publishing Co.

[9] Masuda, G., Sakamoto, N. & Ushijima, K. (1998)
Applying Design Patterns to Decision Tree Learning
System. Proceedings of the SIGSOFT
1998Conference. pp. 111-120.

[10]Mikkonen T. (1998) Formalizing Design Patterns.
Proceedings of the 1998 International Conference
on Software Engineering, pp. 115-124.

[ll]Pree, M. (1994) Meta Patterns - A Means for
Capturing the Essentials of Reusable 0 0 Design.
Proceedings of the Eighth Etiropean Conference on
Objected-Oriented Programming (ECOOP), pp.
150-162

[12]Schmidt, D. C. (1996) A Family of Design Patterns
for Flexibly Configuring Network Services in
Distributed Systems. Proceedings of the 1996
International conference on Configiirable
Distributed Systems.

[13] Schutze, M., Riegei, J. P. & Ziinmermann, G. (1999)
PSiGene - A Pattern-Based Component Generator
for Building Simulation, Journal of Theory and
Practice of Object Systems (TAPOS), Vol. 5, No. 2,
pp. 83-95.

Informatica 25 (2001) 465-474 465

An approach for modeling components with customization
for distributed software^
X. Xie and S. M. Shatz
Concurrent Softvvare Systerns Lab, University of Illinois at Chicago, USA
Phone:+l 312 996 5488, Fax:+1 312 413 0024
shatz@cs.uic.edu

Keywords: Component Customization, Design Models, Distributed Software, Petri Nets

Received: June 4, 2001

Component-based software development has many potential advantages, incliiding shorter tirne to
market and lower priče, making it an attractive approach to both customers and producers. However,
component-based development is a new technology with many open issues to be resolved. One
particular issue is the specification of components as reusable entities, especially for distributed object-
oriented applications. Specification ofsiich components by formal methods can pave the wayfor a more
systematic approach for component-based software engineering, including design analysis and
simulation. This paper discusses an approach for blending Petri net concepts and object-oriented
features to develop a specification approach for distributed component software systems. In particular,
a schemefor modeling behavior restriction in the design ofobject systems is presented. A key result of
this work is the definition of a "plug-in" structure that can be used to create "subclass" object models,
which correspond to customized components. Algorithms that support the automatic synthesis ofthese
models are provided, discussed, and illustrated by examples.

1 Introduction and Motivation
There is significant interest in using components in
software development. Specification and implementation
of a system in terms of existing and/or derived
components can dramatically decrease the tirne required
for system development, increase the usability of
resulting products, and lower production costs [1].
However, component-based development is stili
immature, with a lack of established procedures and
support from formal modelling. Techniques and tools
that are based on formal methods can pave the way for
advanced softvvare engineering capabilities- such as
design analysis and simulation.

Reuse principles have typically placed high demands on
reusable components. Such components need to
sufficiently general to cover the different aspects of their
use, while also being simple enough to serve a particular
requirement in an efficient way. This has resulted in a
situation where developing a reusable component may
require three to four times more resources than
developing a component for particular use [2]. Thus,
component vendors desire to make fuU use of these
components in order to achieve reasonable profit levels.
Such component use requires the customization of
general components, a process that is aided by applying
different constraints to fiinctionality to support different
priče policies and different user groups.

Often a component is not effectively reusable because its
interface or part of the implementation does not match
the specified requirements of a target application. To
achieve the reuse, the component needs to be customized
into another component that fulfills the requirement [3].
One purpose of the customization is to apply constraints
in situations where the functionality of a "base
component" is more general than is actually needed, or
when some base-componenfs features exhibit
characteristics not suitable for a particular application -
for example some functions (or methods) may not be
fault tolerant or may be resource hogs. Thus, the
component's behavior must be restricted before it can be
reused in a new design.

One potentially efficient and natural technique to support
constraints is a particular type of inheritance knovvn as
restriction inheritance [4]. Since subclassing by
restriction often conflicts with the semantics and
intention of inheritance, where an instance of a subclass
should be an instance of the superclass and should
behave like one, some researchers have suggested that
restriction inheritance be avoided [1][5]. But, in our own
experience, which does involve development of
commercial component-based software, we have
observed benefits of restriction inheritance for

This material is based upon work supported by, or in part by, the U.S. Army Research Office under grant number
DAADI9-99-1-0350 and by NSF under grant number CCR-9988168

mailto:shatz@cs.uic.edu

466 Informatica 25 (2001) 465-474 X. Xieetal.

customizing components. First, most commercial
component-based softvvare is based on middlevvare
technologies such as ČORBA [6] and/or COiVI [7]. As a
result, these systems mostly consist of classes. In COM,
even the interface of a component is a class. So, it seems
natural to use inheritance techniques (defined for class-
based systenis) to handle constraints. Also, restriction
inheritance is efficient, simple and straightforward.
Finally, since restriction inheritance is being used for the
purpose of defining a wrapper for components, the
original components and/or class is not intended to be
used directly, vvhich limits any potential disadvantage
associated with the use of restriction inheritance.

To develop a systematic design process with the
capability for automated simulation and analysis, it is
valuable to define a design method's syntax and
semantics in terms of some formal notation and method.
For engineering of distributed object systems, it is
desirable for the formalization to provide a simple and
direct way to describe component relationships and
capture essential properties like non-determinism,
synchronization and concurrency. Petri nets [8] are one
formal modelling notation that is in many ways well
matched for general concurrent systems. In particular, the
standard graphical interpretation of Petri net models is
appealing as a basis for a design notation. But, standard
Petri nets do not provide direct support for high-level
design and object oriented features. This has motivated
some recent research into methods for combining Petri
net modelling and object-oriented design. In general, the
proposed methods use enhanced forms of Petri nets as a
base of the combination, and pursue two main
approaches [9]. One is the "objects inside Petri nets"
approach, in which the semantics of tokens in Petri nets
are expanded to include other information, vvhich could
include object definitions (e.g., [10]). The other approach
is the "Petri nets inside objects" approach, in which
traditional Petri net constructs are used to model the
internal semantics of object (e.g., [11]).

In this paper we introduce a model called a State-Based
Object Petri Net (SBOPN), which is developed from the
basic idea introduced in [12]. An example of using
SBOPN concepts in the domain of aspect orientation is
described in [13]. In this paper we extend the basic
SBOPN model to directly support restriction inheritance
modelling for the purposes discussed earlier. SBOPN is
most similar in špirit to Lakos' Language for Object
Oriented Petri Nets, LOOPN [10]. LOOPN's semantics
are richer, but SBOPN provides a more specific, and thus
more intuitive, notation for capturing the behavior of
distributed state-based objects. Like LOOPN, SBOPN is
based on a generalized form of Petri net called colored
Petri nets [14]. One other difference between LOOPN
and SBOPN is that the primary encapsulator of object
behavior in LOOPN is tokens, vvhile SBOPNs use
separate Petri net objects whose states are captured by
special colored tokens. Another language, namely CO-
OPN/2 [15], is also a "Petri nets inside objects." CO-
OPN/2 ušes high-level Petri nets that include data

structures expressed as algebraic abstract data types and
a synchronization mechanism for building abstraction
hierarchies to describe the concurrency aspects of a
system. CO-OPN/2 is a general model that focuses on
concurrency. SBOPN focuses more on the architectural
modeling of state-based systems; thus it is simpler and
more domain-specific.

The structure of this paper is as follovvs. Section 2
provides details on SBOPN modeling and discusses the
restriction subclasses and SBOPN control places. Section
3 describes our approach for synthesis of subclass
models that capture instances of restriction inheritance.
The approach is characterized by the use of special net
structures called "plug-in structures." Finally, Section 4
provides a conclusion and mentions some future work.

2 Subclass Component Models and
Control Places

In this section, we discuss how to derive design models
for subclass components. Due to lack of space, we omit
the formal definition of the SBOPN model, which can be
found in [16]. A SBOPN model consists of a set of
individual object models, called State-Based Petri Net
Objects (SBPNO).

A SBPNO is denoted graphically as a Petri net (a subnet)
inside a box and a State-Based Object Petri Net, SBOPN,
is a Petri net consisting of connected SBPNOs, which are
components of the system being considered. A marking
of a SBOPN is the distribution of state tokens to the
SBPNO components, and an SBOPN system (N, Mg) is
an SBOPN, N, along with an initial marking Mo (the
initial States of the objects). In a SBOPN system, a
transition t is said to be enabled if and only if, for each p
e 't (where 't is the set of input places for transition i), p
contains a token whose state value is an element of the
state-filter for are (p, t). When an enabled transition fires,
it removes from each input plače a token vvhose state
value satisfies the corresponding state filter, and then
deposits a token in each output place. The state value
assigned to a deposited token is one of the elements
given as an output of the corresponding state-transfer
function. For example, assume an are (/, p) with the state-
transfer tuple (q, J), where the state-transfer function/(3^)
= {x}. Then the firing of transition t will deposit a token
into place p and the state-value of this deposited token
will be equal to the state-value of the token removed
from place q.

Consider the classic example of a system that ušes a
bounded buffer to temporarily hold items, such as
messages. In this version we allow an operator to enable
and disable the buffer, in addition to the standard
producer and consumer components. The four system
components - buffer, producer, consumer and operator -
operate asynchronously and only interact via messages
initiated by the producer {put message), consumer {get

AN APPROACH FORMODELING COMPONENTS. Informatica 25 (2001) 465^74 467

message) or operator {enable and disable message). In
particular, the producer sends put messages to the buffer
when the producer has some new item to be deposited
into the buffer and the consumer sends get messages to
the buffer when the consumer desires to remove an item
from the buffer. Also, the operator can send enable or
disable message to enable or disable the buffer. At any
point in time, the buffer should be in one of four states:
Empty, Full, Partial (means Partially Fult) or Disabled.
Depending on its state, the buffer may or may not be able
to accept the messages put, get, disable and enable.
When the buffer is in Emply or Partial state, it can accept
the put message and change to Partial or Full state.
When it is in Partial or Full state, it can accept the get
message and change to Empty or Partial state. When it is
in any state except the Disabled state, it can accept the
disable message and change to the Disabled state.
Finally, when it is in the Disabled state, it can accept the
enable message and change to its previous state (before it
was disabled): Empty, Partial or Full. To simplify the
example, we simply assume that after accepting an
enable message, the buffer is reset to Empty state. Figure
1 shows a simple SBOPN model for this system. Because
we do not model a specific buffer bound, the model is
imprecise with respect to dependencies between the get
and put methods.

To simplily SBPNO models, implicit state filters and
implicit state-transfer tuples are allovved, i.e., definitions
are assumed if they are not explicitly specified. For an
implicit state filter, the state-filter is States. Note that in
Figure 1, the state filters are implicit in the producer,
consumer, and operator objects. An implicit state-transfer
tuple can be used only when the output plače associated
with the are is an input plače of the transition associated
with the are - the are is part of a self-loop. The state-
transfer plače is the plače in the self-loop. We also
require an implicit state-transfer function's output to be
the state-value of the token removed from the plače in
the self-loop. Due to the siiTiplicity of the producer,
consumer, and operator object models, the state-transfer
tuples are also implicit.

Now we can identify properties of a restriction subclass
and present the definition of a restriction subclass model.
First, the methods of a restriction subclass object should
be a subset of the methods of the superciass object.
Second, the externally observable behavior of a
restriction subclass object should be observable in the
behavior of the superciass object. In other words, any
firing sequence (defined as in standard Petri nets) of a
SBPNO subclass model should be a firing sequence of
the superciass model vvhen we only consider the shared
transitions. In the follovving definition we use the
notation a\r, a projection of cronto T. As an example of
this projection, let a = tjt2tit3t2, and T = (t/, ts), then o\r
= t,t,tj..
Definition 1 (Restriction Subclass Model): Let A'; =
(Typei, NGi, States,, ST,, SFM,. STM,), N2 = (Type2,
NG2, States2. ST2, SFM2, STM2) be two SBPNOs, then N2
is a restriction subclass model of N, if and only if:

1) ST2aSTi
2) For any marking M2 of N2, there exists a marking Mj

of N/, such that for any firing sequehce ô of (^2,
M2), there exists a firing sequence C; of (A ;̂, M,),
which satisfies CTilsn = cr2\sT2'

A particular restriction subclass model must be defined
in terms of some particular superciass model and some
specific method restrictions. These restrictions are
captured by a restriction function, as defined next.

Definition 2 (Restriction Function): Let N/ = (Typei,
NGi, States,, /S,, Stoken,, ST,, SFM,, STM,) be a
SBOPN, and let function/ SF, -^2^"'""', where SF, is

Stdtssl the domain of SFM,, and 2 is the power set of
States,. The function/is called a restriction function for
N, if and only if/satisfies: Vsf, e SF,,f(sf,) csf,.

Applying/to the state filters of N, creates a new model,
which we denote as N,\f. It can be shown that N,\fK a
restriction subclass model of N,, but note that N,\f
features a disadvantage: the change in the interface
makes it difficult to directly identiiy that the new object
is one of many possible behaviourally restricted objects
derived from a common object. Our goal is to create a
"plug-in" structure that can be added to a superciass
model causing it to have the same behaviour as N,\fhuX
avoiding the disadvantage. Such a plug-in structure must
be able to control the firing of some shared transition t.
This is accomplished by using a so-called "control plače"
as the heart of the plug-in structure. The control plače
must ensure that the state-value of a token in the control
plače "tracks" the state-value of a token in one of the
input places p to the transition t. We call such a plače p
the "controlled plače."

Definition 3 (Control Plače): Let A' = (Type, NG, States,
ST, SFM, STM) be a SBPNO, andp/ and/?^ be two places
of A'. We say that p2 is a control plače for p, (p, is a
controlled plače) if and only if:
1) (ST np2'9i0)A(ST np2' C ST n /7,'; (Note:

Pi' is the set of output transitions of the plače/?;).
2) For any shared transition t e (ST n P2'), the

associated state filter for the are-(^2, t) is a subset of
the state filter for the corresponding are (pl, t).

3) For any reachable marking M' fi-om M, which
satisfies M(p,) = M(p2), and any transition t e (ST
r)p2'), \f t fires under M', then the tokens consumed
by t from p, and p2 should have the same state
values.

3 Synthesis of Plug-In Structures

3.1 Basic Plug-in Design

A straightforvvard way to implement a control plače is to
create a duplicate plače. The basic idea has two steps.
First, we duplicate the controlled plače, such that the new

468 Informatica 25 (2001) 465-474 X. Xie et al.

plače has exactly the same input and output
characteristics as the controlled plače. Obviously, any
change in the marking of the controlled plače is
simuItaneously reflected in the marking of the new
duplicated plače. Because the new SBPNO (created by
the duplication process) has the same exact behaviour as
the original SBPNO, the new SBPNO serves as a (trivial)
restriction subclass. In the second step, we modiiy the
State filters for the arcs from the new plače to ali shared
transitions such that they satisly the specific requirenient
of the particular desired restriction subclass. This creates
a model for a customized component. Recall that the
specific restriction requirement (i.e., the customization
feature) is determined by a restriction function, as
defined in Definition 2.

Although a duplicating plače can be used to create a
control place and thus build a restriction subclass without
changing interfaces, there is one significant
disadvantage: redundancy. For example, in creating the
"disable-free synchronous" buffer model from Section 2,
we do not want to change the firing conditions of the
enable and get methods. But it is necessary for the
control place to connect with the associated shared
transitions. Also, these additional arcs must carry the
same state-filters and state-transfer functions as in the
superclass model. Such extra arcs, which do not change
the behaviour of the methods, imply an existence of
redundancy in the new model.

Since our goal is to ensure that the state-marking of a
control place "tracks" that of the controlled place, we can
copy the token of a controlled place into the control
place, but we must be sure that this copying occurs
before allowing these places to enable any shared
transition. We call this type of control place a "refreshing
place" since it gets refreshed (i.e., the state-value of its
current state token is updated) each tirne the state-value
of the token in the corresponding controlled place
changes. Figures 2, 3 and 4 illustrate this idea by a
simple example. In Figure 2, we have a SBPNO for a
component Cl. Now suppose we want to model a
restriction subclass C2 that has the property that /; can be
enabled only when the object is in the state a - instead of
either state a or b, as in the component Cl. We need /̂ to
remain enabled in the a state.

To model this subclass, we create a new place p2 (see
Figure 3) as a control place candidate. Transition /j is
introduced for the purpose of copying the state token
from pi to p2. As in the duplicating place technique, the
state filter associated vvith p^s connection to ti is {a}.
Hovvever, under the general firing rule that controls the
behaviour of a SBPNO, vve cannot guarantee that the
tokens in pi and pj are of the same value when ti is
enabled. For example, in Figure 2, suppose pi has initial
state a, then the firing sequence is t't2ti . Now consider
Figure 3, where both pi and p2 have initial state a. Once
t2 fires, p I has state b, while p2 stili has state a. If t^ does
not yet fire, pi and p2 have different states, but O is stili
enabled. As a result, vve could get the same firing

sequence as Cl, ti t2ti . However, C2 is supposed to only
allow the restricted firing sequence ti't2, where we ignore
the internal transition t} in the firing sequence. So the
construction in Figure 3 does not yet provide for a proper
modelling of the control place.

The problem is that when /2 fires, the token in p2 remains
unchanged and thus is not "tracking" the marking of/jy.
To solve this problem, we need to force ts to fire
immediately after /̂ fires, i.e., to refresh p2 immediately.
This is accomplished by using a special form of Petri net
are called an activator are [17]. An activator are can be
used to connect a place to a transition. For nets vvith
activator arcs, the transition firing rules are as follovvs: 1)
Those enabled transitions vvith activator arcs have the
highest priority, and 2) A transition that has activator are
input(s) cannot fire twice in succession for the same
input marking, i.e., the nefs marking must be modified
in some manner before the transition can fire again. For
example, in Figure 4, ti, t2 and t; are enabled, but t; has
an activator are (denoted by the are vvith a solid bubble),
so it fires first. After firing t}, vve get the same marking,
so I3 cannot fire again. As a result, only ti or /̂ can next
fire. Now, if ti fires, because the marking remains
unchanged, vve have the same situation as before ti fires.
But if t2 fires, both ti and /j are enabled. Since the
marking has changed, only /j can fire, vvhich copies the
token b from pi to p2, i.e., p2 is refreshed. This copying of
the state-value from pl to p2 is due to the state-transfer
function F3. Note that tj is not enabled any more after /5
fires. As vve can see, now p2 serves as a proper control
place to ensure vve have only one firing sequence ///^
(again, ignoring the internal transition tj in the firing
sequence).

We now present two algorithms for synthesis of
restriction subclass models using plug-in structures. The
first algorithm is used to create a refreshing place. Its
purpose is to support the second, more important,
algorithm, vvhich synthesizes a restriction subclass
model.

Algorithm 1: Create a refreshing place in a SBPNO.
Input: A SBPNO N = (Type, NG, States. ST, SFM,

STM), and a place/?/ that satisfiesp/ e ST.

Output: A new SBPNO (a modified version of AO vvith a
refreshing place p2 for pi.

Procedure:
1) Add to NI a placep^ and a transition /'.
2) Add an are /•; from p/ to t', and an are rj from / ' to

Pl-
3) Add an are rj from / ' to p2, and an are r^ from p2 to

t'. Use (pI, F) as the state-transfer tuple for rj, vvhere
F is defined as F(x) = {x},x e States.

4) Add an activator are from pi to t'.

As an example, applying Algorithm I to the SBPNO in
Figure 2 creates part of the SBPNO shovvn in Figure 4 -

AN APPROACH FOR MODELING COMPONENTS. Informatica 25 (2001) 465-474 469

ali of the model except the arcs (p2, ti), (ll, p2) and the
state-filter {a} for the are (p2, ti).

Algorithm 2: Model a restriction subclass by use of plug-
in structures
Input: 1) A SBPNO N, = (Type,, NG,, States,, ST,,
SFM,, STMi).

2) A restriction function (see Definition 2), /•
SF,-^2''"""''

Output: A restriction subclass model A'̂ ofN/ {N2 has the
same externally observable behavior as the
model jV/[/"identified in Section 3).

Procedure:
1) Make a copy N,. Call this new model N2 and let

A'; be the source net for the follovving step:
2) For each transition / in STi:

For each pi e t', let 57 be the state filter for
the are (pi, t). If S2 = f(Sl) is a proper
subset of 57, i.e., S2 ^ 57, then create a
control plače p2 of p/ by applying the
following steps:
A. Use Algorithm 1 to create a refreshing

plačep2 ofpi.
. B. Add an are r/ from p2 to /. Use S2 as

the state filter for r/.
C. Add an are r2 from / to p2
End For

End For

The initial marking of a subclass model created by
Algorithm 2 is determined by the initial marking of the
superclass used to create it. Ali places except the created
control places have the same inifial marking as in the
superclass model. The control places take on the same
initial marking as their corresponding controUed places.
As an example, applying Algorithm 2 to the SBPNO in
Figure 2 creates the SBPNO shown in Figure 4. In this
čase, N, is the model shown in Figure 2 and the
restriction function/is defined a.sf({a, b}) = {a},f({a}) =
{a}. Note that the structure within the dashed box in
Figure 4 is the plug-in structure. As we can see. Figure 4
is more compIex than Figure 2. And the svvitchable plug-
in structures introduced in next subsection are even more
complicated. Our proposal of modeling restriction
inheritance vvould not be practical if we have to manually
handle this complexity introduced by plug-in structure.
Fortunately, since the synthesis of restriction subclass
models is based on an algorithmic process, automated
tools can be used to hide the internal details of modeling
and analysis.

3.2 Switchable Plug-in Structures

One advantage of Algorithm 2 is that the plug-in
structures created are potentially controllable. By
controllability we mean that a switch can be added to the
structure to control its activity, i.e., the switch can be
used to "turn on" or "turn ofP' the functionality of the

plug-in structure. We call such a plug-in a "switchable
plug-in." Switchable plug-ins offer a key advantage:
They allow a model to represent a family of restriction
subclass models, corresponding to a family of
components. The basic idea is that a single component-
model with n potential customisations (defined by n
plug-in structures) can in fact model a family of 2"
customized components. The family members
correspond to the various combinations of enabled
customisation features. This technique vvill be discussed
shortly by a specific example.

To transform a plug-in structure into a switchable plug-
in, a new plače node must be added. For example. Figure
5 shovvs the same model as Figure 4, but with a
svvitchable plug-in. Plače pj serves as this new switch
plače. When there is a token in the switch plače pi, the
"plug-in" structure is active. In this čase, the plug-in
behaves as before we introduced the switch plače, i.e.,
like Figure 4. But when there is no token in pi, the
transition ti will never be enabled. So, in this čase, the
model behaves as before we introduced the plug-in, i.e.,
like Figure 2. Notice that we have introduced a new state
value called internal to the state set. Although it is
possible to create the switching capability for this
particular example vvithout introducing this new internal
state, use of this special state is required for creating
general-purpose switchable plug-ins. To explain this
point, consider the follovving situation.

Suppose that we wanted to create a subclass C3 of class
C/, where C3 does not support method ti at ali. In this
čase, by Algorithm 2, the SBOPN for class C3 vvould
look like the model in Figure 4, except that the state filter
for the are (p2, ti) vvould be ^instead of {a}. Now, to
make the plug-in of this model switchable, we would
introduce a switch plače/J5 as was done in Figure 5. But,
since the state filter is the empty set, there is no way for
the switch plače to enable transition ti - it is always
disabled, regardless of the state value of the token we put
in p2. So, it is clear that in a switchable plug-in we
cannot allow (p as the state filter for a restricted transition.
A simple solution is to introduce a new state value that is
reserved for use vvithin the switchable plug-in structure.
This is the internal state referred to earlier. Now, the
state filter can become {internal}, as opposed to (p. To
create the initial marking of this subclass C3, it is
necessary that the initial markings of the control plače p2
and the switch plače p3 have the state-value internal. In
general, to model a restriction subclass using switchable
plug-ins, we can use Algorithm 2 with the follovving two
simple modifications:

1. For each plug-in, create a svvitch plače (connected
to/from the transition for the refreshing plače).

2. For each plug-in, modify the state filter (for the are
from the control plače to the restricted transition) to
include the state internal.

As an example, let us revisit the buffer example from
Section 2. Now, the modified algorithm mentioned above

470 Informatica 25 (2001) 465^74 X. Xieetal.

can be applied to the model in Figure 1 to create a model
for a "disable-free synchronous" buffer. The resulting
model (with two svvitchable plug-ins) is shown in Figure
6. Note that the initial marking of ali places beionging to
plug-ins are internal. Note that the plug-in associated
with the disable method employs a state filter of
{internal}. Thus, if this plug-in is "turned-on" (by
marking the switch plače), the disable method will
become inactive. For the plug-in associated with the put
method, the state filter is set to {/, Empty}. Thus, the put
method is active only when the buffer is in the empty
state. Most importantly, note that this one subclass model
actually models a family of buffer types. The binding of
the model to a specific buffer behavior is accomplished
by varying the initial markings of the switch places (p2'
andpi'). The follovving table defines the options:

p2'
Marked

Marked
Unmarked
Unmarked

pS'
Marked

Unmarked
Marked
Unmarked

Model
A "disable-free
synchronous" buffer
A "disable-free" buffer
A "synchronous" buffer
A general buffer

The ability to model a family of components can be very
helpful for commercial component-based development. It
supports flexible analysis of varying configurations of
customized components in the design phase, which can
reduce the overall cost of development. This has the
potential to aid configuration management and support,
which is becoming a major challenge that organizations
face in component-based software development [18].

3.3 Some Analysis Issues

Basic SBOPN models (without plug-in structures) are
derived from standard colored Petri nets. Basic SBOPN
models, with state filters and state-transfer functions, can
be transformed into colored Petri nets [12]. This is
important since we want SBOPN models to be able to
use a fuU set of analysis techniques already existing for
mature models like colored Petri nets or ordinary Petri
nets. But, the subclass models that correspond to
customized components in this paper use activator arcs.
Thus, we must understand the impact of these arcs in
terms of analysis potential. After aH, activator arcs are
special arcs with unique semantics. In the generally čase,
there is no equivalent ordinan/ Petri net structure for a
Petri net vvith activator arcs. But, in our models, activator
arcs are used only in plug-in structures. Thus, it is
possible to convert an SBOPN model with activator arcs
to a general SBOPN model and preserve liveness,
safeness and boundedness of the model. To simplify our
discussion, we use Figure 5 as an example to explain
some key aspects of this translation. The results apply in
general.

Consider the svvitch plače pJ in Figure 5. In the čase that
p3 is not marked, it can be observed that removal of the
plug-in will not change the liveness, safeness and

boundedness properties of the model. No\v consider the
čase when p3 is marked. In this čase, p3 can never
disable /5. Thus, p3 and the corresponding arcs can be
removed vvithout changing the modefs behavior. From
the structure of the plug-in, it is clear that the plug-in will
not affect the safeness or boundedness of the model. A
similar analysis of p2's impact on the liveness of the
model confirms that that both state-filters (on the arcs
(pl, ti) and (p2, ti)) can be changed to {a} without
changing the liveness property of ti. Now, since both
state-filters associated vvith ti are equal, and whenever ti
fires, the tokens in pl and p2 have identical state-values,
the plug-in structure can be removed vvithout impacting
the liveness of //. Furthermore, because of the 1-to-l
correspondence betvveen a plug-in and a shared
transition, the translation just described does not impact
the liveness of transition t2. Further conversion of an
object model to a colored Petri net or ordinary Petri net is
now assured, providing a basis for various analysis
capabilities. Further discussion on specific analysis
techniques using these lower-level, basic net models is
beyond the scope of this paper.

4 Conclusions and Future Work

One challenge in component-based soflvvare engineering
is to find techniques and tools that are effective in aiding
the specification and design of component-based
systems. One way to increase the effectiveness of these
design techniques is to employ forma! methods that
provide a well-defined design notation and support
design analysis. From our research, and experience vvith
commercial component-based softvvare development, vve
noticed that restriction inheritance seems to have
practical use vvhen customizing general components to
define special components.

In this paper, vve have discussed our research to blend
Petri net concepts and object-oriented design in order to
develop a design approach for component-based softvvare
systems development. We have selected Petri nets as our
underlying design model because vve have experience
and expertise in applying this formalism (e.g., [19][20]),
and because the formalism is mature and vvith strong
support from theory and tools. Finally, Petri nets have an
intuitively appealing graphical interpretation. A unique
feature of this vvork is the idea of a "plug-in" control
structure to allovv for modeling restriction inheritance.

For future vvork, vve plan to develop some prototype tools
that can be used to automate the creation of SBOPN
designs for complex systems, including support features
for synthesis and management of customizing general
components to particular components. In addition, we
plan to vviden the scope of the vvork on inheritance
modeling to include capabilities for modeling other types
of inheritance.

AN APPROACH FOR MODELING COMPONENTS... Informatica 25 (2001) 465-474 471

5 References
[1] C. Szyperski. Component Software: Beyond Object-

Oriented Programming, Addison-Wesley, 1998,
ISBN 0-201-17888-5.

[2] M. Larsson and 1. Crnkovic. Development
Experiences of a Component-based System.
Proceedings of Engineering of Computer Based
Systems (ECBS 2000), IEEE, 2000.

[3] R. Kari. Design Patterns for Component-Oriented
Development. Proceedings ofthe 25"' EUROMICRO
Conference, IEEE, ISBN 0-7695-0321-7, 1999.

[4] G. Booch. Object-Oriented Analysis and Design,
with Applications (2nd ed.). Benjamin/Cummings,
San Mateo, California, 1994.

[5] B. Henderson-Seilers and J. M. Edvvards. Book two
of Object-Oriented Knowledge : The Working Object
: Object-Oriented Software Engineering : Methods
and Management, Prentice Hali, 1994.

[6] ČORBA, http://www.corba.org.

[7] D. Rogerson. Inside COM, Microsoft Press, ISBN 1-
5731-349-8.

[8] T. Murata. Petri Nets: Properties, Analysis, and
Applications. Proceedings ofthe IEEE, April 1989,
pp. 541-580.

[9] R. Bastide. Approaches in Unifying Petri Nets and
the Object-Oriented Approach. Proceedings of tke
Ist Workshop on Object-Oriented Programming and
Models ofConcurrency, June 1995.

[10] C. A. Lakos. Pragmatic Inheritance Issues for
Object Petri Nets. Proceedings ofTOOLS Pacific '95
Conference (The 18th TechnoIogy of Object-
Oriented Languages and Systems Conference), C.
Mingins, R. Duke, and B. Meyer (Eds), Prentice-
Hall, 1995, pp. 309-322.

of the Int. Conf on Parallel and Distributed
Processing Technigues and Applications (PDPTA),
(Special Session on Architectural Support for
Aspect-Oriented Software Systems), Vol. 1, June 26-
29, 2000, Las Vegas, Nevada, pp. 263-269.

[14] K. Jensen. Coloured Petri Nets: A High Level
Language for System Design and Analysis.
Advances in Petri Nets 1990, G. Rozenberg (Editor),
in Lecture Notes in Computer Science, 483,
Springer-Verlag, 1990.

[15] D. Buchs and N. Guelfi. A Formal Specification
Franiework for Object-Oriented Distributed Systems.
IEEE Transactions on Software Engineering, Vol.
26, No. 7, July 2000, pp. 635-652.

[16] X. Xie. Design Support for State-Based
Distributed Object Software. PhD Dissertation,
EECS Department, UIC, 2000.

[17] S. Ramaswamy and K. P. Valavanis.
Hierarchical Time-Extended Petri Nets (H-EPNs)
Based Error Identification and Recovery for
Hierarchical Systems. IEEE Transactions on
Systems, Man andCybernetics, Feb. 1996.

[18] A. W. Brown and K. C. Wallnau. The Current
State of CBSE. IEEE Software, Vol. 15, No. 5,
September, pp. 37-46, 1998.

[19] A. Khetarpal, S. M. Shatz, and S. Tu. Applying
an Object-Based Petri Net to the Model ing of
Communication Primitives for Distributed Software.
Proceedings of the High Performance Computing
Conference (HPC98), Boston, Mass., April 1998, pp.
404-409.

[20] S. M. Shatz, S. Tu, T. Murata, and S. Duri. An
Application of Petri Net Reduction for Ada Tasking
Deadlock Analysis. IEEE Transactions on Parallel
and Distributed Systems, Vol. 7, No. 12, Dec. 1996,
pp. 1307-1322.

[11] Y. Deng, S. K. Chang, J. C. A. Figueiredo and
A. Perkusich. Integrating Software Engineering
Methods and Petri Nets for the Specification and
Prototyping of Complex Information Systems.
Proceedings ofthe I4th International Conference on
the Application and Theory of Petri Nets, Chicago,
IL, USA pp. 203-223, June 1993.

[12] A. Newman, S. M. Shatz, and X. Xie. An
Approach to Object System Modeling by State-
Based Object Petri Nets. Journal of Circiiits,
Systems, and Computers, Vol. 8, No. 1, Feb. 1998,
pp. 1-20.

[13] X. Xie and S. M. Shatz. An Approach to Using
Formal Methods in AsJDCct Orientation. Proceedings

http://www.corba.org

472 Informatica 25 (2001) 465-474 X. Xie et al.

Type : Producer

R = Ready
States = {Ready}

from
Buffer

i Type : Consumer

R = Ready
States = {Ready}

from
Buffer R = Ready

States = {Ready}
from

Buffer

disable

put

Type : Buffer

D = Disabled, E = Empty, P = Parlial, F = Full
States = {E, P, F, D}

F[{E) = {P} ¥\(P)={P,F}
F2iP) = {E, P} F2{F) = {P}
F3(D) = {E}
F4(x)= {D},ifxe States

from
Operator

enable

get

to
Operator

-^ from
Consumer

to
Consumer

Figure 1. A SBOPN for the Buffer, Producer, Consumer, and Operator System

AN APPROACH FOR MODELING COMPONENTS. Informatica 25 (2001) 465-474 473

Type : Cl

States = {a, b}

Fl(fl) = {«}
¥l(b)={b}
F2(a) = {b}

Figure 2. A SBPNO for Class Cl

Type : C2

Fl(fl) = M
¥lib) = {b}
F2(fl) = {b}
F3(x) = {x}, if X £ {a, b}

Figure 3. A SBPNO for Subclass C2 (Incomplete)

States = {a, b}

F\{a)={a}
F\{b)={b}
F2(fl)= {b}
F3ix) = {x},ifxe (a, bj

Figure 4. A SBPNO for Subclass C2 Using a Plug-in

; = internal
States = {a, b, i)

7\{a)={a}
Y\{b)={b}
F2(a) = {b}
F3(x) = {x},ifx e {a, b, i}

Figure 5. A SBPNO for class C2
Using a Switchable Plug-in

474 Informatica 25 (2001) 465-474 X. Xie et al.

from
Operator

disable

to
Operator

from
Producer

to
Producer

put

Type : Buffer

D = Disabled, E = Empty, P = Partial, F = Full, i = inlernal
States = {£, P, F, D, i}

V\{E)={P} V\{P) = {P,F}
¥2{P) = {E, P} F2(F) = {P}
F3(D) = {£}
F4(x) ={D},ifxe {E, P, F}
F5(x) = {x}, if X e States

Figure 6. The SBPNO for a "Disable-Free Synchronous" Buffer
Using a Switchable Plug-in

from
'Operator

enable

get

to
Operator

" from
Consumer

to
Consumer

Informatica 25 (2001) 475-482 475

A uniform component modeling space

Duane Hybertson
The MITRE Corp., McLean, VA, USA
Phone: 703-883-7079, Fax: 703-883-1339
dhyberts@mitre.org

Keywords: component, composition, generalization, interaction, model, modeling space, representation, specification

Received: JuneS, 2001

This paper presents a component modeling space as a contextfor supporting component-based software
development and accumulating component-related knowledge. The modeling space is structured in three
dimensions: A representation dimension that ranges from the languages of problem domains to
Computer processor languages; a composition dimension that supports a repeatingpattern ofthe whole-
part, or system-component, hierarchy; and a generalization dimension that supports reuse of models
and components. Also integrated into the modeling space are an interaction model of components and
connectors, an approach to component specification, and a provisionfor relating models via mappings.
Each of these elements is characterized as applying in a uniform way throughout the modeling space.

1 Introduction
The goal of component-based softvvare development
(CBSD) is to build software systems by integrating pre-
existing softvvare components. It is understood that
reaching this goal requires reusable components that
interact with each other and fit into system architectures.
This sounds relatively straightforward but has proved
difficult to achieve.

This paper briefly discusses some of the difficulties, and
then presents elements of a modeling space intended to
facilitate the resolution of these difficulties. The
contribution of this paper is not based on the individual
elements of the modeling space, because most of them
have been described elsewhere. Rather, it is based on the
selection and organization of these elements into an
integrated structure, and on the uniform modeling
approach emphasized in this structure.

Significant issues in CBSD include:
• Integration: How can components developed

independently be integrated into a workable system?
• Scope: Are components restricted to a certain scope or

size? Are "objects" or "procedures" too small? Are
"subsystems" too large? How can we market and use
integrated collections of components?

• Problem set; A component is intended to be used in
multiple systems. How can we develop a component to
support solving multiple problems, instead of just one
problem? This is the basic reuse issue.

• Shared understanding: How do we know what a
component does, and whether it will fit into our
architecture? This is the basic specification problem.

• Semantic gap: Software development, including
CBSD, must cover the spectrum from a problem
domain representation to a machine language solution.

How can models bridge this gap, and what are
necessary constraints on component representations?

Some ofthe issues listed above are not specific to CBSD.
The discussion of these issues in this paper will focus on
how the proposed modeling space benefits CBSD, but
will also indicate broader softvvare engineering benefits.

Goals and building blocks of the modeling space are
presented in Section 2. Modeling space elements are then
described in Section 3. Section 4 reviews related work,
and concluding remarks are presented in Section 5.

2 Goals and building blocks
The modeling space definition is based on four goals or
principles: (1) Separation: isolate elements important for
successful long-term CBSD and define each element
separately. (2) Integration: define the elements in a
compatible way so they add up to a unified whole. (3)
Simplicity: keep each definition as simple and uniform
throughout the modeling space as possible. (4)
Universality: find elements and definitions that apply to
the full range of the component paradigm, rather than
restricting the scope to any specific problem domain, life
cycle phase, framework, or component model.

Several building blocks support the modeling space
elements described in Section 3. These building blocks
consist of three types of entities: problem domain
entities, software entities, and description enfities.

mailto:dhyberts@mitre.org

476 Informatica 25 (2001) 475^82 D. Hybertson

Problem domain entities: Elements or objects of interest
in a problem domain, such as a bank account in the
financial domain

Software'entities:
• Data: Values interpreted as the state or properties of an

entity or set of entities
• Component: Computational entity, i.e., performs

operations on data
• Fort: Point of interaction of a component with its

environment, and through which a component provides
or receives a service; structural part of component
interface

• Service: Data operation(s) that may be performed by
one component on behalf of another component;
behavioral part of component interface

• Connector: Interaction entity, i.e., mediates
communication and coordination among components;
examples: remote procedure call, pipe, event broadcast

• Role: Name of behavior pattem that may be performed
by a component in an interaction context; structural
part of connector interface; exampies: client, server

• Protocol: Specification of behavior pattem that may be
performed by a component in an interaction context;
behavioral part of connector interface

• System: Configuration of software entities

Description entities:
• Model: Explicit description of an entity or set of

entities; may include entity properties
• Specification: Precise shared understanding of an

entity or set of entities and entity properties; includes
semantics

• View: Useful subset of an entity or set of entities

Softvvare and description entities exist in the modeling
space; problem domain entities do not. Services are
defined separately from ports because services can be
specified in the form of APIs that are defmed separately
from the components that may provide (implement) them
or use them. Whether a description entity is a
specification depends on the parties involved. If they
share a common understanding, it is a specification.

3 Modeling space elements
The foregoing issues, goals, and building blocks led to
these modeling space elements:
• An interaction model of components and connectors

that addresses component interaction, coordination,
and integration in a uniform way throughout the
modeling space. This element addresses the CBSD
integration issue.

• A composition spectrum that represents a whole-part
hierarchy ranging from the most inclusive system of
systems to the lowest leve! indivisible unit. It is
recursive in that a given vvhole can be part of a larger
whole. This element is related to the scope issue.

• A generalization spectrum that represents a "kind-of
or "is-a" hierarchy ranging from universal models to

instance models. It is recursive in that a model that is a
generalization can in turn be further generalized. This
element addresses the problem set issue.

• A specification approach that emphasizes contracts,
precision, and semantics, and has two primary
specification types or views for each component and
connector: external and internat. The same kinds of
specification Information apply throughout the
modeling space. This element addresses the shared
understanding and integration issues.

• A representation spectrum that ranges from problem
domain languages to computer processor languages.
This spectrum covers not only a range of
representations but also a range of conceptualizations.
This element is related to the semantic gap issue.

• Mappings that capture knowledge about the relations
among models, specifications, and views throughout
the modeling space. This element is related to the
semantic gap issue.

Composition, generalization, and representation
collectively structure the modeling space into three
dimensions as shown in Figure 1. They are separate
dimensions because two entities can be at the same point
on any two dimensions but differ on the third. This
structure is proposed in plače of the traditional temporal
life cycle.

System of systems

o

Indivisible Unit /

Model of individual ^
component/system i

Modeling space

Processor
language

Problem
- • domain

language

Representation or language

C = position of common CBSD
depiction of component

Figure 1. Modeling space dimensions

The definition of component is stili a matter of debate in
the CBSD community. A common vievv is that a
component is a deployable (physical) entity that is larger
than a class or object but smaller than a subsystem, and
provides a specifically defined set of services but is
reusable in multiple systems. This depiction corresponds
to an area around point C in Figure 1, at or near the
processor language end of the representation dimension
and at intermediate levels of the composition and
generalization dimensions. In contrast, the definition of
component in this paper allows it to be anywhere in the
modeling space.

Abstraction and levels of abstraction are important
concepts in the modeling space, but the terms are rarely
used in this paper. The reason is that four kinds of
abstraction are part of the modeling space, corresponding

A UNIFORM COMPONENT MODELING SPACE Informatica 25 (2001) 475-482 477

to the three dimensions plus views. Instead of using the
general 'abstraction' term, each kind is discussed in its
own context. Each dimension has a range of levels of its
kind of abstraction.

A brief example will illustrate the modeling space
separation of concems. Suppose we design and build a
financial system for First National Bank (see Figure 2).
The system interacts with customers in setting up and
using accounts, and sends certain reports to the Federal
Reserve Bank (FRB) on a periodic basis. The system
consists of hardware, software, and manual operations
performed by customer service representatives. The
softvvare portion of the system consists of customer
management and account management. Account
management is composed of two parts: accounts and
account transfers. In the course of developing this
system, we specialize the party management facility
defined by OMG for our customer management need,
and then as we move into implementation, we find and
incorporate a customer management component that
satisfies our requirements for that part of the system. We
develop the account management part, but when we are
done, we decide this is a general capability that multiple
banking systems could use. We generalize account
management and make it available as a component with
accompanying specification.

Composition level

System environment

System

Subsystem

Component/package

Unit/class

First National Bank Financial System

FNBFS and ils Environment

FRB FNBF System Customer

Hardvvare
subsystem

Soft\vare
subsystem

Z
Manual

subsystem

Customer
Management

Account
Management

^

Accounts Account transfers

Figure 2. Example systein

We will now briefly map the example to the modeling
space dimensions. Figure 2 shows the Composition
perspective. Using familiar terms for each level, the
composition levels range from the system environment to
the unit or class level. In the Representation dimension,
models range from use cases expressed in English (on the
problem domain end) to machine instructions expressed
in binary on the machine end. Betvveen these end points
are design and implementation models in UML and Java.
The Java bytecode is very close to the machine code in
this spectrum. In the Generalization dimension, the focus
of the example is on a single system, which places it at
the specific end of the dimension. Hovvever, there are a
few generalized elements. The party managementfacility

was a general model that we specialized for customer
management, and the more specialized customer
management was general enough to find an existing
component to satisly the need. We also generalized
account management into a reusable component.

Each modeling space element in the list above will now
be described in additional detail.

3.1 Interaction model
This section describes an interaction model of
components and connectors that addresses the CBSD
integration issue. At its most basic level, the component
paradigm is about developing components and
integrating them into systems in which the components
interact. The interaction model supports the modeling of
component interaction with two entity types:
components, which serve as a locus of computation and
decision-making, and connectors, which serve as a locus
of interaction betvveen components. Both entity types
exist throughout the modeling space in ali dimensions.
Every box shown in the hierarchy in Figure 2 can be a
component. Correspondingly, connectors define and
facilitate interactions ranging from a procedure call or
message passing to UNIX pipe-filter interactions to
distributed system interactions. As a locus of interaction,
a connector provides not j ust an exchange medium, but
also specification of interaction roles and protocols.

Components and connectors have respective interface
points called ports and roles, as shown in Figure 3. The
left side of the figure shows a basic interaction of
components A and B via a connector. The center is a
visualization of the component-port-role-connector
model. The right side shows specification elements in
this structure (see Section 3.4). A key point is that roles
Ihat a component plays in an environment are defined
not by the component, but by the connector-specified
interactions in which the component participates.

Component

Component

O—

o—

f
A

l_
Rolel

N

Role2

\
B

Component A behavior specification

Component A interface: port, service

Attachment of port to Role 1
Role played by Component A in
interaction and associated protocol

Connector N behavior specification

Role played by Component B in
interaction and associated protocol

Attachment of port to Role 2

Component B interface: port, service

Component B behavior specification

Figure 3. Anatomy of an interaction

The interaction model supports CBSD in two ways. First,
the explicit treatment of interaction, connectors, and

478 Infomiatica 25 (2001) 475-482 D. Hybertson

coordination provides a basis for integrating components
into systems by clearly defining the integration context.
Second, the uniform nature of this model throughout the
modeling space facilitates component modehng and the
use of the component paradigm throughout the fuli
spectrum from problem definition to deployment. Both
of these benefits will become clearer in the ensuing
discussion of the remaining modeling space elements.

3.2 Composition spectrum
This section describes a composition spectrum that
addresses the CBSD scope issue. Software systems and
components typically exhibit a whole-part hierarchy. The
end points of this spectrum are the smallest component or
unit that is not further divided and the most inclusive
component or system of systems. Formally, system and
component are synonyms. Jnformally, they can be used
as relative terms. A systeiTi at one level may be a
component of another system at the next higher level,
and the same relations repeat at each level. Figure 4
illustrates the repeating pattern. The Figure 2 example
shows the pattern repeated four times.

'A' represents a system of components B, C, D, and E
interacting via connectors K, L, M, and N. 'E' in turn
represents a system of its interacting components and
connectors F, P, etc. The figure shovvs a component as a
composition of components and connectors. A connector
can also be a composition of connectors and components.
One mapping of the applicable parts of Figure 4 to the
example in Figure 2 could be: E = FNBS system, D =
FRB, N = asynchronous interprocess connector, C =
customer, M = human-computer interaction, F = software
subsystem, G = hardvvare subsystem, H = manual
subsystem. Another mapping could be: E = account
management, D = customer management, F = accounts,
G = account transfers, P = message passing connector.

D N

Externai view of E

Internal vievv of E

Connector'

Component •

F H P h- G

X 7.
Q R

^ \ r̂
^ H H s 1- 1

Figure 4. Recursive composition pattern

This spectrum provides a clear context for internal and
external specifications (discussed in Section 3.4), and
offers a uniform way to treat components at multiple
levels. From the Figure 2 example, account management

could be a CBSD component in other systems in addition
to the FNBF software system. The FNBF softvvare
system, since both of its components are general ized,
could itself be a CBSD component in other financial
systems. At each level, the internal view of each
component is seen by the component developer, but is
hidden from the system composer. The person producing
E is a system composer when integrating 1 into E, but is a
component developer when preparing E for users such as
the system composer of A.

3.3 Generalization spectrum
This section describes a generalization spectrum that
addresses the CBSD problem set issue. A key potential
benefit of the component paradigm is reuse—a
component is intended to be usable in multiple systems.
The generalization spectrum supports this goal with the
idea of general models and specifications. Generalization
is a form of abstraction in which Information is removed
to make a more general component or model that is
useful in multiple environments or that allows multiple
implementations. General models include abstract data
types, classes in class hierarchies, generics, templates,
component and connector types, framevvorks, reference
models, domain specific architectures, product line
architectures, analysis patterns, architecture/design
patterns, architecture styles, and programming idioms.

Each of these is aimed at a goal that is difficult to
achieve: solve a groiip of problems rather than a single
problem. If we characterize a problem as a set of
features or aspects, then the union of problem sets yields
a problem space, and the intersection of the problem sets
defines the features that are common among the
problems in that space. The difference between the
union and the intersection represents variation among the
problems.]f the intersection is small, the problem space
is heterogeneous. The class of problem domains
supported by softvvare engineering is an important
example of a heterogeneous problem space. If the
intersection is large, the problem space is homogeneous.
The class of hardvvare processors is an important
example of a relatively homogeneous problem space.

In any problem space, we can identify subspaces that are
more homogeneous than the complete space, and
increase reuse in that subspace. Domain specific
engineering is targeted to a homogeneous subspace of the
overall problem space. There is a general tradeoff. We
can achieve limited reuse across the vvhole set of
problems, or we can achieve greater reuse vvithin a more
homogeneous subset of problems.

The modeling space approach to this tradeoff is a
principle we vvill call maximum leverage. Leverage of a
solution (e.g., a model or component) is defined as the
degree to vvhich it satisfies these two conflicting criteria:
(1) number of problem situations to vvhich it applies; and
(2) proportion of solution it provides—i.e., extent to

A UNIFORM COMPONENT MODELING SPACE Informatica 25 (2001) 475-482 479

which it provides the complete solution needed for the
applicable problem set. Leverage as a metric is the
product of these two criteria. This makes the tradeoff
explicit. The concept is illustrated in Figure 5.

object-oriented, pipe-and-filter, event-based, and
blackboard systems [12]. Each style defines component
and connector types for a class of systems.

Leverage of specific solution

Proportion of
Solution

~~ Ideal leverage

,/--Reality; limit at maturity

Reality: current trade-olT

Leverage of
general solution

O ali
Number of problems

Figure 5. Leverage

Ideally, one solution would completeiy solve ali
problems (upper right corner of box). However, there is a
limit even when a discipline reaches maturity—the
tradeoff stili exists. In an immature problem domain, the
limit is not yet reached, and leverage is even more
restricted. The current and ultimate tradeoffs are
represented by the diagonal dashed lines in Figure 5.
Two models of equal leverage may differ in that one may
provide a small part of the solution for a large number of
problems (shown as the box labeled "Leverage of general
solution" in Figure 5), while the second may provide
most of the solution for a small number of problems
(shown as "Leverage of specific solution"). The first
criterion reflects the perspective of the person with the
problem—the consumer or client: I want a solution that
completely solves my specific problem. The second
criterion reflects the perspective of the person with the
solution—the producer or provider: I have a solution that
will help solve everyone's problems.

Achieving leverage is critical to CBSD in terms of
market viability. A component developer must produce a
component that simultaneously satisfies enough of the
specific needs ('proportion of solution') of a sufficient
number ('number of problems') of individual system
composers, to establish a market.

Generalization and the techniques for increasing leverage
support CBSD and component reuse. Leverage will
increase as CBSD and softvvare engineering in general
mature. But how can we increase leverage in the
meantime? Within a given problem space, one can go
beyond what is common and also capture some of the
variability of a set of problems. We might call this
predefined variability. A simple example of this is
parameterization. Adding a parameter to a component
interface increases the variability it can accommodate.
Another example is a general model that defines a
"component product line" from which multiple
component variants can be instantiated. A third exaiTiple
is the interaction model described in Section 3.1, which
has been specialized into architecture styles such as

3.4 Specification
This section describes a specification approach that
addresses the CBSD shared understanding and
integration issues. A specification is a precise shared
understanding of an entity or set of entities, as defined
earlier. This means that a specification involves an entity
such as a model and at least tvvo parties communicating
about the model. Typically one party writes the model
(e.g., a programrner), and the other party reads the model
(e.g., a compiler). The tvvo parties must understand the
language used to represent the model. If the two parties
share the underlying concepts or semantics of the model,
much of the specification can be implicit. If the parties
do not share these concepts, more of the specification
must be explicit. In a mature discipline, small models are
sufficient to represent specifications, because most of the
shared Information is implicit.

The modeling space approach to specification
emphasizes the basic principles of modularity,
encapsulation, and precision. A specification consists of
a set of rules, vvhere 'rule' is used in a very general sense
that includes everything from system requirements to
code. Examples of types of rules: required data types;
required functions; performance properties; provided
Services; dependencies; policies; types of permitted
components in a system; specific components and
connectors in a system; attachment of components to
connectors (ports to roles); required properties or
attribute values; invariants, preconditions, and
postconditions; exception handling; state transitions.

An important element of component specification in the
modeling space is design by contract, as defined by
Meyer [9] but extended to include non-functional (e.g.,
performance, quality of service/QoS) Information.

Specification types are derived from the interaction
model and the composition dimension—specifically, the
intertvvining of internal and external views. An interna!
specification of a composite component or connector
entity is a set of rules—including policies—about the
data, components, and connectors that are within the
composite, and their structure and interaction. An
external specification of a component or connector entity
is a set of rules about the external view of that entity. For
a component, that includes observable data, behavior,
ports, and services. The relation between the two
specification types (shown in Figures 3 and 4) is that an
internal specification of a composite includes the external
specifications of its components and connectors. The
external view corresponds to what we typically call
requirements, and the internal view corresponds to what
we typically call architecture, design, or implementation.

480 Informatica 25 (2001) 475^82 D. Hybertson

An external component specification has two contract
types. The first is a user specification, which specifies
what the component provides to users (services offered).
The second is a provider specification, which specifies
what it requires of providers (dependencies). Note that
this pattern can set up a dependency chain of indefinite
length, in which a component can be a provider or server
to one component and a user-of or client-to another
component.

The interaction model in Figure 3 will now be described
further, in terms of informal specification examples.
Suppose connector N is a function call, A is a procedure,
and B is a square root function. Role 1 is caller, and its
associated protocol is as follows. It decides to initiate a
call, which involves transferring data and control, and
then it waits for a return, which involves receiving data
and control. Role 2 is "callee" or server function, and its
associated protocol is: It waits for a call, which involves
receiving data and control, and then it initiates a return,
which involves transferring data and control. The
connector N behavior specification is: It receives a call at
the caller role and initiates a transfer of this call to the
server function role; then it receives a return at the server
function role and initiates a transfer of this return to the
caller role. Each receipt and transfer of a call or return
includes a transfer of data and control. Thus, connector N
blocks control at the caller role from the tirne it receives
a call to the tirne it transfers a return. The Component B
behavior specification is: Precondition: Received data X

> 0. Postcondition: Returned data Y =V-^ within
tolerance T and tirne delta D. B receives control and a
data value X. It then returns control and a data value Y.

Most of these details of a function call interaction
specification are usually implicit, because function call is
a mature connector type and we have a shared
understanding of it. Hovvever, more details of complex or
higher-level interaction specifications need to be explicit
to avoid component mismatch.

The specification pattern of relating external
specifications to a larger internal specification addresses
the CBSD problem of fitting a component into a system.
The inclusion of connectors, along with the modeling
space approach to component and connector
specifications, defines this problem in a precise way and
helps determine if a component matches a system or will
interoperate with other components. Specifically,
suppose that C is an available component, and S is a
composite component or system that could potentially
use C. That is, the internal specification of S includes an
external specification of a needed component we will call
SC, and we want to determine if available component C
satisfies the needed SC. (In Figure 2, S = FNBS softvvare
subsystem and C = customer management component.)
The determination is based on a comparison of the
external specifications of C and SC. From a contract
perspective, we can say that C satisfies SC if and only if
these two conditions hold: C provides at kast ali the

services that SC provides, and C requires at most aH the
services that SC requires (Cprov ž SCprov A Creq < SCreq).

To be able to determine this, however, both the system
and the component need to be adequately specified. Most
current programming languages lack support for this
specification approach in the areas of semantics and
external specification of required services.

3.5 Representation spectrum
This section describes a representation spectrum that
addresses the CBSD semantic gap issue. The artifacts of
software engineering have traditional names such as
requirements specification, architecture description,
design description, and code. In the modeling space, ali
these are regarded as models of one or more softvvare
entities such as system or component. Each model is
represented in some notation or language, or combination
of languages. The general categories of languages are
textual, graphical, and mathematical. The representation
spectrum ranges from problem domain models (such as
banking or geospatial Information) to computer processor
models. Corresponding to the language differences are
differences in concepts, terms, and domain ontologies. It
is really the latter set of differences that establishes the
large conceptual gap between problem domains and
computer processors, and defines the range of this
spectrum. Example: In the banking domain used in the
earlier example, key concepts are account, withdraw,
deposit, balance, and transfer. In the geospatial domain,
key concepts are map, contour, elevation, feature,
thematic layer, and projection. In the computer processor
domain, key concepts are load, store, add, branch,
memory address, and register (actually 01011000,
0101000, etc. but we will use transiated terms). The
computer processor ušes this basic set of concepts to
solve problems in banking, geospatial Information, and
ali other problem domains. Note that we listed the
concepts in ali these domains using English, but the
conceptual distance betvveen them remains large.

The relation between models in the representation
dimension is translation from one representation to
another—for example, problem domain notation to
formal specification to UML to Java to machine
language. Note that a translation may be combined with
relations in other dimensions. In Figure 4, assume that
the internal view of A and external view of E are
represented in UML, \vhile the next composition level—
the internal view of E—is represented in Java. In this
example, the respective models of the external and
internal views of E have two relations: translation in the
representation dimension, and composition in the
composition dimension.

The representation spectrum brings into focus several
CBSD issues related to language, notation, terminology,
and semantics. One issue is sufficiency. Is a specific
language sufficient to express the necessary specification

file:///vhile

A UNIFORM COMPONENT MODELING SPACE Informatica 25 (2001) 475^82 481

information (described in Section 3.4)? As indicated
earlier, most current programming languages are not
sufficient in this regard. Further investigation of the use
of declarative languages for external specifications may
be useful.

Another representation issue is how to determine whether
the specification of an available component satisfies the
specification of a needed component if the two
specifications are in different languages. Do we need to
try to adopt a common external specification language—
e.g., a forma) language, or UML, or IDL, or XML, or
natural language? How do we deal with differing
ontologies or paradigms, such as procedura! versus
object-oriented versus functional? An example of recent
research is an approach to component search in the
context of differing ontologies [4]. The representation
spectrum does not resolve the issues, but it does provide
a focal point for addressing representation and the
semantic gap issue separately from other CBSD issues.

3.6 Mappings
This section briefly describes mappings that capture
knovvledge about the relations among entities throughout
the modeling space. Mappings address the CBSD
semantic gap issue. The knowledge to be captured in the
modeling space includes not only a large number of
reusable models, but also reusable mappings among the
models. Mappings are commonly used relations that tie
together existing models throughout the modeling space,
and help navigate the space when solving a specific
problem. Relations include composition, decomposition,
generalization, specialization, translation, optimization,
and view. For example, suppose we start with a given
problem that matches a general model near the problem
end of the representation spectrum. A translation
mapping might lead us to a model represented as a
formal external system specification. A decomposition
and translation mapping might lead us to a model
representing interacting components of the system in
UML. We may then go to our component catalog and
match our needs (the specified components of our
system) with the specifications of available components,
and pick a set that matches. The catalog may exist in the
modeling space in the form of external component
specifications that provide purchasing or leasing
information for associated deployable components.

4 Related work
The generalized view of components and connectors is
consistent with software architecture literature, which has
promoted connectors as first-class entities [12, 1]. The
Real-Time Object-Oriented Modeling approach [11]
shares some of these features, and its composition
approach is recursive and hence more compatible with
the modeling space composition dimension than are most
object-oriented treatments.

The connector, as a locus of interaction and coordination,
is consistent with literature on coordination models and
languages. This literature recognizes coordination as
distinct from computation and as a subject of study in its
own right [6, 10], and it also addresses the issues of
heterogeneous systems. A preliminary taxonomy of
connectors is proposed in [8]. Taxonomies and
classification schemes are important steps toward
reducing artificial variability and accumulating a body of
knovvledge.

The product-line approach and domain engineering [2,
15] exploit extensive commonality within a
homogeneous problem class, which positions both in the
generalization dimension. The KobrA approach [3] is an
example of the product line approach. KobrA also has
other similarities with the modeling space elements
presented here. The KobrA framework captures what is
common and also captures "concrete variants"
(predetermined variability). The dimensions that embody
separation of concerns are in partial agreement with the
modeling space dimensions. The primar/ differences
between the two approaches are (1) greater emphasis on
interaction and connectors in the modeling space, and (2)
the modeling space representation dimension as opposed
to the development process emphasis in KobrA.

Szyperski's approach to component specification [14] is
consistent with the approach in this paper. Szyperski also
discusses the specific "wiring standards" defined in three
primary approaches to component softvvare: ČORBA,
JavaBeans, and Microsoffs COM/DCOM. However, his
treatment does not provide a general approach to
connectors or interaction. The new ČORBA component
model (CCM), described in [13], is a generalized and
extended form of Enterprise JavaBeans or Java 2
Enterprise Edition. The CCM is consistent with a number
of elements in the modeling space, including
specification contracts and modularity. The concept of
Container has some of the mediation features of a
connector, but is more specialized for the CCM
environment. CCM appears to be focused on the
programming region of the representation spectrum
rather than the fiill spectrum.

Catalysis [5] is an approach to objects, components, and
frameworks that emphasizes connectors as well as
components and covers a significant part of the modeling
space. Catalysis ušes the concept of object as the locus of
static functionality and data, and action as the locus of
dynamic activity. It supports composition of both objects
and actions. Generalization is supported via model
frameworks.

RM-ODP [7], an ISO standard for distributed processing
systems, has a number of similarities with the modeling
space. Many of the foundation concepts, such as
encapsulation, interface, and contract, are compatible.
The RM-ODP architecture concepts include a list of
distribution transparencies, which maps to the

482 Informatica 25 (2001) 475-482 D. Hybertson

generalization dimension. RM-ODP presents five
vievvpoints of a distributed system: enterprise,
Information, computational, engineering, and technology.
The Information view maps to data specification in the
modeling space. The other four vievvpoints ali map to
some degree to an internal component specification, at
different levels of composition and generalization.

What the modeling space adds to this related work is a
broad context in which these various approaches can be
positioned and compared. The modeling space also adds
a structure for compiling and organizing models that
describe components, their interactions, and the larger
configurations into which they can be integrated.

5 Conclusion
Benefits. The modeling space described in this paper
supports CBSD and component modeling, both in the
near term and the long term. In the near term, it provides
a uniform structure for modeling components and
modeling systems in which the components may be
integrated. Modeling the systems supports the system
composers. Modeling the components supports both the
component developers and the system composers.

In the long term, the uniform structure can serve as the
basis for an organized repository of knowledge of
components and systems in which they can be used. This
knowledge will be in the form of a large number of well-
understood models that will exist throughout ali
dimensions of the modeling space, and relations or
mappings among the models.

In addition, the modeling space elements apply to
software engineering in general, not just to CBSD. Many
large systems require a combination of the component
paradigm and other approaches such as custom
development. The modeling space defined in this paper
can reconcile these approaches.

Validation. The modeling space approach described in
this paper has not yet been directly validated in CBSD
practice. However, the approach represents a
consolidation of elements with a solid foundation in
software and systems engineering practice.
Conceptualizing software engineering as modeling is
fairly well established. Generalization and composition
are well established in software engineering and also
have a long tradition in other disciplines such as
ontology, biology, and mathematics. Composition and
representation have long been the primary elements of
the software life cycle. Thus the argument for the validity
of the modeling space at this point is based on the
pedigree of its elements. Further work in direct CBSD
validation is anticipated.

6 References
[I] Allen R. & Garlan D. (1997) A Formal Basis for

Architectural Connection. ACM Trans, on Software
Engineering & Methodology, 6, 3, p. 213-249.

[2] Arango G. & Prieto-Diaz R. (1991) Domain
Analysis and Software Systems Modeling. IEEE
Computer Society Press.

[3] Atkinson C, Bayer J., Laitenberger O. & Zettel J.
(2000) Component-Based Software Engineering:
The KobrA Approach. 2000 Int. NVorkshop on
CBSE, Limerick, Ireland. Available at http:
//wvvw.sei.cmu.edu/cbs/cbse2000/papers/21/21.html

[4] Braga R., Mattoso M. & Werner C. (2001) The Use
of Mediation and Ontology Technologies for
Software Component Information Retrieval. 2001
Symposium on Software Reusability, Toronto,
Canada, May 18-20, 2001. Published in Software
Engineering Notes, 26, 3, p. 19-28.

[5] D'Souza D. & Wills A. (1998) Objects, Components,
and Frameworks with UML: The Catalysis
Approach. Addison-Wesley.

[6] Gelernter D. & Carriero N. (1992) Coordination
languages and their significance. Communications of
the ACM, 35, 2, p. 97-\07.

[7] International Organization for Standardization
(1995) Basic Reference Model of Open Distributed
Processing. ITU-T Recommendation X.902 |
ISO/IEC 10746-2: Foundations and ITU-T
Recommendation X.903 | ISO/lEC 10746-3:
Architecture.

[8] Mehta N., Medvidovic N. & Phadke S. (2000)
Tovvards a taxonomy of software connectors.
Proceedings of the 22"' Int. Conference on Software
Engineering, Limerick, Ireland, p. 178-187.

[9] Meyer B. (1997) Object-Oriented Software
Construction {2"^ ed.) Prentice Hali.

[10] Papadopoulos G. & Arbab F. (1998) Coordination
Models and Languages. CWI Report SEN-R9834.
Available at: http://citeseer.ni.nec.com/
papadopoulos98coordination.html

[II] Selic B., GuUekson G. & Ward P. (1994) Real-
Time Object-Oriented Modeling. John Wiley.

[12] Shaw M. & Garlan D. (1996) Software
Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall.

[13] Siegel J. (2001) Quick ČORBA 3. John Wiley.
[14] Szyperski C. (1998) Component Software: Beyond

Object-Oriented Programming. Addison-Wesley.
[15] Weiss D. & Lai C. T. R. (1999) Software Product-

Line Engineering: A Family-Based Software
Development Process. Addison-Wesley.

Acknowledgments
The MITRE Corporation provided support for the
research reported in this paper.

http://sei.cmu.edu/cbs/cbse2000/papers/21
http://citeseer.ni.nec.com/

Informatica 25 (2001) 483^91 483

An agent-based component platform for dynamically adaptable
distributed environments

Rainer Weinreich and Reinhold Plosch
Software Engineering Group, Dept. of Business Informatics,
Johannes Kepler Universitat Linz, Austria
rainer.vveinreich(a),iku.at. reinhold.ploesch@iku.at

Keywords: component models, distributed components, mobile agents, deployinent, remote configuration,
component frameworks

Received: June 16, 2001

Component-based systems reguire standardization by component models and component platforms
providing both an execntion environment for soft\vare components and core component services.
Remote administration and mobile computing recjuire additional support from component platforms. We
argue that increased flexibilily, especially at run-time, can be achieved by using agent technology and
agent platforms as powerful component environments. We present an adaptable component platform
which incorporates mobile agent platforms and describe how important issites of component
deployment, configuration and security are siipported by our environment.

1 Introduction
Current softvvare systems are increasingly assembled
from reusable software components, written at different
times by various companies and developers. Softwarp
components are units of independent deployment and
composition [1][2] and conform to a component model.
A component model provides standards for component
implementation, naming, interoperability, customization,
composition, evolution, packaging, and deployment [3].
The component model is not only the basis for the
development of reusable components, but also for
constructing execution environments and basic services
for components conforming to a particular component
model. We use the term component platform to denote an
execution environment and basic component services for
software components.

As the Internet gains steadily in importance and wireless
computing and mobile devices penetrate ali areas of
business and private life, additional demands on
component models and platforms are raised. This
includes remote administration via Internet connections,
support of different end-user devices, dynamic
configuration, dynamic adaptation to different
environmental conditions, security, and interoperation
among components from different component models
and platforms.

IVIany of these demands are supported by softvvare agent
technology [4]. Currently there is no generally accepted
definition of a softvvare agent. The basic idea underlying
most definitions is the vision of intelligent, sometimes
mobile, prograins that are able to act autonomously on

behalf of a user. Distinguishing agent features that are
often mentioned are autonomy, intelligence, mobility,
personality, adaptability, knovvledge and cooperation
(e.g., [5] [7] [8]). Petrie [10] calls this an anthropomor-
phic vievv, because human cognitive traits like
environmental avvareness, autonomy, and intelligence are
ascribed to softvvare. Agents are used for Information
retrieval [II], netvvork management [12][13],
telecommunication [14][15] and E-commerce [9][I6].

From a technical perspective, agent-based systems have
similar characteristics as component-based environments.
Issues like naming, interoperability, customization,
evolution, and packaging are equally important in agent-
based systems and have to be supported by agent
platforms and development environments. In addition,
agent technology emphasizes support for heterogeneity,
adaptation to different environments, code mobility, and
collaboration. Thus, softvvare agents can be vievved as
flexible and adaptable softvvare components. Sometimes
they are even called next-generation components [5][6].

We use agent technology as the basis for an adaptable
component platform supporting deployment,
configuration, and remote access of components for
monitoring and information retrieval in heterogeneous
distributed environments. The system is called Insight
ACS and is currently used as the basis for remote
administration and control of process automation systems
over Internet connections. Main points of our
environment are dynamic services, mobility support,
native-code management, dynamic configuration, and

mailto:reinhold.ploesch@iku.at

484 Informatica 25 (2001) 483^91 R. Weinreich et al.

multi-protocol remote access of various types of
components.

The remainder of this paper is structured as follovvs: In
the next section we outline the application domain, which
gives an impression of the various demands on our
component platform. In Sections 3 and 4 we give an
overview of the system structure and the platform's
architecture. We will show that an agent platform is a
major part of our environment, though not ali
components in our system are agents. In Sections 5-9 vve
concentrate on issues like deployment, configuration,
mobiIity support, service management, security and
domain-specific component frameworks. In Section 10
vve describe related work.

2 Background and Application
Domain

The environment presented in this paper is the result of a
research cooperation with Siemens Germany and is
currently used for remote system diagnosis and remote
supervision and control of steel plant automation
systems.

dynamic adaptability, are especially supported by agent
technology. Other requirements like remote configura
tion via temporary Internet connections, thin clients, and
interaction with Iegacy systems have additionalIy to be
considered in system architecture and design.

3 System Structure and Overview
The two main parts of the structure of a system supported
by our environment are depicted in Figure 1. The left part
of the figure shovvs the elements of the system for remote
administration and configuration. The right part deplcts
the target environment for supervision and retrieval
components. Both are connected through the Internet,
although they may be co-located vvithin the same LAN or
Intranet, also.

Ô o Application
Server O Agent Seiver Component

:j Repositotv

Remote system diagnosis is a long-term process. Data
about certain aspects of an automation system is
continuously collected, analyzed, and compiled to
reports. These reports are made available to remote plant
supervisors, vvhich may identiiy upcoming problems and
timely take adequate actions.

Remote system supervision and control supports
monitoring of individual critical aspects of an automation
system. If problems like exceeded quality limits are
detected, autonomous and configurable actions may be
performed by the supervising software. Typical types of
actions are automatic notification of plant supervisors,
messages to local operators or autonomous changes of
parameters for temperature models or geometry models.

The architecture of our system and many of its features
were influenced by its application in this domain.
Automation systems are heterogeneous distributed
systems consisting of multiple hosts with probabIy
different operating systems within a local area network.
Components for collecting data during system diagnosis
and for system supervision and control need to be
installed and configured remotely and dynamically.
Remotely means that components may be installed and
configured over Internet connections. Dynamically refers
to the ability to perform these tasks at run-time.
Components have to move within the system to coUect
Information, have to adapt to different environmental
conditions, must be able to communicate with legacy
systems, and need access to native operating system
services.

Some of these characteristics, like distribution,
heterogeneity, dynamic installation, mobiIity and

Figure 1: System Structure

The structure of the administration subsystem reflects
specific requirements like thin clients, central
administration management, and security. An
Administration Server hosts component repositories for
various target environments, called units in our
terminoIogy. Each repository contains various kinds of
components for supervision, Information retrieval and
other tasks to be performed at a specific target
environment. We use the term domain components for
such components to distinguish them from system
components, implementing functionality and services of
the component platform itself

Components vvithin a repository are organized into
different categories. As we will outline in the follovving
sections, domain components are implemented as
portable mobile agents in our system, vvhere portable
means that they are independent from a specific agent
platform. The Administration Server further hosts a Web
Server and an Application Server containing tools for
installation and configuration as well as security services
for authentication and authorization. Administration
tasks are performed from thin clients. This means that
tools need not be pre-installed at administration hosts.
Instead, they are loaded dynamically from the
Administration Server and can be updated at a central
location (see Section 6 on dynamic configuration). The
user interfaces of theses tools are decoupled from their
application logic. Currently, we support pure HTML-
based interfaces as well as more elaborate interfaces
based on Java GUI libraries. The system structure is also
influenced by security issues. For example, remote
administration tasks are always performed via a

AN AGENT-BASED COMPONENT PLATFORM FOR. Informatica 25 (2001) 483-491 485

connection between the Administration Server and the
Gateway Server at the target platform. We will discuss
security issues in more detail in Section 8.

The target environment (or unit) for components is a
heterogeneous distributed system, which consists of an
arbitrary number of hosts typically vvithin a local area
networi<. The hosts may have different operating
systems, but each host has to provide an Agent Server,
which acts as run-time environment for both component
services and domain components. A distinguished host,
the Unit Gateway, is used as the entry point for accessing
the unit from the Internet. For security reasons,
administration clients may only connect to the Unit
Gateway (via the Administration Server). In addition to
an Agent Server, the Unit Gateway hosts an Application
Server, which contains components for remote
administration and access of the domain components
within the unit. Domain components are either installed
directly on a specific host or they are installed at the Unit
Gateway and deploy themselves to the appropriate host
depending on environmental conditions.

4 Software Architecture
Figures 2 and 3 give an overview of the main
architectural building blocks of the Insight component
environment at the target unit. Figure 2 shows the main
layers of the component platform. Figure 3 depicts main
elements of the Remote Administration and Access
Interface (RAAI).

Application Specific Components

^

(/>
• i

1
Q

, , C

o
" •

b
Q

y -

i
o
E

;̂

^
O)

•s
F
D

, , r

n

E
O

CJ

5
0)

E
ra

Dynamic Services Layer

Agent Component Layer

Agent Platform Abstraction Layer(APAL)

Aglets SDK Grasshopper

Java Platform

Figure 2: Platform Architecture

Since the target environment is a heterogeneous
distributed system, portability among various hosts is
important. For this reason, the Insight environment is
based on the Java 2 platform, as shown by the most
general layer in Figure 2. Java 2 offers a certain degree
of portability due to a platform neutral binary format (the
Java bytecode) and a large set of standardized core APIs.
However, our system is not based on a Java component
model like JavaBeans or Enterprise JavaBeans. Instead,
domain components and most of the systern components
are implemented as mobile agents.

Mobile agents [17] are agents that can migrate from host
to host in a network. From a run-time point of view they
are active objects which may transfer their state, their
code and (sometimes) their current execution stack upon
migration to another host. From a component-based point
of view they may deploy themselves (code + data) to a
new target environment. The run-time environment for
mobile agents is provided by agent platforms. An agent
platform defines facilities for creating and destroying
agents, for mobility, for agent communication, and for
other platform-specific services also found in many
component platforms. The component model for agents
is also implicitly defined by the agent platform, though
platform independent standards like FIPA
(wv\^v.fipa.org) are emerging.

We use the facilities provided by existing agent
platforms as the basis for our component platform (see
Layer 2 in Figure 2). Hovvever, our environment is not
based on a specific agent platform, but on an Agent
Platform Abstraction Layer (APAL) defining platform-
independent abstractions for agent creation, disposal,
communication and migration. Currently, we provide
two implementations for the APAL, one for the Aglets
SDK (www.aglets.org) and one for Grasshopper
(vvww.grasshopper.de").

The component model of our platform is defined by the
Agent Component Layer, which is based on the APAL. It
extends the primitives of the APAL by a high-leve!
communication APl, a mechanism for component
aggregation and data types for component Identification
and component metadata.

The Dynamic Services Layer contains various general
services, including a trading (directory) service, an event
Service, and a native-code management service. Ali
services are implemented as portable mobile agents, also
termed system components in our environment. Due to
their nature these general services can be installed and
uninstalled remotely, which enables a dynamic upgrade
of the component platform itself

On top of the Dynamic Services Layer are domain-
specific component frameworks for diagnosis and
supervision tasks. They contain different coordination
and communication models for domain components, i.e.,
agents performing supervision and data retrieval tasks.

Java Platform

Figure 3: Remote Administration and Access
Interface (RAAI)

http://fipa.org
http://www.aglets.org
http://vvww.grasshopper.de

486 Informalica 25 (2001) 483-491 R. Weinreich et al.

The agents vvithin a unit use the communication services
of the underlying agent platform for communication. The
Remote Administration and Access Interface (RAAl)
depicted in Figure 3 can be used for accessing agents
from outside the unit. The RAAl is installed in an
Application Server at the Unit Gateway. It contains
components providing information about the whole unit
and for bridging access to individual agents. Current]y,
requests from administration clients are sent using a
platform-specific HTTP-based RPC. The RAAl contains
a bridge for translating these requests to the native
protocol of the agent platform. We have also
implemented a bridge for llOP-based clients. Other
components of the RAAl provide information for
administration clients, like the number of hosts in the
system and the components installed at a specific host.

5 Deployment
Deployment is the process of installing and customizing
applications in an operational environment [18]. Hali et.
al. [19] describe a softvvare deployment life-cycle and
divide it into producer-side and consumer-side processes.
The two main activities on the producer's side are
release and retire. The release process encompasses aH
activities to package, provide, prepare and advertise
softvvare components for deployment to consumer sites.
Retire is the process of vvithdravving support for a
particular software system by the producer. Since the
retire process is not important in the context of this paper
we refer to Hali et. al. [19] for a treatment of this subject.

Release packages include ali physical artifacts
comprising a component, descriptions of deployment
requirements, and they may also contain initial or default
configurations for activating a component as part of the
install process. According to Hali et. al. [19] installation,
activation, reconfiguration, update, and adaptation are
consumer-side processes. We will not go as far as to
include adaptation and reconfiguration as part of the
deployment process in our system, albeit we recognize
that this may be valid for the deployment of whole
software systems, not individual components, only.

Agent Package '^

UI Package

• , -

1 i
-

i

CM

1 1
n

1

C

1 i
-

J

y
Deployable Domain

Component
(implemented as

agent)

Figure 4: Component Packages

The units of deployment in our environments are mainly
softvvare components for supervision and data retrieval at
the deployment target. These components are
implemented as mobile agents mainly in Java based on

the Agent Platform Abstraction Layer described in the
previous section. As described above, the first step in the
deployment process is to release a component for deploy-
ment. The three main steps are (1) specifying component
properties and external dependencies (2) creating
component packages and (3) making these packages
available to deployment tools. A component need not be
deployed in a single package. In our environment a
deployable component may consist of one to several
packages. The main packages are depicted in Figure 4.

The Agent Package consists of aH Java classes
implementing the agenfs behavior and structure. The UI
Package contains Java classes and sometimes HTML
pages for configuring an agent during installation and
operation. This package is not part of the Agent package,
since the user interface code and resources are not
needed during normal operation. The user interface is
needed only by configuration and installation tools. Stili
it is deployed to the target environment for two main
reasons. Firstly, agents can be configured from multiple
locations with different Administration Servers at the
same time. Keeping the user interface of an agent at one
central location, i.e., vvithin the agenfs operational
environment, makes it unnecessary to explicitly
synchronize these servers. Secondly, older versions of
agents may stili be active and need to be configured
vvhile only new versions vvith nevv configuration
interfaces are available at Administration Servers. We
should note that the UI Package is optional. We also
support automatic generation of (less flexible)
configuration user interfaces based on component
metadata and presentation annotations, as described in
the next section.

Interaction vvith legacy systems and access to native
operating system services is an important requirement for
components in our environment. The APl provided by
the Java 2 platform is often not sufficient to access such
systems and services. Thus, each agent may have a
number of associated platform-specific (or native-code)
libraries (see Figure 4), vvhich have to be deployed vvith
the agent-package and the optional UI Package. The
symbols for platform-specific packages or libraries are
stacked in Figure 4, illustrating that mobile agents might
need different native libraries for the same purpose on
different operating systems.

AH packages are made available for deployment by
putting them into a code repository at an Administration
Server (see Figure 1). The repository supports multiple
categories for different kinds of agents. The repository
contains not only packages but also deployment
descriptors for each domain component, speč ifying the
packages that have to be deployed in order to
successfully deploy the vvhole component. More
specifically, the deployment descriptor contains a
reference to the agent package, to an optional user
interface package and to optional platform-specific
libraries that are needed by the component at the target
environment.

AN AGENT-BASED COMPONENT PLATFORM FOR. Informatica 25 (2001) 483-491 487

The contents of the repository can be visualized using an
installation tool that is loaded from the Administration
Server to one of the administration clients depicted in
Figure 1. The installation tool is used for handling the
consumer-side processes of the deployment life-cycle.
An administrator may select a component from the
repository, specify an initial configuration and defme the
target of the installation process. The target may be an
individual host or simply the unit. In the latter čase, the
component will be installed at the Unit Gateway and
transfers itself to the fmal destination within the unit
depending on environmental conditions.

The installation process is performed as follows: (1) The
installation tool analyses the deployment descriptor from
the repository and transfers ali specified packages to the
destination via a secure Internet connection. (2) In
addition to the packages the initial configuration as
provided by the administrator is transferred. (3) The
packages are stored at different locations at the target
environment. (a) The agent package is delegated to the
code management system of the agent system used. (b)
The optional user interface package is stored on a
dedicated Ul code server. (c) The platform-specific
libraries are managed by a special native-code
management service (see Section 7 on mobility and code
management). (4) Finally, the agent is activated and
parameterized vvith the initial configuration.

Platform-specific libraries need a special treatment. In
order to support mobility of agents vvithin the target
system, we have to ensure that an agent finds ali required
libraries for ali hosls it might visit during operation at the
target system. Therefore, the installation of these libraries
requires additional steps. The installer first checks the
available operating systems at the target system. Then, it
determines whether the required libraries for these
operating systeiTis are already available in the correct
version in a code repository at the Unit Gateway.
Afterwards, it transfers ali libraries that are stili missing
to the target environment. The installation terminates
successfully, if the installer is able to transfer ali
platform-specific libraries for aH operating system an
agent might need during operation.

6 Dynamic Configuration
Our environment supports remote and dynamic
configuration of both agent properties and dependency
relations among agents. Configuration is performed from
administration clients over secure Internet connections
using graphical user interfaces.

The user interface for configuring the properties of a
single agent is either fetched on demand from the
agent's operational environment (see code on demand
[22].) or it is automatically generated based on agent
metadata. In the first čase, user interface code for the
agent has to be deployed to the target environment (see
Section 5). In the second čase, no user interface needs to
be programmed and transferred, albeit less flexible user

interfaces are possible. Both techniques enable
configuration of agent properties from arbitrary
administration clients, even if the agent itself has been
deployed via a different Administration Server.

Unit Client
Agent

Agent State
+

Agent
Metadata

+
Presentation

Hinis

Configuration
Descriptor I — •

Ul
Generator Ul

Ul
Renderer

Figure 5: Automatic Generatlon of User Interfaces

Automatic generation of user interfaces for agent
configuration is based on metadata about an agenfs
configurable properties, which is augmented by Ul
presentation hints. Examples for Ul presentation hints are
verbose names of configurable properties, validation
ranges, units of measurement, and category qualifiers.
Category qualifiers are used for grouping related
properties at the user interface. Configuration based on
metadata works as follows: (1) The current properties of
an agent including structural and type Information,
current values, and Ul presentation hints are stored into
an XML-based configuration descriptor, which is
transferred to the administration client. (2) At the client
the descriptor is analyzed and the user interface is
generated. (3) The changed configuration data is returned
to the agent, which updates itself properly.

The user interface generator is able to generate different
kinds of user interfaces using different renderers.
Currently we generate user interfaces based on
JFC/Swing (http://iava.sun.com/ifc). Renderers for
HTML and other kinds of user interfaces may be
provided as well. The main elements of automatic user
interface generation are depicted in Figure 5.

In addition to changing the properties of single agents at
run-time, we provide tools for specilying dependency
relations between different agents. Currently these
relations are event relationships, which are maintained by
an event service at run-time. Remote configuration tools
use the Remote Administration and Access Interface
(RAAI) for accessing the event service remotely and for
vievving, creating, and changing event relationships.

7 Mobility Support and Code
Management

Mobile code and especially mobile agents offer a number
of benefits for the construction of distributed systems.
Benefits of mobile agents that are often described are
reduced network load, reduced latency, encapsulation of
protocols, asynchronous execution and autonomy,
dynamic adaptation, and fault tolerance (see
[20][21][22]). Despite these potential advantages code
iTiobility raises new problems, mainly concerning

http://iava.sun.com/ifc

488 Informatica 25 (2001) 483-491 R. Weinreich et al.

security, resource management and accounting (see
[23][24]). However, these issues are most evident if
agents are used in a global setting, like agents roaming
the Internet. They are less a problem if mobile agents are
used within a rather closed environment, like in an
Intranet or a local area network (LAN).

We support mobility within the LAN of the target unit.
The most important benefits of using mobility in our
system are dynamic adaptation, encapsulation of
protocols, and support for distributed data retrievai.
Agents performing supervision tasks may dispatch
themselves to the appropriate location depending on
information provided by the target environment. Agents
performing long-term diagnosis tasks may roam the LAN
and coUect data from multiple hosts. Finai]y, agents are
able to access legacy systems located on specific hosts
using proprietary and local communication protocols.

The main elements that have to be transferred during
agent migration are the agent's internal state, its code and
its execution state. As long as agents are complete!y
implemented in Java, ali these issues are handied or at
least supported by the underlying agent platform in our
system. However, recall that some agents may represent
domain components needing access to services that are
not supported by the Java API. These agents typically
use platform-specific (or native-code) libraries which
have to be transferred to an agent's destination, also.
Since this is not supported by the underlying agent
platform, we provide a native-code management service
for managing mobility of native code within the agent's
netvvork environment.

The deployment process ensures that aH platform-
specific libraries an agent might need during operation
are available in a central repository at the target unit (see
Section 5). The native-code management service is
implemented by a collection of system agents, one at
each host. The migration process vvorks as follows: (1)
The underlying agent platform is used for transferring the
portable part of an agent, including its internal state and
information about its execution state. (2) After arrival the
agent contacts a local system agent responsible for
native-code management and specifies its need for
particular libraries. This request does not contain
platform-specific information and is the same on aH
target platforms. (3) The system agent checks a local
code cache and confirms the request if the needed
libraries are available. Otherwise it gets the required
libraries from a central repository and stores them locally
in the code cache before confirming the request. The
system agent is aware of its environment and thus is able
to get the correct libraries from the central repository. (4)
After confirmation the migrating agent is able to finish
the transfer process and continues with its operation.

8 Security
The use of mobile code and especially of mobile agents
in a truly open environment such as the Internet raises a

number of security problems, which are difficult to solve
(see [25][26]). The security requirements in our
environment are different. We support remote
administration and management of rather closed units
with clearly defined access points. General problems in
an open setting like protecting hosts from malicious
agents and vice versa are not present in our environment.
Instead, we have to provide secure connections as well as
authentication and authorization for Internet-based access
from administration clients to administered units as well
as accurate logging of administration tasks. Figure 6
shows the system structure of our environment from a
security perspective.

An administration client has to authenticate himself at
the Administration Server with a username and password
(see (I) in Figure 6). Authentication of the administration
server to clients as well as secure transmission is realized
using SSL [27]. This means that the Administration
Server needs a trusted certificate that can be verified by
clients.

Clienl

Administration
Server

O

^ ~) Websei O Application
Server

Component
:]Repositorv

ril
, Demililarized Zone

mžinntn

Figure 6: Security Architecture Overview

Access to corporate netvvorks from the Internet is usually
secured with firevvalls, providing port and protocol
filters. Our system architecture has been designed with
typical corporate network security architectures (with
cascaded firevvalls) in mind. Communication between a
client and an agent at a remote server is always routed
via the Administration Server and the Gateway Server.
Communication between the Administration Server and
the Gateway Server (see (2) in Figure 6) requires a
mutual certificate-based authentication of the
Administration Server and the Gateway Server and is
always encrypted.

Ali administration tasks like installation and termination
of agents, activation of certain agent tasks (e.g.,
measurements), and configuration changes are checked
by an authorization mechanism, which is based on client-
side authentication. In addition, a logging service records
ali activities of administration clients, which is an
important feature for tracking not only security holes but
also administration faults.

Within the target unit no special security precautions are
taken. Components trust their hosts as well as hosts trust
their components. Communication among components
vvithin the system (see (3) in Figure 6) need not be

AN AGENT-BASED COMPONENT PLATFORM FOR. Informatica 25 (2001) 483-491 489

secured,. though the underlying agent platform might
provide intra-communication security as well.

9 Domain Specific Component
Frameworks

Insight provides domain specific component framevvorks
for system supervision and control as weil as system
diagnosis tasks (see Section 2). The framevvorks assign
roles to the agents used for supervision and system
diagnosis. Although the primary application domain of
these framevvorks is process automation, they are general
enough to be used in other domains with simiiar
requirements.

Agents for supervision tasks can be grouped into
supervision and control agents. Supervision agents and
control agents can be connected dynamically using a
configuration tool as described in Section 6. Supervision
agents continuously observe critical aspects of an
automation system (e.g., steel quality attributes in a steel
plant). A measurement framevvork allovvs customization
of measurement activities like frequency of
measurements and access to data sources. If a
supervision agent detects a problem, it notifies ali
connected control agents. A control agent may either
inform a human operator (e.g., by sending an electronic
mail) or autonomously perform necessary operations.
Figure 7 depicts typical coordination patterns for
supervisor and control agents.

from the worker agents to a diagnosis agent, which
subsequently may use other agents for data processing
and report generation. Figure 8 depicts measurement
strategies that are.supported by.Insight. .

Figure 7: Coordination patterns for supervisor and
control agents

In the figure, supervisor 52 is connected to two control
agents {C2 and C3, on different hosts) that may be
notified by S2. More complicated coordination patterns
are also possible. For example, control agent M acts as a
mediator for several supervision agents (SI and S2 in
Figure 7). The mediator analyzes notifications from ali
connected supervision agents before informing its
associated control agents (C7 in Figure 7). Connections
betvveen agents are maintained if an agent moves to
another location.

The main components of system diagnosis are diagnosis
agents, worker agents and data collectors. Diagnosis
agents are used for collecting data about distributed
resources over a longer period of time. They create and
use vvorker agents for performing the actual measurement
tasks. Usually multiple vvorkers are active in parallel.
The diagnosis agent acts as coordinator and supervisor
for its worker agents. Measurement results are returned

Figure 8: Measurement Strategies

In Figure 8, diagnoses agent D] implements a simple
strategy. Only one worker agent IV] is dispatched to a
specific host. Diagnoses agent D3, hovvever, ušes two
worker agents for collecting data from multiple hosts in
parallel. Agent D2 ušes a vvorker agent W2 that visits
several hosts in sequential order and performs
measurement tasks at each host. The measurement
strategy of diagnosis agents can be configured. Worker
agents iTiay either collect data once or continuously. In
the latter čase measurement frequencies can be
configured and a trend analysis is possible.

Analysis and preparation of measurement data for
operators and managers is performed by data collector
agents. Data collectors can be connected to the diagnoses
agents using the configuration tool (see Section 6).
Currently data collectors usually prepare reports in
HTML, which can be viewed with standard web
brovvsers. Data collectors use a data processing
framework, which can be parameterized with other
components supporting reports in different formats or
storing measurement results in a quality database, for
example.

10 RelatedWork
Insight is component platform for dynamically adaptable
distributed applications. As a component platform the,
system supports naming, interoperability, deployment,
evolution, customization and composition of software
components. The most notable difference to other
component models and platforms like Enterprise
JavaBeans (http://iava.sun.com/ejb). Windows .NET
(http://w\vw.microsoft.com/net'). and the ČORBA
Component Model (http://www.omg.org') is that
components and services in our system are based on
mobile agents. This leads to some of the key features of
our environment like dynamic services, support for
mobility, dynamic adaptation, and support for legacy
systems. A detailed comparison with the above
component models and platforms is beyond the scope of
this paper.

Also, it is not useful to compare our environment with
other agent platforms. We rely on a minimum
functionality for agent creation, destruction,
communication, and mobility, which is expressed by an

http://iava.sun
http://w/vw.microsoft.com/net'
http://www.omg.org'

490 Informatica 25 (2001) 483-491 R. Weinreich et al.

agent platform abstraction layer. The underlying agent
system may be replaced by an agent system providing a
similar functionality. Research on mobile agent platfornis
often focuses on security issues in a truly open setting
(e.g., [28][29]) and on high-level interaction of agents
owned by different principals. The main focus of our
environment, hovvever, is a flexib!e component platform
with support for mobility, which utilizes agent
technology for increased extensibility and adaptability.

Another focus of our system is on remote administration,
including deployment and configuration. Similar
approaches for remote management of distributed
resources are the Simple Network Management Protocol
SNMP [30] and extensions to SNMP like RMON [31].
The focus of these approaches is on remote netvvork
management. They may be used not only for the
management of computers in a network but also for
netvvork devices like svvitches and routers. They are not
based on a component model and usually provide only
lower level interfaces for administration. Configuration is
sometimes supported based on static predefmed tasks
like in RMON. SNMPv3 [32] allovi's to dynamically
install and execute scripts. In the telecommunication area
network management is, for historical reasons, built upon
the OSI model (TMN/OSI [37][38]). TMN/OSI mandates
the use of the Common Management Information
Protocol (CMIP), which in its nature is comparable to the
SNMP model [39].

Java-based approaches for remote management of
distributed resources are Jiro [33] and JMX [34]. Jiro is
based on Jini [35] and was initially created for the
purpose of storage management. We will discuss only
JMX, since SUN is currently working on integrating Jiro
with JMX [36]. The management components of JMX
are MBeans. MBeans may be compared to domain
components (i.e., supervisor, control and diagnosis
agents) in the Insight environment. JMX supports a
notification service for MBeans, which is comparable to
the event service provided by our system. MBean objects
are hosted by an MBean server, which has to be available
at each host. In our environment, the execution
environment for agents is provided by the underlying
agent platform and is typically an agent server per host.
MBeans may also offer services to other MBeans.
Examples for MBeans-based services are remote class
loading (m-let service), task scheduling (timer service),
and monitoring attributes of other MBeans. These
services may be installed and removed dynamically and
thus are comparable to the dynamic services in our
environment.

Mobility of MBeans is not directly supported by JMX,
though it could be implemented on basis of the m-let
service. Also, the deployment process is not directly
supported by JMX. JMX provides only limited support
for native code management using the m-let service [34]
while Insight supports deployment and mobility of
native-code in heterogeneous environments. Tools for
remote administration via the Internet are not part of the

JMX specification. Also, support for automatic
generation of configuration interfaces (see Ul
presentation metadata in Section 6) is not included in
JMX. The JMX specification contains no information
about JMX specific security issues. The Insight security
model is tailored to the described application
requirements and supports not only mutual authentication
and authorization but also logging of administrative
tasks.

11 Conclusion
Global neUvorking via the Internet and vvireless and
mobile computing raise additional demands on
component platforms and management. Global
networking makes remote administration and
management possible vvithout leasing dedicated lines.
Mobile and wireless computing have initiated a trend
tovvards a spectrum of different end user devices for
accessing the Internet. Security threats are increasing.
Interaction vvith and integration of legacy systems
becomes more important and raises additional demands
on component systems.

We have presented an agent-based component platform
and environment, vvhich offers solutions to some of these
problems. Key issues of our system are dynamic
services, support for remote and dynamic deployment
and configuration, support for mobility, management of
platform-specific code in heterogeneous environments,
and multi-protocol remote access of softvvare
components. We also provide a security solution for
remote administration tasks, and component framevvorks
for data retrieval and supervision of hard- and software-
resources.

The system is currently used for remote supervision and
control of steel-plant process automation systems.
Further application domains are investigated. Main issues
of future work are better support for agent interaction and
increased security and fault tolerance.

12 References
[1] C. Szyperski: Component Softvvare - Beyond

Object-Oriented Programming, Addison-Wesley,
1998.

[2] G.T. Heineman, W.T. Councill (eds.):
Component-Based Software Engineering,
Addison-Wesley, 2001.

[3] R. Weinreich, J. Sametinger: "Component Models
and Component Services - Concepts and
Principles", in Componenl-Based Software
Engineering (www.cbseng.com), G.T. Heineman,
W.Councill (ed.), Addison-Wesley 2001.

[4] J.M. Bradshavv (ed.): Software Agents, MIT Press,
1997.

[5] M.L. Griss: "Software Agents as Next Generation
Software Components", in Component-Based
Software Engineering, G.T. Heineman,
W.Councill (ed.), Addison-WesIey 2001.

http://www.cbseng.com

AN AGENT-BASED COMPONENT PLATFORM FOR. Infomiatica25 (2001) 483-491 491

[6] M.L. Griss, G. Pour: "Accelerating Development
with Agent Components", IEEE Computer Vol.
34, No. 5,May2001. [23]

[7] D. Kafura, J.P. Briot: "Actor Agents", IEEE
Concurrency, April/June 1998, pp. 24-29.

[8] M. Wooldridge, "N.R. Jennings: "Intelligent
Agents: Theory and Practice", Knovvledge [24]
Engineering Review, Vol 10, No. 2, Cambridge
University Press, 1995.

[9] ACM: "Multiagent Systems on the Net and [25]
Agents in E-commerce", CACM, Vol. 42, No. 3,
March 1999.

[10] C. Petrie: "Agent-Based Software Engineering",
Proceedings of the First International Workshop
on Agent-Oriented Software Engineering (Eds. P. [26]
Ciancarini and M. Wooldridge), Lecture Notes in
Al, Vol. 1957, Springer, 2001.

[11] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. [27]
Cybenko, D. Rus: "Mobile agents in distributed
Information retrieval", in Intelligent Information
Agents, Matthias Klusch (ed.), Springer Verlag, [28]
1999.

[12] A. Bieszczad, B. Pagurek, T. White: "Mobile
Agents for Network Management", IEEE [29]
Communications Surveys, September 1998.

[13] W.J. Buchanan, M. Naylor, A.V. Scott:
"Enhancing Netvvork Management using Mobile
Agents", Proceedings of the 7th IEEE [30]
International Conference and Workshop on the
Engineering of Computer Based Systems,
Edinburgh, Scotland, April 2000. [31]

[14] S. Albayrak: "Agent-oriented technology for
teiecommunications: introduction", CACM, Vol.
44, No. 4, April 2001. [32]

[15] S. Fricke, K. Bsufka, J. Keiser, T. Schmidt, R.
Sesseler, S. Albayrak: "Agent-based telematic [33]
Services and telecom applications", CACM, Vol.
44, No. 4, April 2001.

[16] M. P. Papazoglou: "Agent-oriented technology in [34]
support of e-business", CACM, Vol. 44, No. 4,
April 2001.

[17] J. White: "Mobile Agents", in Software Agents, J. [35]
Bradshavv (ed.), MIT Press, 1997, pp. 437-472.

[18] N. Kassem (ed.): Designing Enterprise
Applications with the Java(tm) 2 Platform, [36]
Enterprise Edition, Addison-WesIey, 2000.

[19] R.S. Hali, D. Heimbigner, A.L. Wolf: "A
Cooperative Approach to Support Software
Deployment Using the Software Dock",
Proceedings of the International Conference on [37]
Software Engineering 1999 (ISCE '99), Los
Angeles, California, USA, 1999.

[20] D.B. Lange, M. Oshima: "Seven Good Reasons [38]
for Mobile Agents", CACM, Vol. 42, No. 3,
March 1999, p. 88-89.

[21] D. Wong, N. Paciorek, D. Moore: "Java-based [39]
Mobile Agents", CACM, Vol. 42, No. 3, March
1999, pp. 92-102.

[22] G.P. Picco: Understanding, Evaluating,
Formalizing, and Exploiting Code Mobility,

doctoral thesis, Dipartimento di Automatica e
Informatica, Politecnico di Torino, Italy, 1998.
D. Chess, C. Harrison, A. Kershenbaum: "Mobile
Agents: Are they a good idea?", IBM Research
Report, T.J. Watson Research Center, Yorktown
Heifihts, New York, 1995.
b . Kotz, R. Gray: "Mobile Agents and the Future
of the Internet", ACM Operating Systems
Revievv, A"gust 1999, pp. 7-13.
W. .'ansen, T. Karygiannis: "Mobile Agent
Secu; .iy", National Institute of Standards and
Technology, Computer Security Resource Center,
Special Publication 800-19, available online at
http://csrc.nist.gov/mobileagents/. August 1999.
N. Karnik: Security in Mobile Agent Systems, PhD
dissertation, Computer Science and Engineering,
University of Minnesota, 1998.
E. Rescorla: SSL and TLS - Designing and
Biiilding Seciire Systems, Addison-Wesley
Professional, 2000.
G. Karjoth, D.B. Lange, M. Oshima: A Security
Model for Aglets, IEEE Internet Computing, July-
August 1997, pp. 68-77.
C. Bryce, J. Vitek: The JavaSeal Mobile Agent
Kernel, Journal on Autonomous Agents and
Multi-Agent Systems, Kluwer Academic
Publishers, 4, 2001, pp. 359-384.
J. Čase, M. Fedor, M. Schoffstall, J. Davin (eds.):
RFC 1157, A Simple Network Management
Protocol (SNMP), lETF, May 1990.
W. Stallings: SNMP, SNMPv2, SNMPv3, and
RMON 1 and 2, Third edition, Addison-Wesley,
Reading, MA, USA 1999.
D. Levi, P. Meyer, B. Stevvard (eds.): RFC 2573 -
SNMPv3 Applications, lETF, April 1999.
P. Monday, W. Connor: The Jiro Technology
Programmer's Guide and Federated Management
Architecture, Addison-Wesley, 2001.
Sun Microsystems: Java Management Extensions
- Instrumentation and Agent Specification, V 1.0,
Final Release, July 2000.
K. Arnold, B. 0'Sullivan, R.W. Scheifler, J.
Waldo, A. Wollrath: The Jini Specification,
Addison-Wesley, 1999.
J.P. Martin-Flatin and S. Znaty: "Two
Taxonomies of Distributed Network and Systems
Management Paradigms", Technical Report
DSC/2000/032, DSC, EPFL, Lausanne,
Switzerland, July 2000.
ITU-T: "Recommendation M.3010 - Principles
for a Teiecommunications management network",
Geneva, Switzerland, May 1996.
J.K. Shrewsbury: An Introduction to TMN,
Journal of Network and Systems Management,
Vol. 3, No. 1, 1995.
M. Baldi, G.P. Picco: "Evaluating the Tradeofs of
Mobile Code Design Paradigms in Netvvork
Management Applications", In Proceedings of the
20th International Conference on Software
Engineering (ICSE'98), Kyoto (Japan), IEEE CS
Press, April 1998

http://csrc.nist.gov/mobileagents/

Informatica 25 (2001) 493-500 493

MobiDoc: a mobile agent-based framework for compound documents

Ichiro Satoh
National Institute of Informatics /
Japan Science and Technology Corporation
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 Japan
Tel: -1-81-3-4212-2546 Fax: -1-81-3-3556-1916
E-mail: ichiro@nii.ac.jp

Keywords: compound document, mobile agent, software component, distributed system

Received:May 6,2001

Tbis paper presents a mobile-agent-based framework for building mobile compound documents, called
MobiDoc, where the compound document can be dynamicaUy composed of mobile agent-based compo
nents and can migrate itselfover a network as a whole, with ali its embedded agents. The key idea ofthis
framewoTk is that it builds a hierarchical mobile agent system that enables multiple mobile agents to be
combined into a single one. The framework a/soprovides several value-addedmechanisms for visually ma-
nipulating components embedded in a compound document and for sharing a window on the screen among
the components. This paper describes this framework and its prototype implementation, currently using
Java as the implementation language as well as a component development language, and then illustrates
several interesting applications to demonstrate the utility and flexibility ofthis framework.

1 Introduction

Building systems from software components has already
proven useful in the development of large and complex
systems. Several frameworks for software components
have been developed, such as COM/OLE [4], OpenDoc
[1], CommonPoint [10], and JavaBeans [7]. Among them,
the notion of compound documents is a document-centric
component framework, where various visible parts, such
as text, image, and video, created by different applications
can be combined into one document and be independently
manipulated in-place in the document. An example of this
type of framework is CI Labs' OpenDoc [1] developed
by Apple computer and IBM, although their development
work on this framevvork has stopped. However, there have
been several problems in the few existing compound doc
ument framevvorks. A compound component is typically
defined by two parts: contents and codes for modifying the
contents. Contents are stored inside the component but the
codes for accessing them are not always. Thus, a user can-
not view or modify a document whose contents need the
support of different applications, if the user does not have
the applications. Moreover, existing compound documents
are inherently designed as passive entities in the sense that
they can be transmitted over a network by external net-
work systems such as electronic mail systems and work-
flow management systems and cannot determine vvhere it
should go next. We aiso need network-wide manipulation
for building and assembling various components located in
different computers into a document. Therefore, not only
a vvhole compound document but also each of the compo
nents of the document must be able to be transmitted to

another computer.

The goal of this paper is to propose a new framework for
building mobile compound documents. Each document is
built as a component that can be a container for components
that can migrate over a network. Accessing compound doc
uments over a netvvork requires a powerful infrastructure
for building and migrating, such as mobile agents. Mobile
agents are autonomous programs that can travel from com
puter to computer under their own control. When an agent
migrates over a netvvork, both the state and the codes can
be transferred to the destination. However, traditional mo
bile agent systems cannot be composed of more than one
mobile agent,, unlike component technology. Therefore,
we built a .framework on a unique mobile agent system,
called MobileSpaces, vvhich was presented in an earlier pa
per [12]. The system is constructed using Java language
[2] and provides mobile agents that can move over a net-
work, like other mobile agent systems. However, it also
allows more than one mobile agent to be hierarchically as-
sembled into a single mobile agent. Consequently, in our
framework, a compound document is a hierarchical mobile
agent that contains its contents and a hierarchy of mobile
agents, which correspond to nested components embedded
in the document. Furthermore, the framework offers sev
eral mechanisms for coordinating visible components so
that they can effectively share visual real estate on a screen
in a seamless-manner.

This paper is organized as follows. Section 2 surveys
related work and Section 3 presents the basic ideas of the
compound document framewGrk, called MobiDoc. Section
4 detaiis its prototype implementation and Section 5 shows
the usability of our framevvork based on real-world exam-

mailto:ichiro@nii.ac.jp

494 Informatica 25 (2001) 493-500 I. Satoh

ples. Section 6 makes some concluding remarks.

2 Background

Among the component technologies developed so far,
OpenDoc and JavaBeans are characterized by allowing a
component to contain a hierarchy of nested components.
Although there are fevv hierarchical components available
on the market today, their advent appears to be necessary
and unavoidable in the long run.

OpenDoc is a document-centric component framevvork
and has several advantages over other frameworks, but it
has been discontinued. An OpenDoc component is not
self-configurable, although it is equipped with scripts to
control itself, so a component cannot migrate over a net-
work under its own control. JavaBeans is a general frame
vvork for building reusable softvvare components designed
for the Java language. The initial release of JavaBeans (ver-
sion 1.0 specified in [7]) did not contain a hierarchical or
logical structure for JavaBean objects, but its latest release
specified in [5] allovvs JavaBean objects to be organized
hierarchically. Hovvever, the JavaBeans framevvork does
not provide any higher-level document-related functions.
Moreover, it is not inherently designed for mobility. There
fore, it is very difficult for a group of JavaBean objects in
the containment hierarchy to migrate to another computer.

A number of other mobile agent systems have been re-
leased recently, for example Aglets [8], Mole [3], Tele-
script [17], and Voyager [9]. Hovvever, these agent sys-
tems unfortunately lack a mechanism for structurally as-
sembling more than one mobile agent, unlike component
technologies. This is because each mobile agent is basi-
cally designed as an isolated entity that migrates indepen-
dently. Some of them offer inter-agent communication, but
they can only couple mobile agents loosely and thus can
not migrate a group of mobile agents to another computer
as a vvhole. Telescript introduces the concept of places in
addition to mobile agents. Places are agents that can con
tain mobile agents and places inside them, but they are not
mobile. Therefore, the notion of places does not support
mobile compound documents.

To solve the above problem in existing mobile agent sys-
tems, vve constructed a nevv mobile agent system, called
MobileSpaces, in a previous paper [12]. The system intro
duces the notion of agent hierarchy and inter-agent migra-
tion. This system allovvs a group of mobile agents to be dy-
namically assembled into a single mobile agent. Although
the system itself has no mechanism for constructing com
pound documents, it can provide a povverful infrastructure
for implementing compound documents in netvvork com-
puting settings. Also, vve presented a compound document
framevvork as j ust an application of the MobileSpaces sys-
tem [13]. Therefore, the previous framevvork lacked many
functionalities, vvhich are provided by the framework pre
sented in this paper. For example, it could deliver a com
pound document as a vvhole to another computer, but not

decompose a document into components or migrate each
component to another computer independently. As a result,
the previous one could not fetch and assemble components
located at different computers into a compound document.

ADK [6] is a framevvork for building mobile agents from
JavaBeans. It provides an extension of Sun's visual builder
tool for JavaBeans, called BeanBox, to support the visual
construction of mobile agents. In contrast, vve intend to
construct a nevv framevvork for building mobile compound
documents in which each component can be a container for
components and can migrate over a netvvork under its ovvn
control. Our compound document vvill be able to migrate
itself from one computer to another as a vvhole with ali of
its embedded components to the nevv computer and adapt
the arrangement of its inner components to the user's re-
quirements and its environments by migrating and replac-
ing corresponding components.

We should explain why our hierarchical mobile agent
is essential in the development of compound documents.
The reader might think that existing softvvare development
methodologies such as JavaBeans and OpenDoc, enable
components to be shipped to other computers. Indeed,
in the current implementation of our system each mobile
agent can be a container of JavaBeans and can get as a
vvhole vvith its inner Java Beans. Hovvever, JavaBean com
ponents are not inherently designed to be mobile compo
nents, unlike mobile agents. Therefore, it is difficult to mi
grate each JavaBean component over the netvvork under its
ovvn control. On the other hand, our framevvork introduces
a document (or a component) as an active entity that can
travel from computer to computer under its ovvn control.
Therefore, our document can determine vvhere it should go
next, according to its contents. Moreover, it can dynami-
cally adapt the layouts and combinations of its inner com
ponents to the user's requirements and the environments.

3 Approach

This section outlines the framevvork for building compound
documents based on mobile agents called MobiDoc.

3.1 IViobile Agent-based Components

To create an enriched compound document, a component
or document must be able to contain other components,
like OpenDoc. On the other hand, each mobile agent re-
sembles a softvvare component in the sense that each entity
is a self-contained module holding its code and state, but
most existing mobile agent systems do not allovv a mobile
agent to be composed structurally. Furthermore, each mo
bile agent is characterized by its mobility. Thus, a com-
position of mobile agents must be designed to keep their
mobility. We intend to provide such a component through
a hierarchical mobile agent. Our framevvork is therefore
built on MobileSpaces [12] vvhich can dynamically assem
ble more than one mobile agent into a single mobile agent.
The system supports mobile agents that are computational

MOBIDOC: A MOBILE AGENT-BASED FRAMEVVORK. Informatica 25 (2001) 493-500 495

and itinerant entities, like other mobile agent systems. It
aiso incorporates the following concepts:

s t e p 2

Computer A

S t e p 1

Computer A

Computer B

Agent B^gent C

ii><]3r
li'Aq'erit.

fliiiPi—•
Computer B

Figure I: Agent Hierarchy and Group Migration.

• Agent Hierarchy The first concept means that each
mobile agent can be contained within one mobile
agent. It enables us to assemble more than one mobile
agent into a single mobile agent in a tree structure.

• Group Migration The second concept means that
each mobile agent can migrate to another agent or an-
other Computer as a vvhole, with ali of its inner agents.
It allows a group of mobile agents to be treated as a
single mobile agent during their migration.

The first concept is needed in the development of a mobile
compound document, because such a document should be
able to contain other components, like OpenDoc. The sec
ond concept enables a compound document to migrate it-
self and its components as a vvhole. Accordingly, a com
pound document is given as a collection of mobile compo
nents and can be treated as a mobile component. Figure 1
shows an example of an inter-agent migration in an agent
hierarchy. In an agent hierarchy, each agent is stili mobile
and can freely move into any computer or any agent in the
same agent hierarchy except into itself or its inner agents,
as long as the destination accepts the moving agent.

3.2 Compound Document Framework

MobileSpaces is a suitable infrastructure for mobile com
pound documents, but it does not provide any document-
centric mechanisms for managing components in a com
pound document. We offer a compound document frame-
work for supporting mobile agent-based components, in-
cluding graphical user interfaces for manipulating visible
components. This framework, called MobiDoc, is given as
a collection of Java objects that belong to one of about 50
classes. It defines the protocols that let components embed-
ded in a document communicate with each other. It aIso
deals with in-place editing services similar to those pro-
vided by OpenDoc and OLE. The framework offers several
mechanisms for effectively sharing the visual estate of a
Container among embedded components and for coordinat-
ing their use of shared resources, such as keyboard, mouse,
and window.

4 Implementation

Next, we will describe our method for using MobileSpaces
to construct mobile compound documents.' It has been in-
corporated in Java Development Kit version 1.2 and can
run on any computer that has a runtime system compatible
with this version.

H ierarchicaibMAgenls H ierarchicaihJM agents

(AgentE)

(A g e n t j)

AgentD

Ag_en_t3 ;
; Agente];

AgentA

M obiU^aces
Runtrde Syst;m

Agent Mjratm

Java V i r t u a l Mat

f AoentB^

[Agente]

AgentA

AgentH

V J
AgentG

M o b i l ^ a c e s
Runtnie Systan

Java V i r t u a l Mat

Figure 2: Agent Migration betvveen Two MobileSpaces
Runtime Systems.

4.1 MobileSpaces Runtime System

The MobileSpaces runtime system is a platform for exe-
cuting and migrating mobile agents. It is built on a Java
virtual machine and mobile agents are given as Java ob
jects [2]. Each component is given as a mobile agent in the
system and the containment hierarchy of components in a
document is given as an agent hierarchy managed by the
system. The runtime system has the following functions:

Agent Hierarchy Management

The agent hierarchy is given as a tree structure in which
each node contains a mobile agent and its attributes. The
runtime system is assumed to be at the root node of the
agent hierarchy. Agent migration in an agent hierarchy is
performed just as a transformation of the tree structure of
the hierarchy. In the runtime system, each agent has direct
control of its internal agents. That is, a container agent
can instruct its embedded agents to move to other agents
or computers, serialize them and destroy them. In contrast,
an embedded agent has no direct control over its container
agent. It can only access the collection of service methods
offered by its container agents.

Agent Life-cycle Management

The runtime system is at the root node of the agent hier-
archy and can control ali the agents in the agent hierarchy.
Furthermore, it maintains the life-cycle of agents: initial-
ization, execution, suspension, and termination. When the
life-cycle state of an agent is changed, the runtime sys-
tem issues events to invoke certain methods in the agent

' Dclails of the MobileSpaces mobile agent system can be found in our
previous paper [12].

496 Informadca 25 (2001) 493-500 I. Satoh

and its containing agents. Moreover, the runtime system
enforces interoperation among mobile agent-based com
ponents. The runtime system monitors changes in com
ponents and propagates certain events to the right com
ponents. For esample, when a component is added to or
removed from its container component, the system dis-
patches certain events to the component and the container.

Agent Migration Mechanism

Each document is saved and transmitted as a group of mo
bile agents. When a component is moved inside a com-
puter, the component and its inner components can stili
be running. When a component is transferred over a net-
work, the runtime system stores the state and the codes
of the component, including the components embedded in
it, into a bit-stream formed in Java's JAR file format that
can support digital signatures for authentication. The sys-
tem provides a built-in mechanism for transmitting the bit-
stream over the network by using an extension of the HTTP
protocol. The current system basically ušes the Java ob-
ject serialization package for marshaling components. The
package does not support the capturing of stack frames of
threads. Instead, when a component is serialized, the sys-
tem propagates certain events to its embedded components
to instruct the agent to stop its active threads.

4.2 Mobile Agent Program

In our compound document framevvork, each component is
a group of mobile agents in MobileSpaces. They consist
of a body program and a set of services implemented in
Java language. The body program defines the behavior of
the component and the set of services defines various APIs
for components embedded within the component. Every
agent program has to be an instance of a subclass of the
abstract class ComponentAgent, which consists of some
fundamental methods to control the mobility and life-cycle
of a mobile agent-based component as shown in Figure 3.

Agent

C h i l A g e n t A

ge tSe rv i ce

agent
contex

ChilcJ^gentB

V[
I serviceiethod 1

serviceiethod 2

asen t Imethod 1
P ^ ° 3 ^ ^ Imethod 2
ca l l baak i [method 3~

!

S t a t e

an event from the parent agent

Figure 3: Structure of a Hierarchical Mobile Agent.

public class ComponentAgent extends Agent (
// (un)registering services for inner agents
void addContextService(
ContextService service) (...)

void removeContextService(
ContextService service) (...)

// (un)registering listener objects
//to hook events
void addListener(
AgentEventListener listener) (...)

void removeListener (
AgentEventListener listener) (...)

void getService(Service service)
throws ... (...)

void go{AgentURL url)
throws ... (...)

void go(AgentURL uril, AgentURL url2)
throws ... (... }

byte[] create(byte[l data) throws ...
byte[] serialize(AgentURL url) throws
AgentURL deserialize(byte[] data)

throws ... (...)
void destroy(AgentURL url) throws ... (...)

ComponentFrame getFrame() (
ComponentFrame getFrame(
AgentURL url) (...)

)

The methods used to control mobility and life-cycle defined
in the ComponentAgent class are as follows:

• An agent can invoke public methods defined in a set of
service methods offered by its container by invoking
the g e t S e r v i c e () method with an instance of the
S e r v i c e class. The instance can specify the kind of
service methods, arbitrary objects as arguments, and
deadline for timeout exception.

• When an agent performs the go (AgentURL u r l)
method, it migrates itself to the destination agent spec-
ified b y u r l . Thego{AgentURL u r i l , Agen
tURL u r l 2) method instructs the descendant spec-
ified as u r i l to move to the destination agent speci-
fied a s u r l 2 .

• Each container agent can dispatch certain events to its
inner agents and notify them when certain actions hap-
pen within their surroundings.

Our framevvork provides an event mechanism based on the
delegation-based event model introduced in the Abstract
Window Toolkit of JDK 1.1 or later, like Aglets [8]. When
an agent is migrated, marshaled, or destroyed, our runtime
system does not automatically release ali the resources,
such as files, windows, and sockets, which are acquired by
the agent. Instead, the runtime system can issue certain
events in the changes of Iife-cycle states. Also, a container
agent can dispatch certain events to its inner mobile agent-
based components at the occurrence of user-interface level
actions, such as mouse clicks, keystrokes, and window ac-
tivation, as vvell as at the occurrence of application level
actions, such as the opening and closing of documents. To
hook these events, each mobile agent-based component can
have one or more listener objects vvhich implement certain
methods invoked by the runtime system and its container
component. For example, each component can have one

MOBIDOC: A MOBILE AGENT-BASED FRAMEWORK. Informatica 25 (2001) 493-500 497

or more activities that are performed using the Java thread
library, but it needs to capture certain events issued before
it migrates over a network and stop its own activities.

4.3 MobiDoc Compound Document
Framevvork

The MobiDoc framevvork is implemented as a collec-
tion of Java classes to embody some of the principles of
component-interoperation and graphical user interface.

Visual Layout Management

Each mobile agent-based eomponent can be displayed
within the estate of its container or a window on the screen,
but it must be accessed through an indirection: frame
objects derived from the ComponentFrame class." as
shown in Fig. 4. Each frame object is the area of the display
that represents the contents of components and is used for
negotiating the use of geometric space between the frame
of its container eomponent and the frame of its eomponent.

M obiDoc Fran ewoifc

fran e fcrClofc

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

java. awt. Point getFrameSize () ;
// sets the layout manager for
// the embedded frames
void setLayout(CompoundLayoutManager mgr) {
// views the type of the eomponent, .
// e.g. iconic, thumbnail, or framed,
int getViewType();
// gets the reference of the container's frame
ComponentFrame getContainerFrame {);
// adds an embedded eomponent specified as frame
void addFrame{ComponentFrame frame);
// removes an embedded eomponent
// specified as frame
void removeFrame{ComponentFrame frame);
// gets ali the references of embedded frames
ComponentFrame[] getEmbeddedFrames();
// gets the offset and size of the inner frame
// specified as cf
java.awt.Rectangle getEmbeddedFramePosition{

ComponentFrame cf);
// sets the offset and size of the inner frame
// specified as cf
void setEmbeddedFramePosition{ComponentFrame cf,

java.awt .Rectangle) ;

When one eomponent is activated, another eomponent is
usually deactivated but does not necessarily become idle.
To create a seamless application look, components embed
ded in a container eomponent need to share, in a coordi-
nated manner, several resources, such as keyboard, mouse,
and window. Each eomponent is restricted from directly
accessing such shared resources. Instead, the frame ob
ject of one activated eomponent is responsible for handling
and dispatehing user interface actions išsued from most re
sources, and can reserve these resources until it sends a
request to relinquish them.

In-Place Editing

Figure 4: Components for Compound Document in Agent
Hierarchy.

The frame object of each container eomponent manages
the display of the frames of the components it contains.
That is, it can control the sizes, positions, and offsets of
ali the frames embedded within itself, while the frame ob
ject of each contained eomponent is responsible for draw-
ing its own contents. For example, if a eomponent needs
to change the size of its frame by calling the s e t F r a m e -
S i z e () method, its frame must negotiate with the frame
object of its container for its size and shape and redraw its
contents within the frame.

public class ComponentFrame
extends java.awt.Panel {

// sets the size of the frame
void setFrameSize{java.awt.Point p);
// gets the size of the frame

^Altliough the ComponentFrame class is a subciass of Ihe
j a v a . awt . Pane l class, we call them frame objects because many ex-
isting compound document frameworks often call the visual space of an
embedded component/rame.

Our framework provides for document-wide operations,
such as mouse click and keystrokes. It can dispateh cer
tain events to its components to notify them when certain
actions happen within their surroundings. Moreover, the
framevvork provides each container eomponent with a set of
built-in services for svvitching among multiple components
embedded in the container and for manipulating the bor-
ders of the frame objects of its inner components. One of
these services offers graphical user interfaces for in-place
editing. This meehanism allovvs different components in a
document to share the same window. Consequently, com
ponents can be immediately manipulated in-place, without
the need for opening a separate window for each eompo
nent.

To directly interact with a eomponent, we need to make
the eomponent active by clicking the mouse within its
frame. When a eomponent is active, we can directly ma-
nipulate its contents. When the boundary of the frame
is clicked, the frame becomes selected and displays eight
rectangle control points for moving it around and resizing
it, as shown in Fig. 5. The user can easily resize and move
the selected eomponent by dragging its handles.

498 Informatica 25 (2001) 493-500 I. Satoh

X H 3
W iiiflow Canp onen-

Comp onent Rectangle Control Poii

Figure 5: Selected Component and its Rectangle Control
Points.

Structured Storage and Migration

While migrating over a netvvork and being stored on a disk,
each component must be responsible for transforming its
own contents and codes into a stream of bytes by using the
serialization facility of the runtime system. However, the
frame object of each component is not stored in the com
ponent. Instead, it is dynamically created and allocated
in its container's frame, when it becomes visible and re-
stored. The framevvork automatically removes frame ob
jects of each component from the screen and stores speci-
fied attributes of the frame object in a list of values corre-
sponding to the attributes, because other frame objects may
refer to objects that are not serializable, such as several vis
ible objects in the Java Foundation Class package. After
restoring such serialized streams as components at the des-
tination, the framevvork appropriately redraws the frames
of the components, as accurately as possible.

Network-Wide Component Assembly

Nowadays, cut-and-paste is one of the most common ma-
nipulations for assembling visible components. However,
while a cut-and-paste on a single computer is easy, the
system often forces users to transfer Information between
computers in a very different way. Therefore, our frame-
work offers a mechanism for cutting and pasting between
different computers. When a cut operation occurs at a com
ponent in one (source) container, the mechanism marshals
the component and transmits the resulting byte sequence to
another (destination) container at a local or remote com
puter by using the agent migration management of Mo-
bileSpaces. It becomes an infrastructure for providing a
network-wide and direct manipulation technique, such as
Pick-and-Drop that is a kind of network-wide drag-and-
drop manipulations studied in [11].

4.4 Current Status

The MobiDoc framevvork has been implemented in the Mo-
bileSpaces system using the Java language (JDKl .2 or later
version), and we have developed various components for
compound documents, including the examples presented in

this paper. The MobiDoc framework and the MobileSpaces
System are constructed independently of the underlying
system and can run on any computer with a JDK 1.2-
compatible Java runtime system.

MobileSpaces is a general-purpose mobile agent system.
Therefore, mobile agents in the system may be unwieldy as
components of compound documents, but our components
can inherit the povverful properties of mobile agents, in
cluding their activity and mobility. Security is essential in
compound documents as well as mobile agents. The cur
rent system relies on the Java security manager and pro-
vides a simple mechanism for authentication of compo
nents. A container component can judge vvhether to accept
a new inner component or not beforehand, while the inner
components can know the available methods embedded in
their containers by using the class introspector mechanism
of the Java language. Furthermore, since a container agent
plays a role in providing resources for its inner agent, it can
limit the accessibility of its inner components to resources
such as window, mouse, and keyboard, by hiding events
issued from these resources.

Even though our implementation was not built for per-
formance, we have conducted a basic experiment on com
ponent migration with computers (Pentium III-800MHz
with Windows2000andSUNJDK 1.2). The timeof a com
ponent migration from a container to another container in
the same hierarchy was measured to be 30 ms, including
the cost to draw the visible content of the moving com
ponent and to check vvhether the component is permit-
ted to enter the destination agent. The cost of compo
nent migration betvveen two computers connected by Fast-
Ethernet was measured to be 120 ms. The cost is the sum
of the marshaling, compression, opening a TCP connec-
tion, transmission, acknovvledgment, decompression, secu-
rity and consistency verifications, unmarshaling, layout of
the visual space, and drawing of the contents. The moving
component is a simple text viewer and its size (the sum of
code and data) is about4 Kbytes (zip-compressed). We be-
lieve that the latency of component migration in our frame-
work is reasonable for a Java-based visual environment for
building documents.

5 Examples

The MobiDoc compound document framework is povver
ful and flexible enough to support radically different appli-
cations. This section shows some examples of compound
documents based on the MobiDoc framevvork.

5.1 Electronic Mail System

One of the most illustrative examples of the MobiDoc
framevvork is for the provision of mobile documents for
communication and workflow management. We have con
structed an electronic mail system based on the framework.
The system consists of an inbox document and letter docu
ments as shown in Fig. 6. The inbox document provides a

MOBIDOC: A MOBILE AGENT-BASED FRAMEWORK... Informatica 25 (2001) 493-500 499

^Un l i t l edk tessa ie l l l

L e t t e r Component \
{Conbiner MobdSl^sntj

Ti) jichiro@(slal)isocha ac)fi

; jSubj JHello

[IfSend i ' I SavB; A '

Mobile^paces

•Ialj<l

. ^ :.X

H
ii
•'••• 'This paper presenls a new framework for constructing mobife
^ lagents The ffameworkinlroduceslhenotionof agent hierarchvan'
' ' Id Inler agent migration and thus allows a group of mobile agents ,
'< Jto be dvnamicall̂ assembled into a single mobile agent j

Image Viffl/er Componer
(I n n e r MobA^ent)

_Text E d i t o r Componen
(I n n e r MobA^ent)

Figure 6: Structure of a Letter Document.

window that can contain two components. One of the com-
ponents is a history of received mails and the other com
ponent offers a visual space for displaying the contents of
mail selected from the history. The letter document corre-
sponds to a mobile agent-based letter and can contain var-
ious components for accessing text, graphics, and anima-
tion. It also has a window for displaying its contents. It can
migrate itself to its destination, but it is not a complete GUI
application because it cannot display its contents vvithout
the collaboration of its container, i.e., the inbox document.

For example, to edit the text in a letter component, one
simply clicks on it, and an editor program is invoked by the
in-place editing mechanism of the MobiDoc framevvork.
The component can deliver itself and its inner components
to an inbox document at the receiver. After a moving letter
has been accepted by the inbox document, if a user clicks a
letter in the list of received mail, the selected letter creates a
frame object of itself and requests the document to display
the frame object within the frame of the document. The key
idea of this mail system is that it combines different mo
bile agent-based components into a seamless-looking com-
pound document and allows us to immediately display and
access the contents of the components in-place. Since the
inbox document is the root of the letter component, when
the document is stored and moved, aH the components em-
bedded in the document are stored and moved with the doc
ument.

5.2 Desktop Teleporting

We constructed a mobile agent-based desktop system sim-
ilar to the Teleporting System and the Virtual Netvvork
Computing system. These systems are based on the X Win-
dow System and allow the running applications in the Com
puter display to be redirected to a different computer dis-
play.

In contrast, our desktop system consists of mobile agent-
based applications and thus can migrate not only the ap-
pearance of applications but also the applications them-
selves to another computer (Fig. 7). The system consists
of a window manager document and its inner applications.
The manager corresponds to a desktop document at the top

of the component hierarchy of applications separately dis-
played in their own vvindovvs on the desktop on the screen.
It can be used to control the sizes, positions, and overlaps
of the windows of its inner applications. When the desktop
document is moved to another computer, ali the compo
nents, including their windows, move to the new computer.
The framevvork tries to keep the moving desktop and ap
plications the same as when the user last accessed them on
the previous computer, even when the previous computer
and network have stopped. For example, the framework
can migrate a user's custom desktop and applications to
another computer that the user is accessing.

6 Conclusion

We have presented an approach for building compound
documents. The key idea of the approach is to build com
pound documents from hierarchical mobile agents in the
MobileSpaces system, which allovvs more than one mo
bile agent to be dynamically assembled into a single mo
bile agent. Our approach allovvs a compound document to
be dynamically composed of mobile components and to be
migrated over a netvvork as a whole vvith its inner com
ponents under its own control. We designed and built a
framevvork, called MobiDoc, to demonstrate the usability
and flexibility of this approach. The framevvork provides
value-added services for coordinating mobile agent-based
components embedded in a document.

Finally, we would like to point out further issues to be re-
solved. To develop compound documents more effectively,
we need a visual builder for our mobile components. We
plan to extend a visual builder tool for JavaBeans, such as
the BeanBox system included in the Bean Development Kit
(BDK) [15], so that can support mobile agent-based com
pound documents. In the current system, resource manage-
ment and security mechanisms are incorporated relatively
straightforwardly. These should now be designed for mo
bile compound documents. Additionally, the programming
interface of the current system is not yet satisfactory. We
plan to design a more elegant and flexible interface incor-
porating existing compound document technologies.

500 Informatica 25 (2001) 493-500 I. Satoh

Edi t(M i n d w
Cliner Componeilt

W ind5y M a n a g e r
C o n t a i n e r Compon^:

Ci>ckW indof
Ciiner Componertt

Comp u t e A
(souice)

Comp uteffl
(d e s t i n a t i o n

Figure 7: Desktop Teleporting to another Computer.

References
[1] Apple Computer Inc. (1994) OpenDoc: While Paper, Apple Com

puter Inc.

[2] Amold, K. & Gosling, J. (1998) The Java Programming Language,
Addison-Wesley.

[3] Baumann, J. Hole, F., Rothermel, K., & Strasser, M., (1999) Mole
- Concepls of A Mobile Agent System, Mt)bility: Pnic.esses, Coin-
puters, and Agenti; pp.536-554, Addison-Wesley.

[4] Brockschmidt, K. (1995) Inside OLE 2, Microsoft Press.

[5] Cable, L. (1997) Extensible Runtime Containment and Server Pw-
tocolfor JavaBeans, Sun Microsfystems, http://java.sun.com/beans.

[6] Gschwind, T., Feridun, M., & Pleisch, S. (1999) ADK: Building
Mobile Agentsfor Network and System Management fmm Resuable
Components, Technical University of Vienna, TUV-1841-99-10.

[7] Hamilton G. (1997) The JavaBeans Specification, Sun Microsfys-
tems, http://java.sun.com/beans.

[8] Lange, B. D., & Oshima, M. (1998) Pmgramming and Deploying
Java Mobile Agent!: with Agtets, Addison-Wesley.

[9] ObjectSpace Inc. (1997) ObjectSpace Voyager Technical Overview,
ObjectSpace Inc.

[10] Potel, M., & Cotter, S. (1995) Inside Taligent Tec.tmology, Addison-
Wesley.

[11] Rekimoto, J. (1997) Pick-and-Drop: A Direct Manipulation Tech-
nique for Multiple Computer Environments, ACM Symposiiim on
User Interface Software and Technology (UIST'97), pp.31-39.

[12] Satoh, I. (2000) MobileSpaces: A Framevvork for Building Adaptive
Distributed Applications Using a Hierarchical Mobile Agent Sys-
tem, Proceedings of International Conference on Distributed Com-
puting Systems (ICDCS'2000), pp.l6i-l68, IEEE Computer Soci-
ety.

[13] Satoh, I. (2000) MobiDoc: A Framework for Building Mobile Com-
pound Documents from Hierarchical Mobile Agents, Proceedings of
Symposiiim on Agent Systeins and Applications / Syinposiuni on Mo
bile Agents (ASA/MA'2000), Lecture Notes in Computer Science,
Vol.1882, pp.l 13-125, Springer.

[14] Satoh, I. (2001) Adaptive Protocols for Agent Migration, Proceed
ings of IEEE International Conference on Distributed Coniputing
Systems (ICDCS'2001), pp.7l 1-714, IEEE Computer Society.

[15] Sun Microsystems (1998) The Bean Development Kit,
http://java.sun.coiTi/beans, Sun Microsystems.

[16] Szyperski, C. (1998) Component Software, Addison-Wesley.

[17] White, J. E. (1995) Telescript Technology: Mobile Agents, General
Magic.

http://java.sun.com/beans
http://java.sun.com/beans
http://java.sun.coiTi/beans

Informatica 25 (2001) 501-507 501

Blocks, a component framework with checking facilities for knowledge-based
systems

Sabine Moisan^, Annie Ressouche^ and Jean-Paul Rigault^'^
^ INRIA Sophia Antipolis, France
Phone: +33 4 92 38 78 47, Fax: +33 4 92 38 79 39
E-mail: (Sabine.Moisan, Annie.Ressouche}@sophia.inria.fr
^ I3S Laboratory, University of Niče Sophia Antipolis, France
Phone: +33 4 92 96 51 33, Fax: +33 4 92 96 51 55
E-mail: jpr@essi.fr

Keywords: component framevvork, behavioral model, model checking, artificial intelligence

Received:May 12,2001

BLOCKS is an answerto the software engineering needs of the design of knowledge-based system engines.
It is a framework composed ofreusable and adaptabie software components. However, its safe and correct
use is complex and we supply formal models and associated tools to assist using it. These models and
tools are based on behavioral description of components and on model checking techniques. They ensure
a safe reuse ofthe components, especiaUy when extending them through inheritance, owing to the notion
of behavioral refinement.

1 Introduction
In the design of Knowledge-Based Systems (KBS) more
attention has been paid to cognitive issues than to softvvare
engineering ones. Yet, softvvare quality (reusability, main-
tenance, evolution, and safety) is also an important issue
for such systems. That is why we have developed a generic
multi-level approach to KBS development relying on best
software engineering practices. A major outcome is a com
ponent framework enriched with models and tools enforc-
ing the correct use of the framework.

A Knowledge-Based System basicaliy consists of an in-
ference engine, a knowledge repository (aka Knowledge
Base), and a fact base. Each of these three parts is the realm
of one particular type (or role) of actor. In this paper we fo-
cus on the role of the designer, the one who develops KBS
engines.

The notion of KBS generators (or shells) emerged in
the late 80's [17]. A KBS generator addresses a given
activity (e.g., diagnosis, classification) but it is domain-
independent; its KBS instances apply to various domains
(e.g., classification of cardiologic diseases, of astronomic
objects, of biological organisms). KBS generators take ad-
vantage ofthe cross-domains similarities by abstracting the
common artificial intelligence concepts and by gathering
representation techniques within a unique environment.

Whereas generators aim to meet experts or end-users
needs (e.g., they help them manage knovvledge base evo
lution and maintenance), they provide little help for the de
signer as far as Softvvare Engineering is concerned. There-
fore we promote generic tools for producing KBS gener
ators. Adding such a level improves versatility but in-

creases complexity. This paper proposes methods and tools
to assist the designer in implementing Artificial Intelli
gence (Al) techniques in an efficient, versatile, reusable,
and maintenable way.

To face the corresponding softvvare engineering chal-
lenge (essentially a reusability problem), a collection of
softvvare engineering best practices have been prescribed:
object-oriented modeling (UML) and programming (C++
and Java), component-oriented framevvork [3, 10], behav
ioral modeling vvith associated proofs and simulations. In
a KBS, the primary element that is likely to evolve is the
inference engine. That is why this paper focuses on the
design, simulation, and validation of engines.

In the sequel we first describe our engine design frame
vvork, named BLOCKS' (section 2). Then vve present the
static model and the notion of a component in BLOCKS
(section 3). Section 4 is devoted to the component behav
ioral model and the associated verification techniques. We
finally discuss the scope and the benefits of our approach
(section 5).

2 General Description of B L o C KS
This paper concentrates on BLOCKS vvhich is part of a
vvider softvvare platform providing designers vvith a set of
generic toolkits. In addition to BLOCKS (components for
engine design) the platform offers compiler generators for
knovvledge description languages, and several libraries (for
graphic user interfaces, for knovvledge base simulation and
verification). The task of the designer is to select, adapt,

'Basic Libraiy Of Components for Knowleclge-based Systems

http://inria.fr
mailto:jpr@essi.fr

502 Informatica 25 (2001) 501-507 S. Moisan et al.

and assemble components from these toolkits into a cus-
tomized KBS generator, which can then be used to develop
KBS applications.

The objective of BLOCKS is to help designers create
new engines and reuse or modify existing ones vvithout ex-
tensive code rewriting. Thus the components of BLOCKS
stand at a higher level of abstraction than programming lan-
guage usual constructs.

The framework consists of around 60 (C++) classes.
About a dozen of them implement basic data structures
(lists, sets, maps...). The remaining classes are dedicated
to k;nowledge representation artefacts such as the classical
Al notions of frame and of nde [8]. As a matter of exam-
ple, class Rule is composed of a set of conditions and a set
of actions that are to be executed when the conditions are
true (see figure 1).

The methods of BLOCKS classes are used by the de
signer to construct new KBS engines. To continue with
the same example, class Rule sports tvvo fundamental
methods: one to test the conditions, the other to execute
the actions. Calls to these methods will appear in the
code of rule engines. For instance, a classical forward-
chaining engine ioops over three phases: finding applicable
rules (call Rule: : t e s t_cond i t ions) ; selecting a rule
for execution (confiict resolution specific strategy, writ-
ten by the designer); execution of the chosen rule (call
R u l e : : e x e c u t e _ a c t i o n s) .

The framesvork is rooted in our extensive experience
with designing various KBS engines, for activities as di-
verse as computer aided design, classification, or planning
and in domains as different as civil engineering, astronomy,
medicine, finance, etc. This has been the basis for a do-
inain analysis that allowed the major concepts of BLOCKS
to emerge. A crucial design decision was to determine the
proper generality level of the framework components. Too
much generality is not suitable for efficiency, vvhereas too
specific components, though easily applicable, are hardly
reusable. Our solution vvas to restrict the range of targeted
activities; we choose planning and classification, merely
because they are useful in our current applications.

The analysis has been an iterative process \vith three
main steps:

- abstract modeling of existing engines using for-
malisms such as UML [18]; this led to the definition
of the knovvledge representation classes;

- completing classes and detailing their behavior; this
has been a major step for identifying common con
cepts and methods behavior, their roles in problem
solving, and their organization;

- modeling control to define sequencing of method calls
in engines.

BLOCKS is divided into several layers: the siipport layer
contains generic and abstract features (abstract classes and
methods, and generic functions) useful for any kind of en
gine. By specializing the classes in the support layer, the

designer may define new layers dedicated to specific activ
ities. These layers contain concrete classes, the instances
of which vvill populate the knovvledge bases.

3 A Component View of BLOCKS
In BLOCKS we define a component as the realization of
a sub-tree of the class hierarchy: this complies to one of
Szyperski's definitions for components [20]. At the frame-
work top level, there are presently three such components
that the designer may compose or extend. For this to be
possible, the designer needs information about component
properties. For it to be safe, he or she should commit to
some protocol. For forcing it to be safe, we offer automatic
proof and validity checking tools.

3.1 Components in BLOCKS
The three high level components are associated with the
initial sub-trees of classes Frame, Rule, and S ta te , cor-
responding to major KBS concepts. Frames describe
pieces of knovvledge as static structures, composed of at-
tributes vvhich in turn are composed of sub-attributes or
"facets" (declarative or procedural). Rules describe pieces
of knovvledge as dynamic inferences in the form of condi-
tions/actions patterns. States store the history of the prob
lem solving process.

The designer both adapt the components and vvrites the
glue code of engines. To achieve a given strategy he/she
vvill (non-excIusively) use these components directly, or ex-
tend the classes they contain by inheritance, or compose the
classes together, or instantiate new classes from predefined
generic^ ones. Among ali these possibilities, class deriva-
tion is certain]y the most frequent one. It is also the one that
raises the trickiest problems. In the sequel we shall mainly
concentrate on it.

Let us continue vvith our example: the Rule class in
BLOCKS (figure i) is composed of conditions and actions
vvhich originally do not take into account fuzzy values.
Thus, as mentioned in section 2, it can be used by a sim-
ple rule engine. To čope vvith activities requiring fuzziness,
the designer must introduce a FuzzyRule class as a deriva-
tive of Rule. Relying on the static information of the class
diagram of Rule (signatures of methods and associations
among classes), the designer obtains the inheritance graph
shown on figure 1. But this static information is not suf-
ficient to ensure a safe use of the framevvork. Indeed, in
the example, the designer must also redefine-in a "seman-
tically acceptable" way-methods t e s t _ c o n d i t i o n s and
execute_act ions .

3.2 Protocol to Use the Framework
As previously mentioned, safe use of the framevvork re-
quires that a protocol be specified. This protocol of

"template classes" in C++

file:///vith

BLOCKS, A COMPONENT FRAMEWORK WITH. Informatica 25 (2001) 501-507 503

Figure 1: Rule and FuzzyRuleclasses: above the original
classes, below the derived ones.

use is defined by two sets of constraints. First, a static
set enforces the internal consistency of class structures;
for instance, in C++, class derivation and composition
demand a scaffolding of structure-dependent construc-
tion/destruction operations. The static nature makes it easy
to generate the necessary Information at compile-time.

A second set of constraints describes dynamic method
requirements:

1. legal sequences of method calls; for instance, Rule
requires that t e s t _ c o n d i t i o n s be invoked before
calling execute_act ions ;

2. constraints on the operations that a component ex-
pects from other components; in the example, the ex-
ecute_act ions method expects actions to šport an
execute method; this is hardly obvious on the class
diagram(s);

3. specification of internal behavior of methods;

4. specification of the valid ways to redefine method be
havior in derived classes.

These dynamic aspects are more complicated to express
than static ones, they are error-prone, and there is no tool
(as natural as a compiler for the static čase) to handle and
check them. While items 1 and 2 can be partially addressed
by classical UML models (class diagrams and Statecharts),
the last two items are more challenging. We shall propose
a solution in section 4.

3.3 Realizing the Component Protocol
To implement the protocol of the previous section B LOCKS
applies three non-exclusive techniques.

First, well-known design patterns [9] make it possible to
create polymorphic objects (abstract factory, virtual con-
structor, singleton, prototype), to traverse complex data
structures (iterator, visitor), and to implement polymorphic
ajgorithms (strategy). This helps clarify the software archi-
tecture, but it seldom is a complete solution.

Second, we use meta-programming [12], namely the
OpenC++ meta-object protocol [4, 5]. This helps gener
ate the language-dependent "scaffolding" of constructors
requested for frame derivation. It also allows to implement
some specific "aspects" [13] of frames such as introspec-
tion or persistence. Hovvever meta-programmation is com-
plex. Moreover the knowledge about components is exter-
nal to the components, a risk of inconsistent evolution.

Therefore, third, the knoNvledge for using, deriving, and
composing is embedded into the components themselves.
This aliows static as well as dynamic verifications relying
on this knoNvledge.

The first two techniques are out of the scope of this pa-
per. We focus on representing and embedding Information
about behavior of components and methods. There is no
complete and consensual technique for this: for instance,
in JavaBeans, the embedded knowledge is rather poor; in
ČORBA, the IDL is external to the components and is not
much richer. The next section presents our solution.

4 Behavior Description and
Behavior Refinement

InordertoreuseBLOCKS components in asafe way, wede-
fine a mathematical model providing consistent description
of behavioml entities. Behavioral entities are whole com
ponents, sub-components, or single methods. Such a model
complements the UML approach and allovvs to specify the
class and method behavior with respect to class deriva
tion. We also propose a hierarchical specification language
to describe the dynamic aspect of components both at the
class and method levels. Finally we define a semantic map-
ping to bridge the gap between the specification language
and its meaning in the mathematical model.

In this paper we just intend to give the flavor of the for-
mal models.

4.1 IVIathematical Model of Behavior
We have chosen input/output labeled transition systems
[15] as a basis for our mathematical model. Since these sys-
tems are a special kind of finite state machines (automata),
we shall denote them LFSM for short in the rest of the pa
per. In our model a LFSM is associated with a behavioral
entity; each transition has a label representing an elemen-
tary step of the entity, consisting of a trigger event (input
condition) and the action to be executed when the transition
is fired.

LFSMs are particularly well suited to check temporal
logic properties. Temporal logic easily expresses asser-

504 Informatica 25 (2001) 501-507 S. Moisan et al.

tions about behavior. Formulae of this logic concern ei-
ther the states of the model or its executions^. Moreover,
tools and proof environments are available to perform tem-
poral logic checking on LFSM [11]. The major drawback
of model checking is a possible explosion of the state space.
Although some tools use symbolic model checking meth-
ods to čope with it, an obvious method to push back the
bounds of possibility is to use the natural decomposition of
the system. Hence, our specification language provides a
hierarchical description of behaviors that allows to merge
symbolic and compositional approaches.

We substitute LFSM for regular UML Statecharts to rep-
resent the state behavior of a class as well as of a method.

In the object-oriented approach, the static semantics of
specialization (aka class derivation, or subtyping, or exten-
sion) usually obeys the classical Substituability Principle
[14]. To enforce behaviorwise safe derivation, the same
principle should apply to the dynamic semantics of a be
havioral entity-such as either a whole class, or one of its
(redefined) methods.

If P and Q are LFSMs denoting respectively some be
havior in a base class and its redefinition in a derivative, we
seek for a relation Q < P stating that "Q extends P in a
safe way". To comply with inheritance, this relation must
be a preorder sufficient to capture the notion of "correct
extention of behavior".

Q simulates P iff we can build a relation H that relates
each state of P to a state of Q so that for two related states
p an q, every successor of p is related to some succes-
sor of q with a transition bearing compatible"* labels (trig-
ger/action). The definition of simulation is local since the
relation between two states is based only on their successor
states. As a result, it can be checked in polynomial tirne.
Intuitively, if Q simulates P then any valid input/output se-
quence (trace) of P is also a trace of Q. Thus Q can be
substituted for P, for ali purposes of P. Therefore, the ex-
tensions in Q do notjeopardize the behavior of P.

For < we choose the notion of "simulation preorder",
i.e., Q < P '\ii there is a simulation relation H such that
H(qo,po), where 170 andpo arerespectively the initial states
of Q and P. Relation :< is a preorder over LFSMs and it
preserves satisfaction of the formulae of a subset of tem-
poral logic, expressive enough for most verification tasks
(V CTL [11]). Moreover, this subset has a practicable model
checking algorithm.

To capture the notion of safe extensibility for compo-
nents, we define a relation (C): if A and B are two classes,
B C A iff B derives from A and the LFSM associated with
B simulates the one associated with A. The relation is also
defined for method behavior: m C. mi iff the LFSM associ
ated with m simulates the one of/«/.

^Temporal logic is based on first order logic and has specific temporal
operators to express properlies holding for a given stale, for the ncxt state,
eventually for a future state, or for aH future states. We can also express
that a property holds for aH the executions starting in a given state or that
it exists an execution satisfying a given condition.

''TVVO labels are compatible if they are equal once restricted to the in-
tersection of the LFSM alphabets.

With such a model, the description of behavior matches
the class hierarchy. Hence, class and method refinements
are compatible and consistent with the static description:
checking dynamic behavior may benefit from the hierar
chical organization.

4.2 Behavior Description Language

In addition to the previous mathematical model, we pro-
pose a specification language. This language, very simi-
lar to the Argos graphical language [15], is also automata-
based. It is easily compiled into finite state machines and it
supports existing verification methods and tools. Programs
vvritten in this language operationally describe behavioral
entities, we call them behavioral programs.

Behavioral programs use simple automata as a primitive
construct. Labels correspond to input/output events vvhich
determine how the entity changes its state. The notion of
event is abstract; in the language it is just represented by a
name and, thus, it may receive various interpretations. For
instance, it may be associated vvith the code of a method or
with another behavioral program.

The language defines three main constructs. The first
one is parallel composition (noted P \\ Q). It is a sym-
metric operator vvhich behaves as the direct product of its
automata operands: transitions triggered by the same in-
put are fired simultaneously and their outputs are unioned.
Second, local event declarations allow to declare events lo
cal to a (behavioral) entity (when a local event is emitted,
it can trigger transitions only in its own entity). Parallel
composition combined vvith local event declarations makes
it possible to represent communication betvveen subpro-
grams. Third, the refinement operator is similar to its State
charts counterpart (definition of hierarchical states), except
that it cannot break the hierarchical structure of programs
and states. The states of an entity may be decomposed into
behavioral sub-entities. This operator makes it possible to
express interrupts, exceptions, and normal termination of
(sub)programs.

This language offers a syntactic means to build programs
that reflect the behavior of BLOCKS components. Never-
theless, the soundness of this approach implies a clear defi
nition of the relationship betvveen behavioral programs and
their mathematical representation as LFSM (section 4.1).
Let V denote the set of behavioral programs and £ the set
of LFSMs. We define a semantic function S : V —> £
that is stable vvith respect to the previously defined opera
tors (local events, parallel, and refinement).

As a consequence, the language exhibits a fundamental
composition property. This property is the key to simplify
model checking. For instance if we have proved that Pi C
P2, then vve can infer that Pi || Q C P2 || Q, for any
possible Q. Thus, compositionality provides a hierarchical
means to verify properties.

BLOCKS, A COMPONENT FRAMEWORK WITH... Informatica 25 (2001) 501-507 505

4.3 Example: Adding Fuzziness to a Rule
Engine

Let us apply the previous model to a simple rule engine,
involving classes Rule and FuzzvRule (figure 1).

local: (Fuzzy)Rule
test_conditions_GO, execute_aclions_GO

ractivate_G01

'test_conditions_GO

Rule"test_condilions() local :

test_condilioii_GO

[te^t_conditions_GO]

einpty(Plist)]n'me [False][False

(Fuzz)')Condition -

[!empty(Plist)]/
PIkflipnHn
Plist::pop()
test_condilion_GO

[Trne]

b
initial State

terminal stale

_[FalseiQ

[end]

(Fuzzy)Aclion

n^rue]

vAk^/vvaiting
/execute_actions_GO

Rule) . First, as can be seen on figure 2, the FuzzyRule
behavior diagram is identicai to the Rule diagram except
that F u z z y C o n d i t i o n is substituted for C o n d i t i o n and
FuzzyAct ion for A c t i o n . This diagram expresses the
dynamic behavior of class Rule with respect to the cor-
rect sequence of method calls: t e s t _ c o n d i t i o n s must
be called before e x e c u t e _ a c t i o n s .

Second, since Rule and FuzzyRule are composite
classes, we must check the behavior of their parts. Thus
we consider classes C o n d i t i o n and F u z z y C o n d i t i o n .
Their behavorial programs are displayed in figure 3. In this
simple example, it is easy to see that F u z z y C o n d i t i o n
C. C o n d i t i o n : F u z z y C o n d i t i o n derives from C o n d i
t i o n and F u z z y C o n d i t i o n trivia]ly simulates C o n d i
t i o n (they are associated with identicai LFSMs). The
same holds for A c t i o n and FuzzyAct ion .

Hence, according to the composition property, we
can deduce that FuzzyRule is substituable to Ru le
(FuzzyRule C Rule) . Compositionality is indeed the way
to avoid State explosion in this kind of models.

In this example, the proof is straightforvvard. In more
complicated cases though, the proof may be less obvious,
but toois are availabie to run it automaticaliy.

Relying on this proof, the designercan safely implement
the methods; he/she also has to modify the glue code of
the engine, especially the conflict resolution strategy (sec-
tion 2), e.g., to select the rule with the highest iikelihood.
The resulting rule engine will now accept fuzzy rules^.

Figure 2: Rule and FuzzyRule behavior description. Rect-
angular boxes represent refinement and the keyword local
denotes local events. Note that we had to introduce events
to trigger method calls (e.g., test_condi tion_GO).

Condi t ion llPJFalse

|!Pl/False

S(Condition) S(FuzzyCondition)

Iocal:Proba

|PTOba>=C|/True

|P|/Proba

|Proba<C]/False

FuzzyCondition

Figure 3: C o n d i t i o n and F u z z y C o n d i t i o n behavioral
programs and semantics. According to the semantics of re
finement and encapsulation, it turns out that Condition
and FuzzyCondition are associated with identicai LF
SMs. We recall that S is the semantic mapping of sec-
tion4.2.

We can show that the behavioral program of FuzzyRule
is a safe extension of the one of Rule (FuzzyRule C

5 Discussion

5.1 Components and Frameworks

Both SoftvvareEngineering (SE) and Artificial Intelligence
(Al) have an interest in component models. However
they have different views on components and, hence, on
reusability. SE toois focus on reusing code, analysis and
design patterns, or software architectures. Few, if any,.ex-
isting component framevvorks go as far as ensuring correct
use through a proof system. On the other hand, several Al
approaches have been proposed to reuse knowledge compo
nents such as abstract problem-solving methods or ontolo-
gies [16,19,1]. They often manipulate formal descriptions
but they usually remain at the knovvledge level, thus they
do not help producing code.

Al research has already proposed generic toois that cover
ali steps of KBS design (from cognitive model to imple-
mentation or simulation). We can cite DSTM [22] or
TASK [21] that are dedicated to KBS design, although with
different techniques and approaches. DSTM aims at proto-
typing a cognitive model before implementing it and, thus.

^Of course the otlier elcments of the KBS generator (such as knowl-
edge description language and expert inlerfaces) must be adapted accord-
ing]y: our platform provides the necessary toolkits. By assembling ali
these elements, the designer produces a new generator Afterwards, ex-
perts can fill in different knowledge bases, in order to produce new KBS
instances.

506 Informatica 25 (2001) 501-507 S. Moisan et al.

it is more expert-oriented. TASK proposes different lan-
guages for the various steps of KBS design, and in particu-
lar a formal specification language. Such generic tools are
very powerful since they are applicable across domains and
activities, but their use may be difficult. Our work follows
a similar line, with a stronger software engineering flavor.

5.2 VerificationofKBS

In Al, the most common verification adresses the internal
consistency of knowledge bases and, of course, our plat
form provides tools for such verification. Usually, it is on
the final KBS that verification is performed. It is too late
since, at this tirne, ali the KBS elements (domain knowl-
edge, engine strategy, or even implementation artefacts)
have been blended together. Hence, each verification pro-
cess has to sort out its elements of interest. On the contrary,
we promote high separation of concerns, i.e., we separate
the engine design phase from the KBS one. The corre-
sponding tools are also separated.

Some systems verify the KBS consistency against its do
main and activity models. This verification generaliy relies
on theorem proving techniques, using either an embedded
theorem prover as in TASK or applying an external tool like
KIV [7]. We have not yet investigated such verifications,
but we expect that model checking could also be applied.

The Software Engineering issue of verifying that a KBS
properly ušes its generator features is often assumed and
seldom performed. Our generic approach introduces such
a verification. It corresponds to usage verification of a com-
plete protocol of use (both static and dynamic properties).
For this purpose, we use model checking instead of theo
rem proving, since it is adapted to our finite state machine
model, it can be made automatic, and it can also automat-
ically produce code for refined entities (furthermore this
code will be correct, by construction).

5.3 Run-time Verification and Simulation

The designer can use our specification language to describe
classes and methods behavior through a dedicated inter-
face. The corresponding programs can serve both formal
and practical aims.

On the formal side, the composition property makes it
possible to apply model checking techniques in an incre-
mental way. We have experimented with several tools. Es-
terelStudio^ is a povverful environment to describe, simu-
late and verify reactive systems. However, its underlying
paradigm (the synchrony hypothesis [2]) restricts the type
of communication. By contrast, Ptolemy^ is an open (meta-
)tool for heterogeneous modeling and simulation. In partic-
ular, the usercan introduce nevv models of communication.
For this reason, we are going to customize Ptolemy; this

^from Esterel Technologies Company,
technologies.com

'available at: http://ptolemy.eecs.berkeley.edu

http://www.esterel-

will provide a simulation tool and a front-end for model
checkers.

On the practical side, as we already mentioned, our spec
ification language can be used to generale (correct) code.
The generated code can provide either skeletal implemen-
tations of methods, simulation code, and run-time trace fa-
cilities. Moreover, by embedding the code of behavioral
programs in their components, we can achieve run-time
verification.

6 Conclusion

We have experienced that framework technology can be
adapted to the design of knowledge-based system engines.
Such an approach allovvs a significant gain in development
tirne. For instance, two years ago, we had to design a nevv
planning engine [6]. Once the analysis completed, the im
plementation only took two months (instead of about two
years for a similar former project slarted from scralch) and
more than 90 % of the code was composed of existing com
ponents. Another experiment (for the classification activ-
ity) led to almosl the same measurement.

However, the protocol to use the framevvork is complex
and the static modeling (r la UML) is not sufficient to pre-
vent the designer from fatal misuse. To this end, v/e as-
sisl the designer by modeling the behavior of components,
thus permitting automatic verification during class deriva-
tion and composition. The model has also a pragmatic out-
come: it allows the simulation of resulting KBS engines
and the generation of code, of run-time traces, and of run-
time assertions.

This behavioral formalism relies on a mathematical
model, a specification language, and a semantic mapping
from the language to the model. This lays the foundation
for model checking and simulation tools. The model sup-
ports multiple levels of abstraction, from highly symbo!ic
(just labels) to merely operational (pieces of code). More
over this model is original in the sense that it covers both
static and dynamic properties of components. To use our
formalism, the designer has only to draw simple graphs
vvith a (yet to be) provided graphic interface, oblivious of
the underlying models and their complexity.

The same idea could be applied to other component
framevvorks, outside Al. Our approach gathers techniques
from several Computer Science domains seldom intersect-
ing each olher: real-time and reactive systems, object-
oriented paradigm, and knowledge-based systems. This
work can be considered as a successful example of mul-
tidisciplinary integration.

References

[1] V.R. Benjamins, B. Wielinga, J. Wielmaker, and
D. Fensel. Brokering Problem Solving Knowledge at
the Internet. In EKAW'99, European Knowledge Ac-

http://technologies.com
http://ptolemy.eecs.berkeley.edu
http://www.esterel-

BLOCKS, A COMPONENT FRAMEWORK WITH... Informatica 25 (2001) 501-507 507

quisition Workshop, volume 1621 of LNA I. Springer-
Verlag, 1999.

[2] G. Berry. The Foundadons of Esterel. In G. Plotkin,
C. Stearling, and M. Tofte, editors, Proof, Language,
and Interaction, Essays in Honor of Robin Milner.
MIT Press, 2000.

[3] J. Bosch, P. Molin, M. Mattsson, P. Bengtsson, and
M. E. Fayad. Object-Oriented Framevvorks: Problems
& Experiences. In R. Johnson M. Fayad, D. Schmidt,
editor, Building Application Frameworks: Object
Oriented Foundations of Framework Design. John
Wiley, 1999.

[4] J. Cavarroc, S. Moisan, and J-P. Rigault. Simplifying
an Extensible Class Library Interface with OpenC++.
In OOPSLA '98, Worshop on Reftective Prograniming
in C++ and Java, 1998.

[5] S. Chiba. A Metaobject Protocol for C++. In OOP
SLA '95, volume 30 of SIGPLAN Notices, pages 285 -
299. ACM Press, 1995.

[6] M. Crubezy. Pilotage de programmes pour le traite-
ment d'images medicales. PhD thesis, Universite de
Niče Sophia Antipolis, 1999.

[7] D. Fensel, A. Schonegge, R. Groenboom, and
B. Wielinga. Specification and Verification of
Knowledge-Based Systems. In Workshop on Vali-
dation, Verification and Refinement of Knowledge-
Based Systems, ECAI, 1996.

[8] R. Forsyth. Expert Systems : Principles and Čase
Studies. Chapman and Hali, 2nd edition, 1989.

[9] E. Gamma, R. Helm, R. Johson, and J. Vlissides. De
sign Patterns: Elenients of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[10] R. E. Johnson. Framevvorks = (Components + Pat
terns). CACM, 10(40):39-42, 1997.

[11] E. M. Clarke Jr., O.Grumberg, and D.Peled. Model
Checking. MIT Press, 2000.

[12] G. Kiczales, J. de Riviere, and D. Bobrow. The Art of
the Meta-Object Protocol. MIT Press, 1991.

[13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J-M. Loingtier, and J. Irvvin. Aspect-
oriented programming. In Mehmet Ak§it and
Satoshi Matsuoka, editors, ECOOP '97, volume
1241. Springer-Verlag, 1997.

[14] B. Liskov and J. L. Wing. A New Definition of the
Subtype Relation. In ECOOP'93, volume 707 of
LNCS, pages 119-141. Springer-Verlag, 1993.

[15] F. Maraninchi. Operational and Compositional Se-
mantics of Synchronous Automaton Composition.
LNCS: Concur, 630, 1992.

[16] M. A. Musen, S. W. Tu, H. Eriksson, J. H. Gennari,
and A. R. Puerta. P R O T E G E - I I : An Environment for
Reusable Problem-Solving Methods and Domain On-
tologies. In IJCAL Chambery, August 1993.

[17] M^ Richcr. An evaluation of expert system develop-
menttools. ExpertSystems, 3(3): 166-182, July 1986.

[18] J. Rumbaugh, I. Jacobson, and G. Booch. The Uni-
fied Mode!ing Language Reference Manual. Addison-
Wesley i999.

[19] G. Schreiber, B. Wielinga, R. de Hoog, H. Akker-
mans, and W. v. de Velde. CommonKADS: A
Comprehensive Methodology for KBS Development.
IEEEExpert, 9(6):28-37,1994.

[20] C. Szyperski. Component Sofhvare - Beyond Object-
Oriented Programming. Addison Wesley, 1998.

[21] X. Talon and C. Pierret-Golbreich. TASK: from the
specification to the implementation. In 8th IEEE Int.
Conf. on Tools with Artificial Intelligence, pages 80 -
88. IEEE Computer Society Press, 1996.

[22] F. Trichet and P. Tchounikine. DSTM: a Frame-
work to Operationalize and Refine a Problem-Solving
Method Modeled in Terms of Tasks and Methods.
Int. J. of Expert Systems With Applications (ESWA),
16(2): 105-120, February 1999.

Informatica 25 (2001) 509-515 509

A security assurance framework for component based software
development
Ashwin Kumar M. V. N.', Arun K. Singh and Ramesh Babu S.
Education and Research Department, lnfosys Technologies Limited,
Electronic City, Hosur Road, Bangalore - 561 229, INDIA
Phone: +91 80 8520261, Fax: +91 80 8520741
arunks, rameshbabu@infy .com

Keywords: Components, Security, Proof Carrying Code, Aspect Oriented Programming.

Received: June 1, 2000

Commercial-off-the-shelf (COTS) components are black box software products. The absence of their
code precludes ihem from any kind of inspection to certify that the code is safe. This increases the
security risk for safety-sensitive applications. The application, before interfacing with COTS component,
needs an assurance that it is secure. This paper presents a framework to assure security of components
for such applications. This framework iises Aspect Oriented Programming (AOP) paradigm to capture
security characteristics of the components and weaves the corresponding security checks into them. It
also introduces a novel verification mechanism to ensure that the COTS components are developed as
per security contract.

1 Introduction
Software development today is increasingly dominated
by the use of generic softvvare components, also knovvn
as Commercial-Off-The-Shelf (COTS) components, with
some fixed functionalities. Use of such components in
the application development significantly reduces tirne
and effort, as there is no need to reinvent the wheel.
Notwithstanding these advantages, there lies a great risk
in using COTS components in a safety sensitive
application. The security risk arises because these
components are typically black-box products developed
by third parties. For instance, a maliciously written
component could silently leak Information to the
interested parties or write into the local resources. While
using these components, the user of the safety-sensitive •
application needs to address two main aspects - security
characterization and security verification.

While security characterisation deals vvith the properties
that a component should possess to be called secure, the
security verification deals with the issues regarding how
exactly one can implement these properties in that
component and be able to reliably check whether it is
secure. This paper presents a framework to capture the
security characteristics of the components and their
verification.

2 Issues in security assurance
In a situation where the components are vvritten by
someone and used by someone else, there are many
issues related to security assurance. Some examples,
which fit this scenario are Applets, ActiveX controls,
Java Beans, ČORBA objects and so on. While using a

component, there is a need to establish trust in some
manner.

Security assurance starts vvith identifying certain security
characteristics of the components that can be used to
assure trust. Security characterization throvvs up many
issues. At the outset, the granularity level for the security
characterization has to be decided. This means taking a
decision that the security characteristics need to be
inferred from (i) the properties of the component as a
whole, or (ii) the properties of the objects in the
component, or (iii) the properties of each statement in the
object of the component. At each of these levels there
can be many properties related to security e.g.
read/write/execute access to local resources. Once the
level of granularity is decided, the next issue is to
identif/ the type of associated properties. Furthermore, it
needs to be decided whether to adopt a Black and White
security scheme or shades of Grey security scheme of
components. While a Black and White scheme would
characterize a component as either fully secure or fully
insecure, whereas, shades of Grey scheme will help the
designer to support a fine grained view of the security of
the component.

Having identified the security characteristics of the
components, there can be issues related to developing
such components vvhere the desired security
characteristics have to be incorporated. For instance, the
security checks can be directly embedded into the code.
In such a čase, there are issues related to identiiying the
checkpoints in the code, and pondering about the
performance measures due to the additional checks.
Having developed a secure component, the next step is to
veriiy the secure behaviour of the component. The first

Summer Intern 2001 from Dept. of Computer Science & Engg., Indian Institute of Technology, Chennai, INDlA.

510 Informatica25 (2001) 509-515 A. M.V.N. Kumar et al.

issue in verification is to identify the source of trust.
There can be many scenarios for this. For instance, the
verification can be done based on (i) the security policy
defined by the code consumer, or (ii) the trust estabiished
by the code producer through some mechanism, for
example using digital signature, or (iii) the trust
estabiished through a third party by using trust
certificates. Each scenario brings its own pros and cons.

3 Approaches to assure security of
components

A number of solutions have been proposed in the
literature to address the above problem and each one has
its own advantages and disadvantages. Three widely used
solutions are discussed below.

3.1 Running the code in a restricted
environment

Here, a restricted environment is created for executing
the external/un-trusted code, and the operation carried
out by the code is monitored for any "dangerous"
operations. An operation is dangerous if, for exampie, it
opens a new network socket or accesses a sensitive part
of the file system. VVhether an operation is dangerous or
not is very subjective in nature and depends on the
security needs of the code consumer. This solution
approach is also knovvn as the sand-boxing technique [4]
and, for example, used by Sun Microsystems to address
security concerns of dovvnloaded Applets.

In sand-boxing technique, there is no guarantee with
respect to the "security-worthiness" of the code. Since
the component is just a black box, the consumer cannot
make reasonabie estimates about the security-\vorthiness
of the component. The security characterization has to be
done by the code consumer to design the sand box.

The disadvantage of the sandbox model is that the
security check is not static, i.e. there is no security check
done on the code before executing. Due to this, every
time the code is used, it should be run through the
sandbox. Also, the sandbox technique cannot inherently
support a fine-grained security policy. A sandbox
technique disallows dangerous operations, as the
checking is not static. But there might be cases vvhen
some trusted code need to be allowed to perform so
called dangerous operations in a controlled way. Trusting
some selected code is possibie using code signing
approach.

3.2 Code signing
The code signing technique [4] involves a trusted third
party, also called Certifying Authority (CA), to assure
security of the code. In this technique, the code producer
puts a digital signature on the code and sends it along
with a certificate issued by CA to the consumer. The CA
certificate contains information to verify the digital
signature and assures the identity of the code producer to

the verifier. The whole systein centers on the assumption
that both the code producer and the code consumer trust
a third party or CA. The CA checks the identity of code
producer carefully and issues the certificate only if it
trusts the code producer.

In this approach, though the certification of the
component is done before run time, the certificate gives
the assurance about the code producer and not about the
code. Hence, the main dravvback of this solution is the
very foundation it stands on - the notion of trust. The
technique requires the code consumer to plače complete
trust in the CA, and complete trust cannot be placed on
CA as after ali even the CA can commit mistake. There
have been cases when hackers have cheated the CA and
obtained the certificates using fake identity (Source
www.securitynewsportal.com).

The problems discussed above suggest that the code
itself should carry the trust agreed upon by both the
consumer and producer without involving a third party.
This is the basis of proof carrying code concept.

3.3 Proof carrying code
Peter Lee and George Necula introduced the concept of
Proof Carrying Code (PCC) [1]. This concept can be
stated in three steps: 1) The code consumer designs a
security policy and sends it to the code producer. 2) The
code producer develops the code based on the supplied
security policy and generates a "proof for compliance.
This proof is sent along with the code to the consumer. 3)
The code consumer verifies the correctness of the proof
and checks that it is compliant to the supplied security
policy. If the proof is correct, the code is deemed
security-worthy or eise it is rejected.

The "proof that the code is safe can be considered as
some sort of an embedding in the code that helps the
code consumer in compliance verification. This
technique has both the advantages of being static and
also not being dependent on any compiex trust
relationships as the code itself carries the proof. The
verification of the "proof is done before the code
execution. Here the code consumer is not trusting the
competence of a CA, but is trusting the "proof
generated using the actual code which qualifies for the
competence and the security of the code. The lack of a
CA and its related issues with trust makes this technique
very attractive.

Peter Lee and George Necula implemented PCC [1]
using forma! theory. Here, the security characterization
was done at a statement level and "proofs" also had been
given at the statement level. Defining security policies
and "proofs" at statement level for complex components
like COTS can be very complex. Next section proposes a
framework to address the security assurance problem at
the component level.

http://www.securitynewsportal.com

A SECURITV ASSURANCE FRAMEWORK FOR. Informatica25 (2001) 509-515 511

4 Proposed franiework to assure
security of components

Clearly, the sandbox and code-signing approaches have
limitations. The PCC concept though alleviates these
limitations; it works at the statement Ievel. Extending the
PCC concept to define and veriiy the security policy for
components poses niany challenges. Also, since the
security concerns, in general, are crosscutting in nature, it
is required to enforce security po!icy checks throughout
the component.

The proposed security assurance framevvork ušes Aspect
Oriented Programming (AOP) [2] paradigm to extend
PCC concept at the component leve!. Using AOP, the
crosscutting security characterstics can be modularised
and specified separately. These characterstics are then
weaved in the code. This weaved code serves the purpose
of "proof which can be used for security verification.
Before describing the framework, here are a fevv
definitions related to AOP.

4.1 Aspect Oriented Programming (AOP)
definitions

Aspect-oriented programming aliows capturing of certain
global properties of a program and then interleaves them
into its executab]e.

An Aspect, in AOP, is a subprogram to specify some
action to be performed at "strategic points" in the code.
These strategic points couid be before, around or after
executing some specific regions in the code. When the
code is compiled along with the aspect, the action
specified in the aspect is weaved into the code at the
corresponding strategic points. An Aspect contains Join
Points, Point Cuts and Advices.

A Join Point, in AOP, is a node in the program's runtime
object call graph. The various join points are constructor
or method calls, constructor or method receptions,
constructor or method executions, field gets, field sets
and exception handler executions.

A Point Cut, in AOP, is a coUection of these Join Points
and the values associated with them. Each Point Cut has
certain designators to match join points in the execution
of the code. Primitive Point Cut Designators are:

calls(<return type> classname.funcname(params))
receptions(<return type>
classname.funcname(params))
gets(<return type> classname.funcname(params))
sets(<return type> classname.funcname(paraiTis))
handles(ThrowableTypeName)
instanceof(CurrentiyExecutingObjectTypeName)
within(ClassName)
withincode(<retum type>
classname.funcnanie(params))

User defined point cuts can be constructed using &&
(and), II (or) and ! (not) Boolean operations. An example

of User Defined Point Cut depicting any line movement
function call reception is as foUovvs:

pointcut moves():
receptions(void FigureEleiTient.slide(int, int)) ||
receptions(void Line.setPl(Point)) |j
receptions(void Line.setP2(Point)) |1
receptions(void Point.setX(int)) ||
receptions(void Point.setY(int));

These user-defined pointcuts define the strategic points
in a program.

An Advice, in AOP, defines the action to be performed
before or around or after a strategic point. An example of
advice to set a flag after a move is shown here:

static after(): moves() { flag = true; }

Ali these definitions are grouped in a class like structure
cailed the Aspect. An example of aspect to track any
moves is the code looks like this:

aspect MoveTracking
{

static boolean tlag = false;
static boolean testAndClear()
{

boolean result =
flag = false;
return result;

ilag;

}
pointcut moves():

receptions(void FigureElement.slide(int, int)) j
receptions(void Line.setPl (Point)) ||
receptions(void Line.setP2(Point)) ||
receptions(void Point.setX(int)) ||
receptions(void Point.setY(int));
static after(): movesO

{
flag = true;

4.2 The framework
The framevvork comprises of two main parts - a)
Security characterization and b) Security verification.

Security
characteristics

I l i r ' •.•^*ip^,
''Secunty'' '

l'Verification

Code Consumer

Fig. 4.2: The Proposed Framework

Code
Producer

Security characterization of components can be done
either by the code consumer or by some standard

512 Informatica 25 (2001) 509-515 A. M.V.N, Kumar et al.

organization. In čase of standard organization, various
levels of security for different applications can be pre-
defined and published.

For security characterization, the framevvork makes use
of Aspect as a template to capture the requirements, and
makes use of Aspect Compiler to interleave security
checks in the component at appropriate points.

For security verification, the framevvork ušes a
verification engine (VE). The VE does following things
e.g. it checks that the code producer had used the same
security policy, which was used to capture security
requirements. It checks vvhether any modifications vvere
done into the component to bypass security checks. It
also checks whether any malicious tinkering in security
policy itself was done and so forth. If any of these checks
fail, the VE stops and prompts an appropriate error
message. Once VE verifies the code, it gets executed in
the normal fashion.

In order to explain the working of this framevvork, a
prototype implementation has been done. The next
section explains the steps involved in the framevvork by
describing through an implementation of this framevvork.

implementation of the 4.3 A prototype
framevvork

For the prototype implementation, Java code and
AspectJ, (developed by Xerox Pare) [2], have been
chosen. AspectJ is an extension of the Java language
incorporating the Aspect Oriented Programming (AOP)
principles. There are three steps in the implementation:

Step 1: Define a security policy
Step 2: Embed the security policy into the code
Step 3: Verification engine

Step 1: Define a security policy

Here, the code consumer or the security standard
organization identifies those methods that might do
dangerous operations. The security policy is described at
a method level. The security policy is captured as an
aspect, vvhich defmes dangerous operations as point cuts
and associates an advice for these point cuts.

The security policies, in general, control the dangerous
operations done by the program that are nomial^ related
to accessing the local resources, vvhich involves use of
certain library functions. Since the source codes of these
library functions are not accessible, only the "calls" to
these functions can be controlled. As a result, mostly the
"calls O pointcut' is used in Aspects.

To defme the action to be performed at the calls()
pointcut, this prototype implementation ušes 'before()
advice' only, i.e. ali actions defined in the aspect are
carried out before invoking the function.

Step 2: Embed the security policy into the code

The code producer obtains the security policy either from
code consumer or dovvnloads it from some central
repository and vvrites the code corresponding to the
components. After this, the component code and Aspect
are compiled using AspectJ compiler (ajc). The compiler
does the follovving:

1 Compiler converts the aspect file into a java class.
In this newly created java class, ali before() advices
are converted into methods and an object aspect$ of
the same class type is declared as a member (see
Appendix A for a sample code). Since there is no
pointcut Information preserved in the final class
generated from the aspect, the aspect need to be
preserved for verification.

2 Next, the compiler vveaves the aspect in the code
files. While vveaving, the function calls that are part
of the 'callsO pointcut' are replaced by some nevv
member functions. For instance, if the original
function call vvas f getAbsolutePath() in class code,
and it falls in the jurisdiction of a calls() pointcut,
then the function call is replaced by
code.getAbsolutePath$call4(f) (See Appendix A).
In the nevv member function, the number indicates
the serial number of that function call in the actual
code. We call such a function a "tinkered" function.
The nevv member function defined in code class
vvill be having the same name. Within the nevv
member function, ali the required "before advices'
vvill be called.

3 The AspectJ compiler then invokes the javac
compiler to generate the aspect and code class files.

The code consumer vvill use these files to verify that the
code is indeed security-worthy. Hence the code producer
shouldn't fiddle vvith the code that the AspectJ compiler
provides after aspect compilation and before javac
compilation.

Step SiVerification engine (VE)

This is the final and most crucial step in the
implementation. As compared to previous tvvo steps
where Aspect and ajc vvere used to execute the steps,
there are no tools available to perfomi this step. For this,
a verification engine has been developed. As shovvn in
Figure 4.3.1,the VE takes the class files corresponding to
component and aspect as vvell as Aspect source file as
inputs and provides the verification results for security
assurance.

A SECURITV ASSURANCE FRAMEWORK FOR. Informatica 25 (2001) 509-515 513

Supplied by Code Producer

Gode.c lass files

|Asp.eči ciass files

} - ^

Original Aspec t
file

\ '€i ' iric:Uioii
Ln^ i i i e (V E)

VenTied
Yes/No

Supplied by Code C o n s u m e r
or Standard body

Figure 4 .3 : Overv ievvof V erification Engine

The verification proeess can be divided into two parts:

Part I: In the first part, VE checks if the code producer
has indeed used the same aspect, which was supplied by
the code consumer or standard body. Since the Aspects
are defined using before() advice onIy and these advices
are converted into functions, actions performed at
pointcuts are actually function calls to these advice
functions. To check vvhether the code producer has used
the same advice, it is enough to check whether the aspect
returned by the code producer is identical to the original
aspect file defined for the code production.

Part II: In the second part, VE checks if the code
producer has not bypassed any security check specified
by the security policy. After vveaving and before the
usual compilation with javac compiler, it is possible to
introduce a malicious code that will not be subject to the
aspecfs advice or might remove a cali to the advice.
Hence at every function call, vvhich is in a pointcut, the
verifier has to check if ali the advice functions have been
called or not. In order to do this, the VE extracts the
following Information about each method from the class
file of the component code:

• Whether it is a "tinkered" method.
• Its signature i.e. if it is an original method or the

signature of the method, which was "tinkered"
by AspectJ compiler to get this method.

• A list of functions called by in the method.
• The byte code representation of the method.

After extracting this Information, the VE does following
checks;

Checkl: If the method is not a "tinkered" method, check
if it is a call to an advice, flag the error and halt.

Check2: If there exist two function calls such that one
call is to a function, vvhich is a "tinkered" version of the
other, then the verifier halts flagging an error. Such a
scenario would mean that there is a function call that is in
a pointcut but the corresponding action has been
bypassed deliberately.

signature (signature of the method vvhich was "tinkered"
is the "original" signature) should have the same code.
"Tinkered" method will be created.only if the original
function call was part of some pointcut. Hence for the
tvvo "tinkered" methods specified above, the list of
advices to be called would be the same.

Check4: Any function call that appears in the non-
tinkered form should not be a part of any pointcut. For
conducting this check, the original aspect is parsed and
corresponding pointcut Information is obtained.

CheckS: The list of function calls in any "tinkered"
method should be the list of advice functions to be called
before calling the original method and the original
function call.

Check6: Finally the verifier ascertains that apart from
the function calls listed above no other instructions are
there in a "tinkered" method. Of the above checks made,
only Checkl, Check4, CheckS and Check6 are truly
essential. Other checks have been added to handle the
performance issues. If there is malicious intent on the
part of the code producer, these checks vvill not allovv
code execution.

5 Conclusion and future work
This paper proposes a novel framevvork for implementing
the PCC concept using AOP to assure the security of
components. The crucial part in this framevvork is the
verification of the vveaved code with respect to initial
security policy. A prototype of Verification Engine has
been implemented. The VE does the verification based
on byte code analysis.

There are some threads that merit future research. Our
framevvork requires the code consumer or a standard
body to define the security policy that the code producer
has to adhere to. For the latter, it is required to
characterize some "standard" security policies and
publish them such that any code producer can use them.
Defining these standard security policies to represent
various levels of security is a very cha|lenging task.

The other thread is to explore on extending to the
AspectJ compiler itself to do the VE operations. The VE
does operations like pointcut recognition; advice
generation etc. These operations could be performed by
modifying AspectJ compiler itself If the aspect-oriented
compiler provides a tool, vvhich does the verification, a
nevv verifier need not be designed separately. This can
save lots of maintenance problems related to upgrading
VE vvhen there is a change in the compiler version or
vvhen an aspect-oriented compiler is built for a nevv
language. This could be an important issue to extend this
framevvork to other languages apart from Java.

Check3: If the method is a "tinkered" method, check that
tvvo tinkered methods having the same "original"

514 Infonnatica25 (2001) 509-515 A. M.V.N. Kumar et al.

6 References
[1] Peter Lee and George Necula (1996), Proof

Carrying Code - A Term Report submitted at CMU-
CS-96-165

before(java.io.File f) : Fileio(f)
{

if(f.getAbsolutePath().compareTo("c:\\WINNr')==0
&& f.exists())

Ihrovv nevv UnknovvnException;

[2] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm and William G. Griswold, An
Overview ofAspectJ, http://aspectj.org

[3] Qun Zhong and Nigel Edvvards (1998), Security
Controlfor COTS components, IEEE Computer, Jun
1998

[4] Gary McGraw and Edvvard W.Felten (1999),
Security Java, Wiley Computer Publishing.

[5] Tim Lidholm and Frank Vellin (1999), The Java
Virtual Machine Specification, Second Edilion,
Copyright @ 1999 Sun Microsystems, Inc.

Ali function calls in the pointcut are "dangerous"
functions calls. Hence, the code consumer specifies in
the security policy (here the aspect) to abort the program
by throvving an UnknownException. This advice has
been vvritten only for illustration purposes.

As in the pointcut čase, it is enough to use onIy 'before'
advice. To simplif/ the fmal verification process,
'around' advice is not used.

The aspect that the code consumer thus deilnes is sent to
the code producer.

The aspect defming the security policy would look as
foUovvs:

7 Appendices

Appendix A - A simple file system security
using proposed framevvork
As required by the AspectJ compiler, create a package
containing the aspect code. To facilitate specification of
pointcuts, the code producer has to put the actual code
inside a sub-package. Let the package be 'fileio' then the
sub-package holding the code should be 'fileio.Code'

Consider this file system safety policy: "No file
operations should be allovved on files existing in the
c:\WlNNT directory." Here, any file operation would be
dangerous if the file buffer is pointing to a valid file in
the c i^INNT directory. Hence, the pointcut defined
would be:

pointcut Fileio (java.io.File f):
within(fileio.Code..*)&&calls (* f.*(..));

The above definidon denotes that the pointcut is a
collection of ali those join points which denote function
calls to the methods of a File object from the code within
fileio.Code package (apart from the constructor because
the return type is specified as a wildcard).

Note that the calls pointcut descriptor has been used, and
not executions or gets. This is because, for the calls
pointcut descriptor, code need to be vveaved only in the
class vvhere the function is called for which we shall have
the source code. In executions, gets or sets, code has to
be weaved in the function that is called. Here the
fiinction called is a library function and usually source
code of library functions is not available. Hence, only
calls can be used. For our purposes this is enough. Now,
we define an advice for this pointcut.

package fileio;
public aspect aspectcode

{ {
pointcut Fiieio(java.io.File f):
wlthin(fileio.Code..*) &&
calls(public * f *(..));

before(java.io.File f) : Fileio(f)
{
if((f.getAbsolutePath().substring(0,8).compareTo(

"c:\\WINNT") = 0) && (f exists()))
{

System.out.println("Forbidden operation.. exiting");
throvv nevv UnknownError();

}

When run through the AspectJ compiler, the class that is
generated using this aspect will be as follows.

/* Generated by AspectJ version 0.8beta4 */
package fileio;
//aspectcode.java:!
public class aspectcode {
//aspectcode.java:4

public final void beforeO$ajc(java.io.File f) {
//aspectcode.java: 11

if ((f.getAbsolutePath().substring(0,
8).compareTo("c:\\WlNNT") = 0) && (f.exists())) {

//aspectcode.java: 14
System.out.println("Forbidden operation.. exiting");

//aspectcode.java: 15
throw nevv Unkno\vnError();

//aspectcode.java: 16
}

}

public aspectcodeO {
superO;

}

http://aspectj.org
file://c:/WlNNT

A SECURITV ASSURANCE FRAMEVVORK FOR. Informatica 25 (2001) 509-515 515

puhlic static aspectcode aspectS;
puhlic static aspectcode aspectOf() {

return aspectcode.aspectS;
}

puhlic static boolean hasAspect() {
return aspectcode.aspectS != nuU;

static {
aspectcode.aspectS = new aspectcode();

}

File f = nevv File("c:\\WINNT\\tsoc.log");
//code.java:! I

System.out.println(code.getAbsoliitePath$call4(foo));
//code.java: 12

System.out.println(code.getAbsolutePath$call5(foo));
//code.java: 13

Syslem.out.println(code.getAbsolutePath$call6(f));
//code.java: 14

}

puhlic code() {
superO;

Notice how the before advice has become a function
beforeOSajc. (O because it is the first advice in the aspect)
Also note that there is no pointcut information existing in
the class any more. Hence the code consumer will have
to preserve the aspect that had been created for
verification.

Consider the follovving code in the fileio.Code package.

package fileio.Code;
import java.lang.*;
importjava.io.*;

puhlic class code
{
puhlic static void inain(String[] args)
{
File foo = new Fi]e("simple");
File f = new File("c:\\WINN'n\tsoc.log");'
System.out.println(foo.gctAbsolutePath());
System.out.println(foo.getAbsolutePath());
System.out.println(fgetAbsolutePath());

}
}

The weaved code is as foUovvs:

private static Slring gctAbsoliitePath$call4(File argScallThis)
{

. fileio.aspectcode.aspectS.beforeO$ajc(arg$callThis);
return argScallThis.getAbsolutePath();

//code.java: 12
}

private static String getAbsolutePathScall5(File argScallThis)
{

fileio.aspectcode.aspectS.beforeO$ajc(arg$callThis);
return argScallThis.getAhsolutePath();

//code.java: 13
}

private static String getAbsolutePathScall6(File argScallThis)
{

fileio.aspectcode.aspectS.beforeO$ajc(arg$callThis);
return argScallThis.getAbsolutePath();

//code.java: 14
}

Note how the function calls have changed. Also note that
if the ftinction signatures are the same then the bodies of
the two new functions made to perform the before advice
on those function calls are identical.

/* Generated by AspectJ version 0.8beta4 */
package fileio.Code; //code.java: 1
import java.lang.*; //code.java:3
importjava.io.*; //code.java:4

puhlic class code {
public static void main(String[] args)

//code.java:9
File foo = new File("simple");

//code.java: 10

//code.java:6

The ajc then runs the javac compiler on these classes to
get the aspect and code class files. This is then sent to the
code consumer.

Now the code consumer gets these files. These files and
the original aspect file are fed as input into the verifier. If
the verifier passes the code, then the code conforms to
the security policy and can be used.

Informatica 25 (2001) 517-526 517

The ABCs of specification: asml, behavior, and components

Mike Barnett and WoIfram Schuite
Microsoft Research
One Microsoft Way
Redmond WA,. 98052-6399, USA
(mbarnett, schuite}@microsoft.com

Keywords: Specification, Component, Subtyping

Received: May 25, 2001

We sbow hov/ to use AsmL, an executable specification language, to provide betiavioral interfaces for
components. This allows clients to fully understand the meaning of an implementation without access
to the source code. AsmL implements the concept of behavioral subtyping to ensure the substitutability
of components and provides many advanced specification features sucb as generic types, transactional
semantics, invariants and history constraints.

1 Introduction

There is a broad consensus that a specification of a com-
ponent's interface must include some way of describing its
behavior [26, 32, 36, 43]. Current practice tends tovvards
formal specification of the syntax of the interfaces while
using informal natural-langugage descriptions for the se
mantics. Current theory is based on the idea of design
by contract [35], generally using pre- and post-conditions.
Previous attempts at describing software also have used al-
gebraic specifications [24].

Interfaces, as they are standardized today, for example
using IDL [11], areclearly inadequate for the tasl̂ of spec-
ifying components. It is not enough to provide merely the
syntax — signature — for each method contained in an in
terface. A client who wishes to use a component needs to
knovv the semantics — behavior -^ of each method. In ad-
dition, understanding the relationships betvveen the meth-
ods contained in an interface is crucial for the effective use
of a component supporting that interface.

We follow the specification taxonomy of Beugnard et al.
[9]. A specification is a contract for a software component
that describes properties on four leveJs:

1. basic: the sy ntactic properties of method names, num-
ber and type of parameters and very simple semantic
properties (e.g., in IDL one can specify vvhether a pa
rameter that is a pointer can ever be null or not).

2. behavioral: the properties that can be specified with
pre-conditions, post-conditions, and invariants, in-
cluding history constraints [34].

3. synchronization: properties of component interaction.

4. cjuantitative: aH non-functional properties, such as
quality of service, response times, throughput guar-
antees, etc.

Our method for specifications covers only the first three
ievels; however, we use the term behavioral to refer also to
the synchronization class of specification.

Our group at Microsoft Research, the Foundations of
Softvvare Engineering [16], has developed an executable
specification language, AsmL, which is based on the theory
of Abstract State Machines (ASMs) (see [22] for an intro
duction to the notion of ASMs). ASMs allow precise, for
mal, operational specifications of software systems. AsmL
has many important features, among which are generic in
terfaces and classes, and a transaction-based semantics.

In this paper, we use AsiriL to specify the behavioral and
synchronization properties of component interfaces, in par-
ticular method behavior, interface-wide invariants, history
properties, and component composition.

In previous work we used AsmL to write component
models by reverse-engineering already existing compo
nents [6]. The resulting models provided essentially the
identical functionality as the components they were mod
els of. In other words, they modeledthe classes that im-
plemented the components. Our concern here is the use
of AsmL at the design stage by providing models of inter
faces. We wish to specify interfaces at their most general
level: only the required behavior any component imple-
menting them must have is detailed. The rest is left up to
the implementer of the component. An interface model al-
lows clients and implementers to understand the behavior
of a software component that correctly implements the in
terface.

We believe that one should implement a component us
ing classes, i.e., using object-oriented programming, but
that the specification should be done at the interface level.
The key idea connecting a class to its interface is that the
class must be a behavioral subtype [34] of its interface. An
interface specification describes the minimal behavior ex-
pected of ali of its subtypes: the behavior of a class can be
more constrained than that of its interface.

518 Informatica 25 (2001) 517-526 M Barnett et al.

This paper's contribiition is to provide a clean layer in
which full behavioral specifications can be vvritten. Speci-
fication languages should not be tightly coupled to imple-
mentation languages. Precise semantics are crucial for a
specification language; implementation languages are ori-
ented towards execution efficiency, as indeed they should
be. AsmL has a formal semantics which provides a math-
ematical foundation for the specification effort. It provides
features that aid in the refinement process for developing
components that correctly implement their specifications.

The paper is organized as follovvs. Section 2 provides
more detail on exactly what an interface specification looks
like in AsmL. Section 3 discusses our notion of refine
ment and provides an example, Then, in Section 4, we
show how to handle component creation and parameteri-
zation within AsmL. The next two sections explain hov/
to compose specifications: Section 5 for data-linking and
behavior-linking and Section 6 for aggregation and deie-
gation. An overview of similar approaches is discussed in
Section 7. Section 8 summarizes and presents limitations
and future work.

2 Specifications
We write executable specifications of components in AsmL
(the Abstract State Machine Language). AsmL is based on
the theory of Abstract State Machi nes [22]. ASMs are tran-
sition systems: their states are first order algebras, that is,
interpretations of a functional signature. The transition re-
lation is specified by transition rules (in the sequel simply
called rule) describing the modification from one state to
the next, namely in the form of guarded updates, i.e., as-
signment statements that are executed if a boolean condi-
tion holds. A sequential run of an ASM program P is a
finite or infinite sequence of states So,Si,... vvhere each
Si, j > O, is obtained from Si^i by executing the updates
of P at Si-i. The updates generated in a particular step are
called the update set for the step.

To deal with industrial applications, we have extended
ASMs with submachines, objects, exception handling [23]
and a very powerful type system (as have others, see [2, 8,
10]). AsmL is freely available for noh-commercial research
or teaching purposes from our web site [16]. It is currently
used within Microsoft for modeling, rapid prototyping, an-
alyzing and checking of APIs, devices and protocols.

We introduce AsmL at the same tirne as we develop the
examples. Only a small subset of AsmL will be used. Our
first, very small, example is a specification of a counter
interface.

interface ICounter
var ct as Integer = O
Counter{) as Integer

return ct
Increment{)

ct := ct + 2

To specify components we use interfaces. Stateful inter-
faces have member variables, which are also called model
vanables. Model variables are not part of the signature of
the interface; they are provided only to give meaning to the
method bodies. They are accessible only through the meth-
ods defined in the containing interface and its subtypes.

Method bodies in an interface are called model pro-
grams: they specify the effect that any implementation
must respect. Method bodies typicaliy refer to member
variables. If a method body updates a member variable,
it defines an ASM rule. ASM rules are inherently paral-
lel. This synchronous parallelism comes in handy when
specifying independent updates. For example to svvap two
variables you write:

swap{)
X := y
y := X

Sequential composition is the unusual čase; to discour-
age its use, we require a "heavy" notation for it. The se-
quential AsmL specification for swapping the values of two
variables ušes an ASM sitb-machine:

swap{)
var / = X
step-V := y
step y := (

AsmL also provides exception handling. Combined with
synchronous parallelism, this eases specifications: when an
exception is thrown ali updates that are produced in the pro-
tected block are undone:

The simple transition semantics also simplifies the trans-
lation of AsmL rules into predicates. For this purpose we
use a slight variation of weakest preconditions. This allows
the counter also to be specified in more declarative terms.

interface ICounter
var ct as Integer ct = Q
Counler{) as Integer

require true
ensure result = cl and ct = ct'

Increment{)
require true
ensure ct' = ct + 2

The keywords require and ensure are used for pre- and
post-conditions, respectively. Priming (e.g., x') denotes the
value in the next state of a run. The keyword result refers
to the value returned by the method.

In general, any straight-line method body can be auto-
matically replaced with a pre- and post-condition pair that
specifies the same behavior. Loops and recursion require
manually-supplied invariants and bounds.

In AsmL a method application changes only those vari
ables that occur in the computed update set; variables not
mentioned in the update set are not changed. If a method

THE ABCS OF SPECIFICATION: ASML,. Informatica 25 (2001) 517-526 519

body is only described by a pre-/post-condition pair one
has to specify explicitly which variables change and which
retain their values. If no method body and no pre-/post-
condition pair is given, the method can do vvhatever it wants
to, except that is has to respect any interface invariants and
constraints (as described in Section 3).

Not only do pre- and post-conditions fail to scale \vith
larger specifications [12], but we have found that real
users prefer vvriting executable specifications instead of
pre-postcondition pairs. In AsmL, users can use high-level
data structures, users can write nondeterministic specifi
cations, users get atomic transition semantics, and users
get ease of reasoning due to referential transparency vvithin
each step. Furthermore they can immediately execute the
vvritten AsmL specifications.

3 Refinement
A specification is useful only in so far as it defines proper-
ties that are true for any implementation. In essence, this
is Liskov and Wing's notion of behavioral subtyping [34]:
a subtype should always be substitutable for a basetype in
ali contexts. ASMs can be used in a more general theory
of refinement (see e.g. [41]), but for our purposes it suf-
fices to restrict our attention to the 1 : n refinements pos-
sible in the syntactic framework of classes implementing
interfaces. That is, any component implementing an inter
face must support the syntactic interface; it may do less or
more work vvithin each method, but the protocol by which
a client ušes the functionality is fixed by the syntax of the
interface.

There is a well-known problem with specifications and
behavioral subytping: a subtype might violate properties
of its basetype. For example, in the čase of the ICounter
specification, one cannot reason that the value is always
even: as specified, a subtype could increment the counter
only by one. Likewise, the counter cannot be assumed
to always be positive, a subtype might introduce a decre-
ment method. In order to compensate for this, Liskov and
Wing require invariants, which are properties of a single
State, and constraints, which in AsmL are properties of
consecutive states. For instance, to ensure the tvvo above-
mentioned properties, we can add to the ICounter interface:

interface ICounler...
invariant even{ct)
constraint cl < cl'

The ellipsis (three dots) is part of our literate program-
ming environment [31]; it indicates that this is a continua-
tion of a previous construct.

AsmL also introduces an alternative construct for an op-
erational specification of the permitted state transitions of
any method in any subtype: the otliers clause. For instance,
to ensure the even stronger property that any other method
can increment ct only by a multiple of two in the range
from O to 20 one can write:

interface ICounler...
others(.. .)
choose/in {O, 2..20}
a := cl + i

Any additional method defined in any subtype of
ICounter will inherit the derived post-condition from the
others method.

Our notion of refinement for synchronization proper
ties depends on the concept of a mandatory call. Certain
method calls in the model programs are identified as Com
munications that any implementation must make during the
execution of the corresponding method. Ali calls to non-
local public interface methods are mandatory calls. This
includes constructors, see Section 4 for an example. Note
that it is the call site that is mandatory, not the method defi-
nition. An implementation is free to make additional calls;
the model indicates the minimal behavior that must be ob-
served. Thus, we say that an AsmL specification provides
a minimal model for any implementation.

Classes that implement an interface must be a behav
ioral subtype of the latter. But the implementation typically
chooses a different representation of its fields. Contrary to
Liskov and Wing's formulation, we do not require that the
class defines an abstraction function (see also Hoare [28])
which relates the concrete state of the class to the abstract
state of the interface. In other work [6] we outline a scheme
that provides for run-time checking of the subtype relation-
ship without an abstraction function.

However, providing an abstraction function allows for a
higher level of verification; AsmL allows a class to define
one with the abstraction construct. Suppose that the class
that implements the ICounter ušes a "successor" represen
tation for a counter. Then the abstraction function is j ust
two times its successor representation.

class CCounter implements ICounter
var succ as Integer = O
abstraction
ICounler.ct = 2 * succ

Counler{) as Inleger
return 2 * succ

Incrementi)
succ := succ + 1

In this particular example, it is obvious how CCounter
fulfills the obligations it inherits when implementing the
ICounter interface. Hovvever, in general, abstractions can
be much more complicated.

There is no requirement that an AsmL specification be
implemented in AsmL. AsmL provides native COM con-
nectivity (as well as COM Automation) and so can be used
directly with a component implemented in any program-
ming language.

One interface may also refine another interface, either by
extension (see Sections 5 and 6) or implementation. Again,
the former interface must be a behavioral subytpe of the

file:///vith

520 Informatica 25 (2001) 517-526 M Barnettet al.

latter interface.
To simplify rapid prototyping, i.e., executing of spec-

ifications, AsmL classes don't have to provide their own
definitions. As long as interface methods are specified by
method bodies, interfaces are executable exactly as written.
Thus a class can reuse the definitions of the interfaces. The
simplest implementation for ICounter then becomes:

class CCounter reuses ICounter

Thus it is often sufficient to close a specification by
merely providing a class that reuses the specification.

4 Creation and Parameterization
In this section, we consider two prerequisites for compos-
ing interfaces. First, there must exist a way to specify the
creation of a reference to an interface. An interface is
merely a view on a component (namely a particular sub-
set of the component's functionality): what does it mean to
have a new reference to one? Second, an interface can be
dependent on external values (and/orobjects); a completely
closed interface is not particularly interesting. The simplest
forms of dependency are ones required for paiaineterizing
an interface: by type and by value.

Creation. At the interface level there are only interfaces,
notcomponents. So if one wishes to access anevv interface,
where does it come from?

One solution would be to parameterize ali interfaces by
afactory interface that can be used to request the desired
interface. A factory interface contains a method which will
deliver an interface reference upon request, given some sort
of identifier for the interface. But this merely pushes the
problem back one level: where does the specification of
the factory interface get the interface reference to return?
What exactly are the properties of the returned interface?

While factory interfaces are very useful at the implemen
tation level in order to decouple component creation and
allow subclassing [17], AsmL interfaces are already ex-
pressed at the abstract level. A clearer picture of the desired
properties is needed.

When a component is created, there are several assump-
tions about the resulting reference. Abstracting from the
specifics of implementation issues, such as storage alloca-
tion, leaves us vvith the following properties: the compo
nent supporting the requested interface

1. should have a unique identity,

2. should not be aliased, and

3. should provide the requested interface in one of its ini-
tial States.

Such an interface is guaranteed to be private to the com
ponent that is requesting it, unless it explicitly decides to
share the reference either by creating aliases or by passing

the reference to a third party. For this concept, we use the
keyword new vvith an interface:

interface IIlisiory
var s as ICounter new ICounter

However, it is important to note that the use of new does
not necessarily imply the creation of an object as it would
when used on a class. As long as properties 1-3 are ensured
for s, then it does not matter if a new class object is created
by actua]ly calling a constructor or not.

The above example specifies that vvithin the interface
IHistoij, the name j ' refers to an interface ICounter on some
component. OnIy IHistory has a reference to this compo
nent. Furthermore, this component is in its initial state, i.e.,
s.ct is equal to zero, and will remain so until changed by a
call from within IHistotj. The fact that the component has
a unique identity \vill be utilized in Section 6.

Sometimes a new interface is requested on an already
referenced component, i.e., an existing interface reference.
In AsmL that is modeled by a type čast:

/ / . . . / is an interface reference to lA . . .
let; = / as IB

This corresponds to using the COM method Querylnter-
face [11]. When the type čast is successful, the requested
interface is not necessarily in its initial state.

Parameterization. An interface can be dependent on a
type, i.e., it can be a generic interface. A generic interface
specifies a family of interfaces ali of vvhom instantiate the
generic parameter for some particular type. A typical ex-
ample for a generic interface is the IState specification:

interface IState{T)
private var vaUie as T
Set{v as T)

value := v
Get{) as T

return value

The IState specification says nothing about its initial
state; it is also dependent on a value of type T that must
be supplied to the constructor vvhen an instance of IState is
created. AsmL provides a default constructor that has the
same name as the interface. The default constructor takes a
parameter for each of the uninitialized member variables:

interface IState{T) ...
IStaie{v as 7')

value = v

In order to be instantiated, the interface IState is depen
dent on both the type parameter T and supplied argument
for value. Note that it is just a coincidence that the type

file:///vill

THE ABCS OF SPECIFICATION: ASML,. Informatica 25 (2001) 517-526 521

of value is itself T. Multiple constructors vvitli different
parameter lists are also allowed.

The visibility attribute private on value means that it may
not be modified by a method within any subtype. There-
fore the onIy way to modify value is to call Set. This guar-
antees the property that once a client calls Set, value will
remain unchanged until the next call to Set. In other words,
any component implementing IState will act like a program
variable.

IMGlricAndUSLenglh

] value I

{^^

5 Linking Specifications

While it is important to be able to specify interfaces in iso-
lation, true component-oriented programming can be re-
alized only when sub-units are composed to make larger
units. This implies that we must be able to compose inter
faces as well, since the specification for the composition of
two components should be the composition of their indi-
vidual specifications.

5.1 Data Linkage

Linking two specifications through shared data — state-
coupled specifications — allows for multiple viewpoints
on the same component, while ensuring that the compo
nent stays in a consistent state. This represents a common
pattern; our example ušes the idea of different units for a
single measurement [20]. For instance, suppose there are
two interfaces.

interface IMetricLength extends !Slate{lnteger)
IMetricLengih{) extends ISiale{Q)

interface lUSLength extends IState{Integer)
WSLength{) extends IStale{0)

The specification for IMetricLength implicitly keeps
value in metric units, e.g., centimeters. Meanvvhile,
the specification for lUSLength implicitly keeps value in
inches. Note that neither interface is parameterized: the
generic parameter T from IState has been instantiated to
Integer. Also, the explicit constructors take no arguments.
But they call the constructors of the interface they are ex-
tending; the initial state is thus fully determined.

Suppose we would like to specify a component that pro-
vides both interfaces with a consistent shared value. What-
ever changes are made through one interface should be re-
flected in the other interface. This is easily specified via a
linking invariant which constrains any implementation to
meet this condition. Fig. 1 shows the structure of the com
position.

interface IMetricAndUSLength
extends IMetricLength and lUSLength

invariant
IMetricI^ngtli.value * 2.54 = lUSLenglh.vahie

Figure 1: Linking two interfaces by shared data

A crucial feature of AsmL is that ali methods and mem-
ber variables from inherited interfaces are kept distinct.
The interface IMetricAndUSLength does not identify the
methods Get and Set from the two interfaces; the combined
interface has ali four methods. AsmL, just as C# [25], does
not fold methods with the same name and signature when
extending multiple interfaces. This is especially important
for generic interfaces. Java [19], for instance, is unable to
keep the methods distinct.

The behavior of any component implementing the in
terface IMetricAndUSLength must respect the invariant (as
well as the individual behaviors specified in each interface).
How it does so is left up to the component; one way is to
keep value in one unit and converting it for the other inter
face:

class CMelricAndUSLenglh
implements IMeiricAndUSLength

var melricVahie as Integer = O

abstraction
IMetricLength.value = metricValue
lUSLength.valiie = metricValue / 2.54

IMetricLength.Set{v as Integer)
metricValue ;= v

IMetricLeng!h.Gel{) as Integer
return metricValue

IUSLeng!h.Set{v as Integer)
metricValue := v * 2.54

IUSLength.Get{) as Integer
return metricValue j 2.54

This example differs from the traditional Observer pat
tern [17] in that both of the original interfaces are peers;
neither is distinguished as the subject holding the "correct"
value (although the component decided to implement it that
way).

5.2 Behavior Linkage

In this section, we present an example of two components
that are coupled through their interacting behaviors instead
of through shared state. We use the Observer pattern [17]
which involves two components: a subject and a set of ob-

522 Informatica 25 (2001) 517-526 M Bamett et al.

servers, called views.
The IView interface is trivial: it contains a method Up

date that is to be called by the subject, and a method for
registering the subject with the view so it has access to the
subject.

interface IView{T)

var subject as ISubject{T)

Update{)
I j behavior goes here, to be defmed by subtype

SetSubject{s as lSubject{T))
subject := s

The subject holds some state; vvhenever the state is
changed, each view is notified. This is a generalization of
the Reader/Writer paradigm. The specification of a sub
ject is an extension of iState that has methods for adding,
removing, and alerting views:

interface lSubject{T) extends ISiate{T)

var views as Set{IView{T)) = {}

Set{val as T)
step base .Set{val)
step Notify{)

private Notify{)
forall v in views
v.Updale{)

Attach{y as lView(T))
views += { v }

Detach{v as IView{T))
views —= { v }

others(...)
ensure value = value'

There are three interesting properties that this specifica
tion prescribes for any implementation:

1. A subject calls the t/p^afe method of each viewwhen-
ever its Set method is called. Because Update is a pub-
lic interface method, this call is a mandatory call. An
implementation is free to call Update more than once,
perhaps for fault-tolerance purposes.

2. Views are synchronized with subjects. That is, aH
views receive a notification with the subject in the
same state. This is because the forall loop used vvithin
Notify is a parallel loop.

3. A view can perform any behavior within its Update
method. Obviously, it vvould be unwise to call the sub-
jecfs Set method: allovving the state to change during
a callback is known to create problems [43]. The spe
cification can easily be modified to disallow it.

Because of the others clause, no subtype of ISubject is
allovved to add a method that alters value other than by
calling ISubject.Set. This may be too restrictive; one can

specify instead a constraint that connects state changes to
value with calls to Update for each view.

The method Notify is marked private to emphasize that it
is not a mandatory call. It is only the call to Update during
the execution of Set that must be observable.

6 Aggregating Specilications

In addition to linking interfaces, we use AsmL to define in-
terfaces that re-use existing behaviors to create new func-
tionality. This explores another way of composing spec-
ifications which can be seen as aggregation or delegation
depending on the details of how it is specified.

We take the example of a radio button group in a graphi-
cal user interface from [26]. A radio button group is a set of
radio buttons that operate in a mutually-exclusive manner.
At most one of them can be selected at any one time; select-
ing one radio button unselects aH of the others in the group.
Each button in the group must display itself appropriately
as either selected or not.

A radio button group can be seen as an example of
reusing the Subject/View contract (i.e., the Observer pat-
tern [17]): each radio button is a vievv on a subject whose
state reflects which button is currently selected. To begin
the specification, we first specify the behavior of buttons in
general.

6.1 Buttons

We model a button as a user-interface element that has a
text label and allovvs the user to select it, say by clicking on
it with the mouse.

interface IBuiton
var label as String
var chosen as Boolean

CeiLabelO as String
return label

Seiljibel{s as String)
label := s

SelectO
choose b \n { false, true }
chosen := b

Of course, the interface vvould have additional methods
relating to its size, color, etc.

A checkbox button acts as a toggle: clicking it reverses
its current state.

interface lCheckBoxBullon extends IButton
SelectO
chosen := not chosen

A radio button, by way of contrast, is idempotent: click
ing on it sets it to true. The only way to unseiect it is to
select another radio button in the same group.

THE ABCS OF SPECIFICATION: ASML,, Informatica 25 (2001) 517-526 523

interface IRadioButton extends IButlon
Select{)
chosen := true

A single radio button may seem useless, but could be
used for signing a document or some other irreversible op-
eration.

6.2 ButtonView
A radio button, as specified in IRadioButton, is not imme-
diately composable into a group. As stated, the interface
does not provide any functionality for synchronizing its
State with other buttons in the same group. This clearly
separate behavior can be added in a modular fashion.

We extend the IRadioButton interface with an IView in
terface. It describes a button that j ust behaves like a radio
button, but responds to a new input notifying it that some
State has changed somevvehere eise.

interface lRadioButtonView extends IRadioButton
and IView{IRadioButton or Undef)

j j explicit constructor
lRadioButtonView{s as String)

extends IRadioButton{s,fa\se) and IView{Undef)
Update{)
cliosen := subject.Get{) = me
/ / redraw appropriately ...

Selec t {)
base .Select{)
sul)jeci.Sel{me)

The explicit constructor initializes the button to be un-
selected. In addition it initializes the view's subject to be
undefined. Note that in AsmL reference types don't con-
tain a null value. But disjunctive types, here exemplified
by the type IRadioButton or Undef give you the flexibility
to add Undef when needed. The keyword base refers to the
immediate supertype, in this čase IRadioButton.

Given this interface, it is now easy to define the behavior
of a radio button group.

6.3 ButtonGroup
The requisite behavior of having the radio buttons be mu-
tually exclusive is achieved by wiring the augmented radio
buttons from Section 6.2 together with a component that
implements the ISubject interface into a Subject/View rela-
tionship.

interface IRadioButtonGroup
var bs as Set{IRadioBuitonView)
var subj as ISubject{IRadioButlon or Undef)

Figure 2 shows the structure of the interface, although
not the multiplicity of views.

A radio button group has its own interface: there are op-
erations that make sense for a button contained in a group,

IRadioButtonGroup

IRBAndView

lViQW

/
IRB I

Figure 2: The IRadioButtonGroup interface

but not for the collection as a vvhole and vice versa. Selec-
tion of one button in the group is specified by delegating
the Select call to the appropriate button.

interface IRadioButtonGroup .. .
Select{s as String)

choose b in bs vvhere b.GetLabel{) = s
b.Select{)

. .. other metliods ...

The constructor for IRadioButtonGroup takes a set of la-
bels for the radio buttons to be generated, generates the sub-
components and wires them together.

interface IRadioButtonGroup . ..
IRadioBunonGroup{ls as Set{String))
subj = new ISubject{undei)
bs = { new IRadioBultonView{l) | / in /j }
forall b in bs
b.SetSubjecl {subj)
subj .Attacli{b)

Informal Reasoning. Now that the composition has been
created, it can be reasoned about. Here we give an informal
outline of IRadioButtonGroup'& correctness for maintain-
ing the mutual exclusion of a selected button.

The only external action that can cause an update is for
one of the radio buttons bi to b„ in the group to have
their Select method called. Without loss of generality
lefs assume that bi is selected. This, in turn, will cause
bidRadioButtonView.Select to be called, which will call
bi.IRadioButton.Select. So bi.chosen becomes true.

The button bi will also call Set{bi) on the shared sub
ject. First, its value becomes bi. Next, the shared subject
will call back to every button in the group via IRadioBut-
tonVlevj. Update. For every button the Get method called
on the shared subject will return bi — this is the value that
was just stored. For bi this generates another update of
bi.chosen to true; this is a non-conflicting update. In con-
trast, the chosen field of the buttons b2 •. .b„, become false,
since bi is different from any of 62 • • • bn.

As a result, we are guaranteed that the group makes an
atomic step which preserves the property that at most one
button can be selected at any tirne.

524 Informatica25 (2001) 517-526 M Barnett et al.

Given AsmUs transactional semantics, it is possible for
two buttons to execute their Select methods in the same
step. Each method will cause an update in the subject
for two different values (the value of me for each of the
buttons). These updates are conflicting; AsmUs runtime
checks for different values being assigned to the same lo-
cation at the end of each step and will signal an exception.

7 Related Work
As long as there have been programmers, there has been
concern with the meaning of the artifacts they create by
formally specifying the programming process, e.g. [27].
Here, we concentrate specifically on work involving com-
ponents.

There is a long tradition within the object-oriented com-
munity that is concerned with specification, vvhether for-
mal or not. Meyer, of course, is famous for his ideas on
design by contract [35]. Over a decade ago, Helm et al.
[26] pointed out the necessity for contracts and how they
can be used as a structuring concept for specifications, but
their contracts were a) not executable, and b) confused the
wiring of components with the specification of their inter-
action. America [1] did some of the early work on be-
havioral subtyping. The most standard formulation of be-
havioral subtyping follows that of Liskov and Wing [34].
Most of this work used only pre- and post-conditions for
methods, or did not consider using a separate specification
language.

Leavens and Dhara provide specifications for Java com
ponents using a language called JML [33]. Like us, they in-
sist on behavioral subtyping as a refinement notion and also
use modelprograms in addition to pre- and post-conditions.
However, their work is limited to Java programs; AsmL can
be used in conjunction with any implementation language.
They make the distinction between strong and weak sub-
typing; we restrict our attention to strong subtyping since
AsmL does not prohibit aliasing.

Besides JML, there has been a lot of work on using as-
sertions to specify Java interfaces, e.g., Contract Java [15],
iContract [13], jContractor [30], and Jass [7] ali imple-
ment various schemes to implement design by contract for
Java programs. JISL, the Java Interface Specification Lan
guage [40], translates and inserts specifications into Java
programs. It ušes pre- and post-conditions and is used to
primarily specify and check frame properties.

Edwards [14] ušes specifications for components/o gen
erale vvrapper components that check the pre- and post-
conditions. An abstraction function is required because the
conditions are expressed in terms of abstract values. But
without model programs, synchronization properties can-
not be specified.

Soundarajan and Tyler [42] use trace variables in spec
ifications to record method calls in order to reason incre-
mentally about subtypes. Their trace variables are similar
to our mandatory calls, but they also do not have model

programs.
Jonkers [29] has interface specifications that are not exe-

cutable; he also does not insist on absolute rigor in a speci
fication. But his ideas of how to specify interfaces are very
similar to ours.

The theoretical background for component specification
is mostly based on the refinement calculus by Back and
Wright [4] and Morgan [39]. Constructs for object-oriented
programming are added to a notation for sequential com-
puting and class refinement is defined such that it respects
supertype behavior [3]. To declare a class as a subtype of
another means to do a proof in the refinement calculus that
the predicate transformer semantics of the class hold the
correct relationship with those of the superclass. However,
there does not seem to be a concern with directly executing
specifications. Sekerinski et al. have explored the restric-
tions on component-oriented programming that are needed
in order to be able to prove refinement in the presence of re-
cursive re-entrance [37]. They have also done a small čase
study of proving the correctness of Java Collections Frame-
works [38]. They extend Java with a specification language
and claim that it has a formal mathematical foundation:
"every executable statement of the Java language... that we
use has a precise mathematical meaning". We take that to
mean that only a subset of Java is used.

8 Conclusions
The need for behavioral specifications is widely rec-
ognized, especially in component-oriented programming.
AsmL provides an industrial-strength tool for writing such
specifications. It provides ali of the features necessary to
express the properties needed for behavorial subtyping.

AsmL is agnostic with regards to verification technol-
ogy. An AsmL specification can be subjected to analysis
with a variety of formal methods, for instance, a refinement
calculus proof.

The executability of AsmL specifications opens possibil-
ities that go beyond those traditionally associated with spe
cification languages. A formal specification is the bound-
ary betvveen the informal understanding of a system and its
digital incarnation. At the design stage, exploration of the
specification provides insight and feedback about the ap-
propriateness of the formalization. During the coding pro
cess, the specification can be used, in special domains, to
derive test cases and perform conformance testing [18,21].
An executable specification allows conformance checking,
i.e., assertion monitoring, to ensure that an implementa-
tion's behavior is allowed by the specification [5, 6]. Fur-
thermore, AsmL's COM connectivity means that it can be
used in a language-neutral setting: any language can be
used to implement the specification.

There are many areas that need to addressed in future
work. For example, adding automatic support to enforce
the kind of restrictions needed for refinement proofs [37]
orother proof tools.

THE ABCS OF SPECIFICATION: ASML,. Informatica 25 (2001) 517-526 525

Acknowledgements

We wish to thank the rest of our research group in Mi
crosoft Research, FSE. Clemens Szyperski, Egon Borger,
and Crispin Gosvvell reviewed earlier drafts of this work
and made many useful suggestions.

References
[1] Pierre America. • Inheritance and subtyping in a parallel object-

oriented language. In Jean Bezivin et al., editors, ECOOP '87, Euro-
pean Cimferenc.e on Object-Oriented Programming, Park, France,
pages 234-242, New York, NY, June 1987. Springer-Verlag. Lecture
Notes in Computer Science, Volume 276.

[2] M. Anlauff. XASM - An Extensible, Component-Based Abstract
State Machines Language. In Y. Gurevich and P. Kutter and M.
Odersky and L. Thiele, editor, Abstract State Machines: Theory and
Applications, volume 1912 of LNCS, pages 69-90. Springer-Verlag,
2000.

[3] Ralph Back, Anna Mikhajlova, and Joakim von Wright.
Class refinement as semantics of correct subclassing. Tech-
nical Report 147, Turku Centre for Computer Science,
December 1997. Available from w w w . t u c s . a b o . f i at
/ p u b l i c a t i o n s / t e c h r e p o r t s / T R 1 4 7 . h t m l .

[4] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A
Systematic Introduction. Springer-Verlag, 1998.

[5] Mike Bamett, Lev Nachmanson, and Wolfram Schulte.
Conformance checking of components against their non-
deterministic specifications. Technical Report MSR-TR-
2001-56, Microsoft Research, June 2001. Available from
http://research.microsoft.com/pubs.

[6] Mike Bamett and Wolfram Schulte. Spying on components: A run-
time verification technique. In Workshop on Specification and Veri-
fication of Component-Based Systems, OOPSLA 2001, pages 7-13.
Published as Iowa State Technical Report #01-09a, October 2001.

[7] Detlef Bartetzko, Clemens Fischer, Michael MOUer, and Heike
Wehrheim. Jass — Java with Assertions. Available from
h t t p : / / s e m a n t i k . i n f o r m a t i k . u n i - o l d e n b u r g . d e at
~ j as s / d o c / i n d e x . h t m l .

[8] H. Baumeister and A. Zamulin. State-Based Extension of CASL.
In W. Grieskamp, T. Santen, and B. Stoddart, editors, Integrated
Format Methods (Proceedings oflFMlOOO), volume 1945 ofLNCS,
•pages 3-24. Springer, 2000.

[9] Antoine Beugnard, Jean-Marc S6z6q\id, NOel Plouzeau, and
Damien Watkins. Making components contract aware. Computer,
32(7):38^4, July 1999.

[10] E. Borger and J. Schmid. Composition and Submachine Concepts
for Sequential ASMs. In P. Clote and H. Schvvichtenberg, editors,
Computer Science Logic (Proceedings of CSL 2000), volume 1862
of LNCS, pages 41-60. Springer, 2000.

[11] Don Box. Essential COM. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1998.

[12] Martin Bilchi and Emil Sekerinski. Formal methods for compo-
nent software: The refinement calculus perspective. In Proceed
ings ofthe Second Workshop on Component-Oriented Programming
(WCOP), June 1997. Available from f t p : / / f t p . a b o . f i at
/ p u b / c s / p a p e r s / m b u e c h i / F M f o r C S . p s . g z .

[13] A. Duncan and U. Holze. Adding contracts to Java with handshake.
Technical Report TRCS98-32, University of California at Santa Bar
bara, December 1998.

[14] Stephen H. Edvvards. A fraraework for practical, automated black-
box testing of component-based software. Softvvare Testing, Verifi
cation and Reliability, 11(2), 2001.

[15] Robert Bruce Findler and Matthias Felleisen. Contract soundness
for object-oriented ianguages. In OOPSLA 2001, pages 1-15. ACM
SIGPLAN, September 2001.

[16] Microsoft Research Foundations of Softvvare Engineering, 2001.
http://research.microsoft.com/fse.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass., 1995.

[18] Uwe Glasser, Vuri Gurevich, and Margus Veanes. Univer-
sal plug and play machine models. Technical Report MSR-
TR-2001-59, Microsoft Research, June 2001. Available from
http://research.microsoft.com/pubs/.

[19] James Gosling, Bili Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification Second Edition. The Java Series. Addison-
Wesley, Boston, Mass., 2000.

[20] Crispin Goswell, 2001. Personal communication.

[21] VVolfgang Grieskamp, Vuri Gurevich, Wolfram Schulte, and Margus
Veanes. Conformance testing with abstract state machines. Tech
nical Report MSR-TR-2001-97, Microsoft Research, October 2001.
Available from h t t p ; / / r e s e a r c h . m i c r o s o f t . com/pubs .

[22] Vuri Gurevich. Evolving algebra 1993: Lipari guide. In Egon
Borger, editor, Specification and Validation Methods, pages 9-36.
Oxford University Press, Oxford, UK, 1995.

[23] Vuri Gurevich, Wolfram Schulte, and Margus Veanes. Toward in-
dustrial strength abstract state machines. Technical Report MSR-
TR-2001-98, Microsoft Research, October 2001. Available from
http://research.microsoft.com/pubs.

[24] John V. Guttag, James J. Homing, S.J. Garland, K.D. Jones,
A. Modet, and J.M. Wing. Larch; Languages and Tools for For
mal Specification. Springer-Verlag, New Vork, NV, 1993.

[25] Anders Hejisberg and Scott Wiltamuth. C# lan
guage specification, version 0.22. Available at
http://msdn.microsoft.com/library/default.asp.

[26] R. Helm, 1. HoUand, and D. Gangopadhyay. Contracts: Specifying
behavioral compositions in object-oriented system. ACM SIGPLAN
Notices, 25(10): 169-180, October 1990. OOPSLA ECOOP '90 Pro
ceedings, N. Meyrowitz (editor).

[27] C. A. R. Hoare. An axiomatic hasis for computer programming.
Communications ofthe ACM, 12(10):576-583, October 1969.

[28] C. A. R. Hoare. Proof of correctness of data representations. Acta
Informatica, l(4):271-28l, 1972.

[29] H.B. Jonker. Ispec: Towards practical and sound interface specifica
tions. In IFM'2000, volume 1954 of LA^C ,̂ pages 116-135, Berlin,
Germany, November 1999. Springer-Verlag.

[30] Murat Karaorman, Urs Holzle, and John Bruno. jContractor: A re-
flective Java library to support design by contract. Technical Report
TRCS98-31, University of California, Santa Barbara. Computer Sci
ence., January 19, 1999.

[31] Donald E. Knuth. Literate programming. Computer Journal,
27(2):97-lll,May.l984.

[32] Gary T. Leavens. Modular specification and verification of object-
oriented programs. IEEE Sofnvare, 8(4):72-80, July 1991.

[33] Gary T. Leavens and Krishna Kishore Dhara. Concepts of behav
ioral subtyping and a sketch of their extension to component-based
systems. In Gary T. Leavens and Murali Sitaraman, editors, Foun
dations of Component-Based Systems, chapter 6, pages 113-135.
Cambridge University Press, 2000.,

[34] Barbara Liskov and Jeannette Wing. A behavioral notion of subtyp-
ing. ACM Transactions on Programming Languages and Systems,
16(6):1811-1841, November 1994.

[35] Bertrand Meyer. Eiffel: The Language. Object-Oriented Series.
Premice Hali, New Vork, NV, 1992.

[36] Bertrand Meyer. Object-oriented Software Construction. Prenfice
Hali, New Vork, NV, second edition, 1997.

http://www.tucs.abo.fi
http://research.microsoft.com/pubs
http://semantik.informatik.uni-oldenburg.de
ftp://ftp.abo.fi
http://research.microsoft.com/fse
http://research.microsoft.com/pubs/
http://research.microsoft.com/pubs
http://msdn.microsoft.com/library/default.asp

526 Informatica25 (2001) 517-526 M Barnett et al.

[37] Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis. Develop-
ing components in the presence of re-entrance. Technical Report
TUCS-TR-239, TUCS - Turku Centre for Computer Science, Febru-
ary 1999.

[38] Anna Mikhajlova and Emil Sekerinski. Ensuring correctness of Java
Frameworks: A formal look at JCF. Technical Report TUCS-TR-
250, TUCS - Turku Centre for Computer Science, March 1999.

[39] Carroll Morgan. Pmgramming froin SpecificatUms. Prentice Hali
International, Hempstead, UK, 1990.

[40] P. MUller, J. Meyer, and A. Poetzsch-Heffter. Making executable in-
terface specifications more expressive. In C. H. Cap, editor, JIT '99
Java-InfonnatUms-Tage 1999, Informatik Aktuell. Springer-Verlag,
1999. Available from h t t p : / / w w w . i n f o r m a t i k , f e r n u n i -
h a g e n . d e at / p i 5 / p u b l i c a t i o n s . h tml .

[41] G. Schellhom. Verification of Abstract State Machines.
PhD thesis, Universitat Ulm, Ulm, Germany, 1999. Avail
able from h t t p : / / w w w . i n f o r m a t i k . u n i - u l m . d e at
/ p m / m i t a r b e i t e r / g e r h a r d / .

[42] Neelam Soundarajan and Benjamin Tyler. Testing components. In
V/orkshop on Specification and Verification of Component-Dased
Systems. OOPSLA 2001, pages 1-6. Published as Iowa State Tech
nical Report #01 -09a, October 2001.

[43] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, New York, NY,
1998.

http://www
http://hagen.de
http://www.informatik.uni-ulm.de

Informalica 25 (2001) 527-532 527

Towards a rigorous and effective functional contract for components

F. J. Galan Morillo, V. Diaz and J. M. Ganete Valdeon.
Dept. of Languages and Computer Systems. Faculty of Computer Science. Av. de Reina Mercedes s/n. 41012. Sevilla.
Phone: 34 95 455 27 73, Fax: 34 95 455 71 39
E-mail: galanm@lsi.us.es

Keywords: abstract data type, component, design by contract, correctness, formal specification, constructive specification

Received:May 11,2001

The abstract data type (ADT) is the basis for the information-hiding design pt]ilosopby ttiat makes software
easier to analyze and understand, and that support maintenance and reuse. For these reasons, ADTs can
be used to whte contracts between specifiers that describe type reguirements in an abstract and declarative
way and programmers that implement components for these reguirements. The construction of components
from software specifications could not be a systematic activity if the specification language bas powerful
abstraction and expression capabilities. Therefore, it is very important to study different forms of type
specification in order to understand its programming repercussions. Tlie form of specification is essential
to consider a type specification as a rigorous and effective functional contract for components between a
specifier and a programmer

1 Introduction

The abstract data type (ADT) is the most promising pro
gramming idea to support software engineering. It is the
basis for the information-hiding design philosophy that
makes software easier to analyze and understand, and that
support maintenance and reuse. There are several formal
specification techniques and accepted theories of ADT cor
rectness (Ehrig & Mahr 1985, Ehrig & Mahr 1990, Wirsing
1990). On the other hand, different methods have been pro-
posed to the elaboration of a program in some systematic
manner starting from a specification. In the early days, im
perative program derivation was one of the first area of ac-
tive research, mainly focusing on manual program deriva
tion (Dijsktra 1976). Also, other programming paradigms
were targets of derivation methods (i.e., functional and
logic programming paradigms (Devilie & Lau 1994). Re-
cently, synthesis research is focusing mainly on automatic
or semi-automatic methods (Fribourg 1993, Billington &
Dromey 1996, Flener 1995, Wiggins et al. 1992, Avellone
et al. 1999). However, these methods are not yet suffi-
ciently applied in industry.

The ADT can be considered as a contract between a
specifier which describes type requirements in an abstract
and declarative way and a programmer which implements
these requirements. The contract has two opposite faces.
From a specifier point of vievv, expressive languages are
needed in order to construct specifications in a effective
way. However, from a programmer point of vievv, the im-
plementation model imposes many restrictions and then
programming from abstract and declarative specifications
could be an ineffective activity. Balancing these opposite
points of view is needed in order to get effective contracts
(Galan et al. 1999). Type specifications can be done in

« t y p e »
T

nocc (T, Natural): Natural
perm(T) : T

1\
nocc(e.Natural,l:T): Natural

The result establishes the number of occurrences of an element e in 1.

penn(l:T) :T

The result establishes a permutation of 1.

Figure 1: Non-constructive type specification.

many different forms. Some of these forms can be classi-
fied as non-constructive forms. There is not a clear rela-
tionship between non-constructive types and their respec-
tive implementations. Figure 1 represents an example of a
non-constructive type. From a programmer point of vievv,
such characterizations represent non effective contracts be-
cause;

1. The programmer could consider that this kind of spec
ifications does not assist him to implement a type:

(a) Which data models has the specifier in mind?
The specifier supposes that the name T is suffi-
cient to characterize data models. In this way,
the specifier consider a default knovvledge in
the contract but, probably, this knovvledge is not
considered by the programmer.

(b) The programmer can consider that some opera-
tion has a non adequate characterization. For ex-
ample, in the perm operation, vvhat does "The re-

mailto:galanm@lsi.us.es

528 Informatica 25 (2001) 527-532 F.J.G. Morillo et al.

sult establishes a permutationof V mean?. Prob-
ably, the programmer needs a more detailed ex-
planation in order to understand the semantics of
perm.

2. In addition, the programmer can consider that this
kind of specifications does not assist him to test imple-
mentations because he cannot construct tests without
considering his own data representation decisions.

Therefore, it is important to search for new kinds of type
specifications in order to write rigorous and effective func-
tional contracts for components between specifiers and pro-
grammers.

The work is organized as follovvs. Section 2 establishes
a loose classification for different forms of operation spe
cification and their repercussions from a programmer point
of view. Section 3 analyzes the reasons why a type spe
cification considered as a rigorous contract is difficult to
carry out. Section 4 establishes a specification discipline to
overcome the problem of writing formal and effective type
contracts. Finally, we establish the conclusions.

« t y p e »
T

0mpty O ; T
conc(Natural,T): T
=(T,T)
nocc(T,Natura!): Natural
perm(T): T

« t y p e »
Natural

O O : Nalural
s(Nalural): Natural
=(Naturai,Natural)

nocc(e;Natural,t:T): Natural

The result establishes the number ol
occurrences of an element e in 1.

perm(l:T) :T

The result establishes a permutation of!.

DATA INFORMATION

0(), s(Natural) :Natural data generators

00 = 00
not s(x) = 0()
s(x)=s(y)iff ()(= y)

empty{), conc(Natural,T) :T data generators

eiTipty() = empty{)
not conc(x,Y) = empty()
conc(x,Y}=conc(v,W) iff (x = v and Y = W)

Figure 2: Reachable type.

for a programmer. This section analyzes the reasons why a
type specification considered as a rigorous contract is diffi
cult to carry out.

2 Preliminary Definitions

This section establishes a definition for Abstract Data Type
(ADT). A loose classification for different forms of opera
tion specification is made in relation to their repercussions
from a programmer point of view.

A Data Type is a collection of data domains, designated
basic data items, and operations on these domains such that
ali data items of the data domains can be generated from
the basic data items by use of the operations. Moreover the
data domains are assumed to be countable.

An Abstract Data Type (ADT) 7 is a class of data types
which is closed under renaming of data domains, items and
operations and hence independent of representation.

A Functional Part ofa Component C for an abstract data
type 7" is a realization (implementation) of (the semantics
of}T.

We say that Specop is a.pre/post specification for an oper
ation Op in an ADT T iff it describes the behavior of Op in
a declarative pre/postcondition style. Specop is called cons-
tructive if there exists a clear relationship between Specop
and its implementation. Specpp is called recursive if in-
stances of Op are used in Specop postcondition.

An ADT T is called non-constructive if it does not have
any data Information or it has some non-constructive oper
ations.

3 Towards Effective Contracts
From a programmer point of view, the type specification in
figure 1 represents a loose contract because there is not data
Information and there is not a clear relationship between
operation specifications and their respective implementa-
tions. A more constructive description would be desirable

3.1 Reachable Types and Testing

It is important, from a programmer point of view, that spec
ifications assist in testing activities. Specifications such as
the one in figure 1 do not assist in such sense because pro-
grammers cannot construct tests without considering their
own data representation decisions. Hence, reachable types
constitutes the first specification restriction needed to ob-
tain types amenable to be tested. Reachable types are ob-
tained by adding a set of function symbols for generating
data.

Atype 7 is reflc/jfl/j/eiffeachelementof thedomainof T
is represented, at ieast, by a ground term (i.e., term vvithout
variables). The set of function symbols in 7 will actasdata
generators.

In addition, an identity relation = betvveen data terms is
included for each type specification. These extensions are
important in order to avoid rigid specification contexts and
to maintain the same (abstract) data model in the minds of
specifiers and programmers.

For example, in figure 2, we shows a reachable type T.
Data information in T is represented by data generators
{empty,conc}. Therefore, and considering this informa
tion, a programmer will be able to define tests for opera
tions in T.

3.2 Understanding Operation Specifications

An important question here is to define the reasons why a
specification is difficult to program. For example, SpeCpenm
in figure 1, is difficult to program because its semantics is
estabiished by the phrase "The result establishes a permu
tation ofr. But the name of the operation coincides vvith
this explanation and there is not any other interesting in
formation. Thus, we conclude that SpeCperm is not effective

TOWARDS A RIGOROUS AND EFFECTIVE FUNCTIONAL. Informatica 25 (2001) 527-532 529

« t y p e »
T

empty{): T
conc(Natural,T): T
=(T.T)
nocc(T,Natural): Natural
perm(T): T

use
I

« t y p e »
Natural

O O: Natural
s(Natural): Natural
=(Natural.Natural)

DATA INFORMATION

empty(), conc(Natural,T) :T data generators

empty() = empty()
not conc(x,Y) = empty()
conc(x,Y)=conc(v,W) iff (x = v and Y = W)

OPERATION INFORMATION

nocc(e:Natural,l:T): Natural
pre: true
post: I = empty{) implies

result = O and
I = conc(x,Y) and not x = e implies

result = nocc(e,Y) and
I = conc(x,Y) and x = e implies

result = s(nocc(e,Y))

pernn(l;T) :T
pre: true
post: forAII(e:Natural,resuit:T |

nocc(e,l) = nocc(e,result))

DATA INFORMATION

0(), s(Natural) :Natural data generators

00 = 0()
not s{x) = 0()
s(x)=s{y)i{f (x = y)

some elements in Post{^xiT .'.^Xn, yi,...,y„„ result) are de-
fined on the Op symbol. (e.g., SpeCnocc ' " figure 3). We
consider only well founded recursive specifications.

An explicit pre/post specification is a non-recursive
pre/post specification (e.g., Specpem in figure 3).

A non-constructive pre/post specification is a pre/post
specification where some quantified variables v, with v 6
{xi,...,Xn,yi,..;ym,result] and v ^ {xi,...,Xn], are un-
bounded (e.g., Specpem in figure 3 presents the variables e
and result as unbounded variables). A constructivepre/post
specification is a specification where each quantified vari-
able v, with v G {xi, ...,Xn,y\., ...,ym, result] and v 0
{AI, ...,Xn], is bound by identity (e.g., Spec„„,:,: in figure 3
binds the variables x and Y to the variable / and the variable
result to the terms O, nocc(e, Y) and s{nocc{e, Y))).

Constructive pre/post specifications represent an effec
tive setting to construct implementations and to test imple-
mentations against their formal specifications. For exam-
ple, SpeCnocc could be implemented as follows:

Figure 3: Formal ADT.

from a programmer point of view. On the other hand, the
formal specification Spec„„cc., in figure 3, has the follow-
ing intuitive meaning: "The number of occurrences of any
natural element e in a T-terin empty() is ecjual to zero. If
the number of occurrences of e in Y is equal to n then the
number of occurrences in a T-term of the form conc{e, Y)
is ecjual to s{n) (i.e., n + 1). Ifthe number of occurrences
of e in Y is equal to n then the number of occurrences in
conc{x, Y) with x ^ e is n". SpeCnocc represents an ab-
stract and expressive description oidi set ofprograms which
computes occurrences of natural numbers in 7-terms but
its form is closed to the structure of a program and then
we tend to consider Specn„cc as a constructive specifica
tion. Hovvever, SpeCpem represents also an abstract and ex-
pressive description of a set ofprograms vvhich computes
7-permutations but its form is not closed to the structure
of a program and then we tend to consider Spec,,enn as a
non-constructive specification.

K pre/post specification Specop for an operation Op is an
expression of the form:

Op{xi : T^^,...,x„ : T^,,) : ' result

pre : Pre{xi, ...,x„)
post : Post{xi ,...,x„,yi,...,ym, result)

where Op{xi : Tx^,...,Xn : T^,,) : r^.,«;; is the operation
signature, Pre{xi, . . . ,A„) is a first order formula called pre-
condition and Post{xi, ...,Xn,yi, •••,)'«,, result) is a first or
der formula called postcondition. The symbol Op is called
the defined operation.

A pre/post specification is called total iff Pre(xi, ...,x„)
is equivalent to true. A pre/post specification is called par-
tial iff Pre{xi, ...,Xn) is not equivalent to true. A recur
sive pre/post specification is a pre/post specification where

nocc{e : Natural, I: T) : Natural
pre : true
if (/ = empty{)) then return 0;

else if (/ = conc{x, Y) and not x = e) then
return nocc{e, Y);

else return s{nocc{e, Y));
endif

endif

post : I = emptyO implies result = O and
I — conc{x, Y) and not x — e implies

result = nocc{e, Y) and
I — conc{x, Y) and X = e implies

result = s{nocc{e, Y))

The realization of the functions empty and cone and
the identity = are needed to complete the implemen-
tation of SpeCnocc- Hovvever, this constructive step is
unnecessary if the programmer only want to test al-
gorithmic properties. For example, the programmer
could select the set of "abstract" data D = {empty,-
conc{0,ernpty),conc(0,s{0),empty),...} to be tested. For
each ; 6 D, a symbolic computation is made from Spec„„f:r.
and then a concrete computation is made from its imple-
mentation. From a programmer point of view, an imple-
mentation is not well constructed if tests, at implementa-
tion level, do not coincide with tests at specification level.

Non-constructive pre/post specifications do not repre
sent an effective setting to construct and test implementa
tions. For example Specp^rm is difficult to program because
its postcondition has some unbounded quantified variables
(i.e., the variables e and result) and there is not a clear way
(i.e., terminating way) to interpret these variables in imple-
mentation terms.

530 Informatica 25 (2001) 527-532 F.J.G. Morilloetal.

4 Writing Effective Contracts

We propose a form of specification based on stratification
and redundancy. This combination balances between ex-
pression capabilities and proper levels of constructivism.

Let OP be the set of operation symbols declared in the
ADT T. Let Specop be the pre/post specification of any
Op S OP. Let Bodyop be the set of operation symbols
in the postcondition of Op (e.g., in figure 3, Body„„cc =
{nocc, —} and Bodyperm — {nocc, =}).

1. If T does not include use dependencies (e.g. see use
relations in figures 2,3 and 4) from other types then T
is stratified iff there exists a mapping level from OP to
the set of natural numbers such that

(a) For each Op S OP, level{Op) > level{s), for aH
s G Bodyop

(b) Each recursive Op € OP is constructive.

2. If T includes use dependencies from other types then,
let TU be the set of used types in T and let lOP be
the set of imported operations from types in TU. T is
stratified iff

(a) Each type in TU is stratified and

(b) There exists a mapping level from lOP U OP
to the set of natural numbers such that for each
Op e lOP, level{Op) = O and for each Op S
OP, level(Op) > level{s), for aH J 6 Bodyop.

(c) Each recursive Op € OP is constructive.

In figure 3 we show a stratified ADT.

The stratification of an ADT can be represented graphically
by means of a dependency graph. Let Opi and Op2 be two
operations defined in an ADT T. We say Opi depends upon
Op2 in T iff Op2 € Bodyopi. In the dependency graph,
an operation symbol is represented by a node and a de-
pendency by a directed are. From a programmer point of
view, a stratified ADT induces a method to construct im-
plementations. The levels in the stratified ADT establish
an implementation order between operation specifications.
To follow this order is not mandatory but constructivism is
reinforced if we construct implementations in a bottom-up
way. For example, from the specification in figure 4, a pro
grammer would start with the implementation of nocc and
then would continue with the implementation ofpenn.

4.1 Incremental Writing of Contracts

We propose a method to guide the writing of stratified
ADTs. The first step in the vvriting of contracts is to
propose reachable types. This step is important in order
to have a clear and common data domain betvveen speci-
fier and programmer. In our example, we would start the
writing of T by establishing data Information sections for
Natural and T types respectively (see figure 2). The next

steps will establish a kernel sufficiently expressive. Usu-
ally, at these steps, operations \vith recursive and cons
tructive specifications are written. These operations are
constructed from identity relations and operations previ-
ously written. In our example, we would continue the writ-
ing of T by including Specnocc (see figure 3). When a suffi-
ciently expressive kernel has been established, we propose
the use of explicit specifications for the remaining specifi
cations. In our example, we vvould continue the vvriting of
T by including Specpenn (see figure 3). This method is not
mandatory but we consider that it constitutes an assistance
to the writing of stratified ADTs. In figure 4 we shows a
formal ADT T with stratification information.

4.2 Eiiminating Unbounded Variables

Subsection 3.2 established unbounded variables as the ma
jor reason of non-constructivism. In some situations, it is
possible to rewrite specifications by reducing the number
of unbounded variables and preserving semantics. This ac-
tivity is not systematic but the specifier must consider it.
For example Specperm has two unbounded variables. The
specifier would revvrite the specification in the following
form:

penn{l : T) : T
pre : true
post: forall{a : Natural in I,

b : Natural in result, result : T |
nocc{b, 1) = nocc{b, result) and
nocc{a, 1) = nocc{a, residt))

This rewriting preserves semantics and, in addition, it as-
sists programmers to implement (the functional part oO
components because the revvritten specification has result
as the only unbounded variable. The programmer must
consider only one unbounded variable in order to construct
/?e/7«-behavior examples. Hence, these "opportunistic" de-
cisions enable programmers to understand specifications
and to construct tests for implementations.

4.3 Augmenting Constructivism by means
of Redundancies

Incremental writing of ADTs and reduction of unbounded
variables are not sufficient. Regarding the bibliography
about systematic program development, usually, construc
tivism is obtained by adding new formulas to the speci
fication. For example, invariants and vveakest precondi-
tions constitutes a well known formal technique to design
iteration-based implementations from pre/post specifica
tions (Billington & Dromey 1996, Dromey 1988). Follovv-
ing these ideas, we propose a particular method based on
symbolic evaluations. A symbolic evaluation of an opera
tion represents an abstract execution (usually, developed by
a constructive proof (Fribourg 1993, Wiggins et al. 1992))
vvith respect to a set of data values. Such evaluations are

file:///vith

TOWARDS A RIGOROUS AND EFFECTIVE FUNCTIONAL. Informalica 25 (2001) 527-532 531

« t y p e »
T

empty () : T
conc(Natural,T): T
=(T,T)
noccCT.Natural): Natural
perm(T): T

« t y p e »
Natural

O O: Natural
s(Natural): Natural
=(Natural,Natural)

Level2 t \

Level 1 I \

DATA INFORMATION I^

empty(), conc(Natural,T) :T data generators

empty() = empty()
not conc(x,Y) = empty()
conc(x,Y)=conc(v,W) iff (x = v and Y = W)

OPERATION INFORMATION

nocc(e:Natural,l:T): Natural
pre: true
posl: I = empty() implies

resuH = O and
I = conc(x,Y) and not x = e implies

result = nocc{e,Y) and
I = conc(x,Y) and x = e implies

result = s(nocc(e,Y))
perm(l:T) :T
pre: true
post: (orAII(a:Natura[in I, b in result,

result:T|
nocc(b,l) = nocc(b, result)

and
nocc(a,l) = nocc(a, result))

(1) perm(empty())=empty()
implies true

(2) perm(ennpty{))=conc(x,Y)
implies false

(3) perm(conc(x,Y))=empty{)
implies false

(4) perm(conc(x,Y),conc(x,W))
implies perm(Y,W)

(5) perm(conc(x,Y),conc(y,W)) and not x=y
implies

nooc(y,Y)=s(nocc(y,W))
and

nocc(x,W)=s(nocc(x,Y))

DATA INFORMATION

0(), s(Natural) :Natural data generators

00 = 00
not s(x) = 00
s(x)=s(y) iff (X = y)

Figure 4: ADT specification with stratification and redun
dant information

duced from redundancies for the relation perm:

perm{l : T) : T
pre : true
if (/ = empty{)) then return empty{); from (1)
else if (/ = conc{x, Y)) then

return conc{x,perm{Y)); from (4)
else ... from (5)
endif

endif
post: forall{a : Natural in /,

b : Natural in result, result : T \
nocc{b,l) = nocc{b, result) and
nocc(a,l) — nocc{a, result))

The programmer has an incomplete but useful implemen-
tation frame. The rest of the implementation can be estab-
lished within this frame, reducing thus the search space.
The programmer is able to continue the implementation
in a top-down manner identifying different situations and
programming each of these situations as a separate pro
blem. For example, the programmer would only center its
efforts on solving situations such as penn{conc{x, Y)) =
conc{y, W) considering notx = y.

Once the (functional part of the) component has been
constructed, interfaces are used to characterize its ser-
vices. Only functional properties are required by its users.
Therefore, stratification and redundant informations are not
needed for interface characterizations.

5 Conclusions

added to the specification in order to establish construc-
tive information. For example, a symbolic evaluation of
the pen« operation poses the following questions:

(!) perm{empty{)) = empty{)'!
{2)perm(empty{)) — conc{x, Y)l
{3) penn{conc{x, Y)) — empty{)l

{A)penn{conc{x, Y)) = conc{x, W)7
(5)perm{conc{x, Y)) = conc{y, VV)?

In order to answer these questions we execute Sperm in ab
stract terms. An important thing here is the form the speci-
fier answers these questions. We consider that clausal form
constitutes a kind of redundancy which assists program-
mers in operational terms. Figure 4 shows an example of
ADT specification with redundancies in clausal form. This
information is redundant and, probably the programmer
could deduce it from the specification but we consider that
the specifier is a qualified person to develop this task be-
cause he is able to bound interesting redundancies needed
to induce recursions or iterations.

The following incomplete implementation could be in-

We propose a particular form of type specification based on
constructive terms. This form is essential in order to con
sider ADTs as rigorous and effective contracts for (func
tional parts of) components betvveen specifiers and pro-
grammers. ADTs can be scen as softvvare contracts from
two different points of view. From a specifier point of view,
expressive languages for describing ADTs are needed in or
der to construct specifications in a effective way. Hovvever,
from a programmer point of view, implementation models
impose many restrictions and then programming from ab
stract and expressive specifications could represent an in-
effective activity. To overcome this problem, we search
for the right balance between these two opposite positions.
For us, a proper balance requires some mutual concessions.
For example, (a) specifiers and programmers are bound to
unique and abstract data models. (b) We do not want con-
siderable restrictions on the form of specification. There
fore, we cannot take advantage of the strengths of previ-
ous formal characterizations (e.g., equational characteriza
tions). (c) An effective contract must not only describe, in
abstract terms, what must be implemented but, in addition,
it must advise in "abstract terms" how to do it (e.g., stratifi
cation information and redundancies). Our work represents
an attempt to establish a specification method not only well
founded but effective. At this moment, much work remains

532 Informatica 25 (2001) 527-532 F.J.G. Morillo et al.

to be done in order to consider these kinds of specifications
as the basis for describing rigorous and effective contracts
for (functional part of) components. Our work represents
only a starting point to do it.

References

[I] Avellone A., Ferrari M. & Miglioli P. (1999) Synthesis
of Programs in Abstract Data Types. Proceedings ofthe
LOPSTR-98 Workshop. p. 81-100.

[2] Billington D. & Dromey, G. (1996) The Co-invariant
Generator: An Aid in Deriving Loop Bodies. Fonnal As-
pects of Computing 4, p. 108-126.

[3] Deville, Y. & Lau K-K. (1994) Logic Program Synthe-
sis. J. Logic Programming, 19/20, p. 321-350.

[4] Dijsktra, E. W. (1976) A Discipline of Programming.
Prentice-Hall, Englevvood Cliffs, N.J.

[5] Dromey R. G. (1988) Systematic Program Develop-
ment. IEEE Transaction ofSoftvvare Engineering. 14(1)
p. 12-29.

[6] Ehrig H. & Mahr B. (1985) Fundamentals of Alge-
braic Specification 1. Equations and Initial Semantics.
Springer-Verlag.

[7] Ehrig H. & Mahr B. (1990) Fundamentals of Algebraic
Specification 2. Module Specifications and Constraints.
Springer-Verlag.

[8] Flener, P. (1995) Logic Program Synthesis from In-
complete Information. Kluwer Academic Publishers.

[9] Fribourg, L. (1993) Extracting Logic Programs that
Use Extended Prolog Execution and Induction. Con-
structing Logic Programs, Wiley & Sons.

[10] Galan E J., Caiiete J. M. & Troyano J. A. (1999)
On the Formal Translation of Object Oriented Software
Specification: A Balanced Approach. Proceedings ofthe
V International Conference ISAS'99 IEEE Computer
Society.

[II] Wiggins G., Bundy A., Kraan L & Hesketh J. (1992)
Synthesis and Transformation of Logic Program from
Constructive, Inductive Proof. Proceedings ofthe LOP-
STR'9J. p. 27-45.

[12] Wirsing M. (1990) Algebraic Specification. Hand-
book of Theoretical Computer Science. Formal Models
and Semantics Elsevier, p. 677-780.

Informatica 25 (2001) 533-543 533

Approach to component based synthesis of fault tolerant software

Behrooz Parhami
University of California, Santa Barbara, CA 93106, USA
Phone: +1 805 893 3211, Fax: +1 805 893 3262
parhami@ece.ucsb.edu

Keyvvords: components, design diversity, fault tolerance, multichannel computation, multiversion softvvare, software
reliability, safety, software reuse, weighted voting.

Received: June 6, 2001

N-version programming (NVP) and acceptance testing (AT) are established methods for obtaming
highly reliable residts from imperfect software. In NVP, several program modules are executed
independendy and thefmal result is derived by voting on the module outputs. In AT (as embodied, for
example, in the recovery-block construct), outputs of a program module are subjected to an acceptance
test and in the event offailing the test, alternate modules are invoked, until a module produces results
that pass the test. Various symmetric combinations ofNVP and AT techniques have also been suggested.
We have found that a more general view, allowing the insertion of ATs at arbitrary points within a
suitably constructed multichannel computation graph can lead to higher reliability and/or greater cost-
effectiveness compared to the previously envisaged hybrid schemes siich as consensus recovery blocks,
recoverable N-version blocks, and N-self-checking programs. Accordingly, we introduce MTV graphs,
and their simplified data-driven version called DD-MTV graphs, as component-based frameworks for
the creation, representation, and analysis of hybrid NVP-AT schemes. MTV graphs model variations in
fault-tolerant softvvare architectures built of computation module (M), acceptance test (T), andvoter (V)
components. Following the definition of (DD-)MTV graphs, we present several examples of hybrid
NVP-AT schemes, as instances of fault-tolerant sofiware based on our component-based approach, and
quantify the resulting reliability improvements. We show, for example, that certain, somewhat
asymmelric, combinations ofM, T, and V components lead to higher reliabilities and/or lower cost than
previously proposed symmetric arrangements. We conclude that our component-based approach
facilitates design space exploration for fault-tolerant softM>are and leads to reliability improvements due
to the double effect of architectural optimization and component refinement afforded by reuse.

1 Introduction
Applications of highly dependable computer systems are one of two distinct paradigms: Voting on multiple
no longer limited to exotic space exploration and defense versions and acceptance testing of results [13], [24].
systems. A multitude of information and control systems Following the success of hardvvare and data
in avionics, transportation, transaction processing, and replication methods in tolerating physical faults in
process monitoring also rely on existence of ultrareliable computing systems, the use of N-Version Programming
computational resources [32], [43]. With the continually (NVP) was proposed to allow tolerance of softvvare
increasing complexity of hardvvare and softvvare design flavvs [3], [8]. In NVP, several program modules
modules, and the attendant impossibility of implementing are executed independently and the final result is
perfect (defect- or fault-free) components, the use of obtained by voting on the module results. Voting, as used
multi-channel computations vvith design diversity [2], here, covers a wide variety of techniques in terms of
[16], [17], [23], [51] has emerged as a practical and cost- sophistication, tlexibility, and computational complexity
effective approach. [15], [30], [33] and need not be implemented through

Diverse multichannel computations take advantage simple matching and majority rule. Several other terms,
of the property that, vvith adequate testing, malftinctions such as "consensus" [3] and "adjudication" [9] have been
caused by residual design defects are rare and occur only used to describe the decision process that computes an
for highly unusual sets of input conditions. It is thus output based on possibly inexact or incomplete results
likely that malftinctions of independently constructed provided by multiple redundant modules.
modules, based on the same initial specifications, occur An important objection to NVP is that independence
for different input states. This design diversity approach of design flavvs in multiple versions cannot be guaranteed
has been found useful for hardvvare subsystems [45] and and that commonly used specification and softvvare.
for data [1] as vvell, but its primary application area is in design techniques may lead to related faults in
constructing highly reliable softvvare systems based on independently designed versions [21]. Such related faults

may cause identical or similar errors and thus lead to an

mailto:parhami@ece.ucsb.edu

534 Informatica 25 (2001) 533-543 B. Parhanii

incorrect voter output. Hovvever, this is a criticism of
dependability analyses for NVP and the attendant
quantitative claims of reliabiiity improvement. The
usefulness of the NVP approach has never been in doubt.
In some contexts, diversity is more readily ensured [35].
Also, attempts have been made to model the effects of
correlated failures (e.g., [12], [25], [27]).

The technique of acceptance testing, e.g. as proposed
in the recovery-block scheme [38], [39] is also based on
design diversity. An acceptance test is an application-
dependent routine that either accepts a result or declares
it incorrect/suspect. Our confidence in an "accepted"
result being actually "correct" depends on the
thoroughness (coverage) of the acceptance test and its
own reliability. ATs come in many different forms; from
simple reasonableness checks to more compIex, high-
coverage validators. Assuming that the correctness of
module result can be judged fairly accurately by applying
an AT, alternate modules can be invoked sequentially in
some specified order until one has produced a result
passing the AT. This result is taken to be correct.

The main problem with redundancy techniques that
rely solely on AT for validating a result is the difficulty
of designing good acceptance tests that are both simple
and thorough. Certain computations are easily checked
through mathematical properties that relate the outputs to
the inputs or by \vay of inverse computations where they
exist [6]. In a great majority of cases, hovvever, the only
sure way of checking result validity with high confidence
is to simply recompute using algorithms and/or hardvvare
with diverse designs or operational characteristics.

Reliability evaluation for NVP and AT schemes has
been presented in [5], [11], [23], [37], [41], [50], [52].
Linguistic constructs for describing adjudication and
exception handling schemes for multi-version programs
have been proposed in [26]. Kim et al [18], [19], [20]
have studied architectures for, and design issues
pertaining to, implementing a modified form of the
recovery block scheme in a distributed environment. The
resulting distributed recovery block (DRB) scheme ušes
concurrent execution of try blocks to allow fast forvvard
recovery. Dugan and Lyu [10] discuss the relative merits
of DRB, NVP, and NSCP (see the next paragraph).

Several groups have tried to combine NVP and AT.
One such attempt is consensus recovery blocks (CRB) in
which n versions are executed and their results are
compared [40]. If there is agreement between two or
more versions, then their common result is assumed
correct and used. Otherwise, the n disagreeing results are
subjected to an AT is some prespecified order and the
first to pass the test is taken as the correct output.
Another čase is recoverable N-version blocks (RNVB) in
which ATs are run on module outputs and only those that
pass are provided to the voter [14]. This approach has
also been suggested in [5], [16] and, under the name "N
self-checking programming" (NSCP), in [22], [24].
Conceptually related to the efforts above, but different in
terms of components and implementation, is processor-
data-check method, and its graph-theoretic formulation,
in algorithm-based fault tolerance [4], [44], [36].

CIearly, these are just examples of the ways in which
NVP and AT approaches can be combined. CRB
essentially applies NVP (vvith relaxed 2-out-of-tt voting)

and AT schemes sequentially and one at a tirne. Because
no AT is applied in the čase of, say, two agreeing results,
there is some chance of an erroneous output being
propagated. Furthermore, a common AT is assumed and
design diversity is not applied to the AT. Both RNVB
and NSCP approaches envisage applying ATs uniformly
to ali versions. This leads to an increase in complexity
since ATs may essentially be duplicates of computational
modules. We have found that a more general view,
allovving the insertion of ATs at arbitrary points within a
suitably constructed multichannel computation graph can
lead to higher reliability and/or greater cost-effectiveness
compared to the previously envisaged hybrid schemes
such as consensus recovery blocks, recoverable N-
version blocks, and N-self-checking programs.

Accordingly, we introduce MTV graphs, and their
simplified data-driven version called DD-MTV graphs,
as component-based framevvorks for the creation,
representation, and analysis of hybrid NVP-AT schemes.
MTV graphs model variations in fault-tolerant software
architectures built of computation module (M),
acceptance test (T), and voter (V) components [34].
FolIoNving the definition of (DD-)MTV graphs, we
present several examples of hybrid NVP-AT schemes, as
instances of fault-tolerant softvvare architectures
developed based on our component-based approach, and
quantiiV the reliability improvements they achieve. We
shovv, for example, that certain, somevvhat asymmetric,
combinations of M, T, and V components can lead to
higher reliabilities than previously proposed symmetric
arrangements having comparable or higher complexities.
We conclude that our component-based approach
facilitates the exploration of the design space for fault-
tolerant software and leads to reliability improvements
due to the double effect of architectural optimization and
component refmement afforded by reuse.

The rest of this paper is organized as follows.
Section 2 contains basic defmitions and assumptions as
well as examples of a more general hybrid NVP-AT
schemes in order to motivate the subsequent discussion.
Sections 3 and 4 analyze NVP schemes in which 1 or k
of the n versions, respectively, have been replaced by
ATs. Section 5 deals vvith an example of more general
combining schemes. Section 6 examines the effect of
correlated failures. Conclusions and directions for further
research appear in Section 7.

2 Terminology and assumptions
The question that vve have set out to ansvver is hovv to
combine the techniques of NVP and AT in an optimal
way in order to achieve the best possible results. More
specifically, our ultimate goal is to be able to combine
diverse components (softvvare modules, acceptance tests,
voting algorithms) in a systematic way in order to
maximize the correctness probability of the output vvith a
given overall complexity or to achieve a desired
correctness probability vvith minimal cost.

Unfortunately, in vievv of difficulties in estimating
reliability and cost parameters, except in very limited
cases [42], these problems are currently intractable vvhen
posed in their full generality. So, in this initial study, vve
endeavor to obtain results for a rather limited set of more
specific questions vvith several simplifying assumptions.

COIVIPONENT-BASED FAULT-TOLERANT SOFTWARE... hifomiatica 25 (2001) 533-543 535

Our hope is that with further research, the domain can be
broadened and the assumptions gradually relaxed.

Here are our main objectives for this paper:
1. Demonstrate that certain novel, somewhat

asymmetric, arrangements of modules, acceptance tests,
and voters could be more reliable than earlier proposals.

2. Find optimality results in certain special cases;
e.g., when the arrangement contains a single acceptance
test or only one level of voting.

3. Provide examples of how the models and
techniques used to analyze the special cases can be
extended to deal with more complicated arrangements.

4. Generale interest in further systematic studies of
the methodology, and tradeoff issues, for component-
based synthesis of fault-tolerant software.

The following definitions and assumptions are
needed in our discussions and analyses.

2.1. Definition - MTV graph: An MTV (Module-
Test-Voter) graph is a directed acyclic graph with one
"In", one "Out", and possibIy one "Error" node, plus any
number of nodes of three other types: Modules (M),
acceptance tests (T), and voters (V).

M: Computes a result based on its inputs and sends
it to a T or V node or to Out.

T: Accepts its input and forwards it or rejects it and
activates some M or T nodes.

V: Forwards the result of weighted plurality voting
or activates some M or T nodes.

The inner vvorkings of M and T components are
application-dependent. We make no assumption about
these parts except that they have known, statistically
independent reliability parameters (see 2.2-2.4). Voter
components are more formally described in Def 2.5. The
nodes are connected by directed edges representing data
transfers and controls. In diagrams, forvvarding of data
(the "P" output of an AT or the voting result from a V
node) is represented by solid edges while activation
controls (the "F" output of an AT or an indecisive voting
outcome) are represented by dotted edges. •

Figures 1 and 2 contain examples of MTV graphs
whose full meanings will become clear following the
introduction of several more assumptions and definitions.

2.2. Assumption - Reliability parameters of
computation modules: Each computation module M,
produces a result which is correct with fixed probability
qi and incorrect with fixed probability/>,•, uniformly over
its input space. In čase g, + p, < 1, the module may be
viewed as (partially) self-checking or fail-safe, abstaining
from producing any result with probability 1 - g, - pi. In
the rest of this paper, we assume gi+p/ = 1. •

Assumption 2.2 is controversial in that it is very
difficult, if not impossible, to accurately estimate the
reliability gi of a software module [7]. We justily this
assumption by noting that any system-level reliability
analysis must be based on the reliability parameters of
the components used. Accurate reliability estimates will
be available with greater ease as we gain experience with
the design and use of multiversion software. A
Component-based strategy is helpful in this regard
because component reuse fosters the gathering of more
accurate reliability and performance data. Additionally,
when coinparing various arrangements of modules and
tests, occasionally we obtain results indicating that one

scheme is better than another for a wide range of
parameter values or even for aH values of a certain p,.
Hence, such comparative evaluations are less sensitive
to, or totally independent of the availability of accurate
estimates for the /7,s. The comments above apply to
Assumption 2.3 as well.

2.3. Assumption - Reliability parameters of
acceptance tests: A correct result passes an acceptance
test Ti (outgoing edge labeled "P" is taken) with fixed
probability q'i and fails it (outgoing edge "F" is taken)
with fixed probability p',, uniformly over the space of
correct inputs. Similarly, T,- rejects an incorrect result
with fixed probability g"/ and accepts it with fixed
probability /?",, uniformly over the space of incorrect
inputs (note that in aH definitions, g,s are close to 1
Nvhereas /7,s are near 0). When g) +p'i< 1 or g') +p"i< 1,
the AT is vievved as (partia!ly) self-checking or fail-safe,
abstaining from judging an input with probability I - g',
-p'i for correct inputs and 1 - g"i -p"-, for incorrect ones.
Henceforth, we assume (7',+/?',— g-",+/?",= 1. •

The reason we do not start by assuming g'i = g", is
that ATs behave asymmetrically with respect to correct
and incorrect inputs. An AT that is itself defect-free,
always accepts a correct input. Thus, p'i is typically small
and is related to the probability of a defect in the AT
design. On the other hand, even a defect-free AT may
accept an incorrect input due to imperfections in the
testing algorithm (imperfect coverage). Hence,/J",- lumps
together two sources of errors: imperfect coverage and
defective design. We typically have /?", > p'i (perhaps
even, p", » /?',) for simple, low-complexity ATs. For a
more comprehensive AT (e.g., one that duplicates the
computation and decides by comparing the two values),
coverage can be very high or even perfect. In such cases,
g'i and q"i are comparable, though not necessarily equal.

2.4. Assumption — s-independence of module and
ATfailures: Each M and each AT fails s-independently
of other Ms and ATs, unless otherwise noted. Hence, the
probability of k modules M, (I < / < k) coincidentally
producing erroneous results is n,£[i *]/?,. •

Assumption 2.4 is perhaps our most important
assumption and the one most likely to be criticized. So
let us try to justify it briefly. As noted in the introduction,
the assumption of failure independence for multiversion
software has been scrutinized and questioned from early
on [21]. We think that these criticisms are valid and must
be considered very seriously when trying to compute
absolute reliability values for multichannel computations.
Hovvever, the problem is much less serious for the types
of analyses presented in this paper. Here, we try to
determine if one scheme offers reliability improvement
over another. Intuitively, since dependent failures are
likely to affect the reliabilities of both schemes being
compared, we can have a higher confidence in such
relative figures of merit than in absolute reliabilities. We
relax this independence assumption in Section 6 in order
to validate, in part, this intuition. More work is clearly
needed in this direction.

2.5. Definition - Weightedplurality voter: Given n
input data objects x\, X2, . . . , x„, with associated
nonnegative real votes (vveights) vj, V2, . . . , v„, a V node
computes the output objectj and its vote w such that^. is
"supported by" a number of input data objects with votes

536 Informatica25 (2001) 533-543 B. Parhami

totalHng w and no other y' is supported by inputs having
more votes. lfw< (T^isu.n]^,)/!, ^^^^ '̂''̂ outcomej' may
be nonunique. In such cases, an erroneous voter output
will be pessimistically assumed. The output weight w
selects one of the outgoing voter edges along vvhich;; or
an activation signal must be sent (see, e.g., Fig. 1). When
input votes are not expHcitly specified, it is assumed that
vi = V2 = . . . = v„ = 1. Various definitions of the term
"supported by" lead to different voting schemes such as
exact, inexact, and approval voting (e.g., with exact
voting, an input object x, supports y iff x, = y). These
variations, although important, are beyond the scope of
this paper [30], [33]. •

2.6. Assumption - Perfect voters: Voters are perfect
and act instantaneously. This assumption is reasonable
because voters are simpler than modules or ATs and are
designed just once for use with many different modules
and test types. They can be made highly reliable through
careful design and extensive testing (much more so than
what is reasonable for any single appiication or its
associated ATs). •

Consider Fig. 1 in which 5VP and an alternative
scheme with the same number of M/T modules, and thus
with lower or equal compiexity, are shown. T is an
acceptance test with pass/fail (P/F) outcome. A result that
passes T is simply forwarded to the output. When T
rejects its input, it activates M4. The voter in Fig. le can
produce one of three mutually exclusive outputs: (1) No
agreement, leading to activation of M4, (2) agreement
between two inputs, leading to the appiication of T on the
agreed-upon result, and (3) agreement among ali three
inputs, yielding an acceptable output.

D
O
O

Module

Test

Voter

Z \ In

\7 Out

CD Error

(a) Legend (b) 5VP (C) ALT1

Fig. 1. Representations of 5VP and ALTI, an
alternative scheme, as MTV graphs.

Figure 2 shows MTV graphs corresponding to two
other hybrid NVP-AT schemes. These schemes have
been proposed in the literature as alternatives to 3VP,
although both imply greater cost than 3VP. Figure 2a
represents a 3-channel RNVB or NSCP. Each of the
three computation channels is made self-checking
through the insertion of an AT after the computation
module. The V node in Fig. 2a is a weighted plurality
voter for which each input weight is set to O or 1, based
on the outcome of the associated AT.

Figure 2b represents a 3-channel CRB. If the voter
observes agreement between two or aH three of its inputs,
the agreed-upon result is forwarded to the output. On the
other hand, vvhen there is no agreement, results from the
computation channels are successively subjected to an
AT and the first to pass the test is forwarded to output.

The ATs in Fig. 2b are labeled Ti, T2, and T3, but they
may ali represent the same test. The advantage of this
scheme over 3VP is that it is guaranteed to produce the
correct result vvhenever 3VP would produce the correct
result. Additionally, the added AT mechanism may
salvage a correct result from disagreeing modules.

1 I I 2 1 I 3

<if^.i>R<l>F,

(a) RNVB / NSCP (b) CRB

Fig. 2. MTV graphs representing two different
3-channel hybrid NVP-AT schemes.

Returning now to the initial example, the 5VP
scheme of Fig. Ib can tolerate up to two module failures,
but can produce an incorrect result with some triple
failures. In fact, any worst-case analysis must assume
that 5VP fails vvhen there are three module failures. The
alternative scheme shown in Fig. le also tolerates any
two failures in the M/T nodes. This claim is proven by
considering the following four cases which exhaust ali
possible double failures.

Čase 1 - Two failures in {M,, M2, M3}: T and M4
are fault-free. If the two faulty modules produce mutually
supportive results, then the error is caught by T and M4 is
executed. Otherwise, M4 is executed directly. Either way,
the correct result is produced.

Čase 2 - Two failures in {T, M4}: Mi, M2, and M3
are fault-free and produce pairwise mutually supportive
results. The voter outputs is the correct result.

Čase 3 - One failure in {M;, M2, M3} and one in T:
Because M4 is fault-free, the output is correct whether or
not T accepts the correct result received from the voter.

Čase 4 - One failure in {Mi, M2, M3} and one in M4:
T is fault-free and accepts the voter's majority result.

Triple failures can lead to an incorrect output for the
alternative scheme in a manner similar to 5VP. For
exainple, if Mi, M2, and M3 are faulty but produce
incorrect pairvvise mutually supportive results, an
incorrect value will be output. Failure of M|, T, and M4
also can lead to incorrect output. A side benefit of the
alternative scheme of Fig. le is that vvhereas ali five
modules must run to completion in 5VP, the alternative
scheme rarely needs to execute M4.

Let us now analyze the two schemes of Fig. 1 with
respect to reliability (probabiIity of producing a correct
result). Assuming/Ji = p2 = p^ = pn = p= 1 -<?:

5 ^3 „2 -avp =q' + Sq'p+\ Qq'p' = q\\+2p + 3p' - 6p')

6ALTI =q^ + ^q^pO -p'p) + 'iqp'q"q
= q\\+2p + 2p^-l,p'{p' + p")]

COMPONENT-BASED FAULT-TOLERANT SOFTWARE... Informatica 25 (2001) 533-543 537

The equation for the reliabiHty of the alternate
configuration in Fig. le, SALTI, is derived as foUovvs. The
first term, cl, is the probability of having no fault in {Mi,
M2, M3}. The second term, l>ci'p{\ - p'p), covers the
event of having a single fault in {Mi, M2, M3}, in which
čase correctness of the result is guaranteed uniess T
rejects the correct majority result and M4 is faulty. The
third term, 'iqp^q"q, corresponds to having two faults in
{MI, M2, M3}. In this event, the vvorst čase is the
agreement of the two fauity modules because it leads to
the requirement for T to reject the incorrect majority
result (probabi]ity q") and for M4 to be fault-free
(probability q) to obtain the correct result. If the two
faulty modules in {Mi, M2, M3} disagree with each other
and with the correct result, then the only requirement for
producing the correct output is for M4 to be fault-free.

Comparing the two expressions above, we find that
SALTI > Šsvp iff P' + p" < 2p. In the special čase of p ' =
p" = s, the alternate scheme ALTI offers reliability
improvement over 5VP \ff s < p; i.e., the alternate
scheme is better if the acceptance test component T is
more reliable than each module M,. In practice, T can
often be made simpler, and thus more reliable, than M,.
This may be due to the inherent simplicity of verifying
the resulfs correctness (e.g., by means of a mathematical
relationship or an inverse computation) or by virtue of T
using extra Information ("certification trail") provided by
the computation modules [46], [47], [48].

The examples above were intended to demonstrate
the power of MTV graphs as representation and anaiysis
tools for multichannel computations. In particular, it was
shown that previously proposed hybrid NVP-AT
approaches can be represented as simple MTV graphs
and that these graphs can also represent more general
hybrid schemes that have not been dealt with in the past
and that can potentially offer higher reliability and/or
lower overall complexity. Next, we define a modified
form of MTV graphs in order to simplify the discussion
in the remainder of this paper.

2.7. Definitioii - Data-driven MTV (DD-MTV)
graph: A DD-MTV graph is a moditied MTV graph with
no Error node and only single-output M, T, and V nodes.

M,: Attaches the vveight W; to its output;;,.
T,: Modifies the weight vv of;; to w + ai{w) or w -

r,(w) upon acceptance/rejection.
V,: Produces data object y of vveight vv from its

inputs, as detailed in Def 2.5.
The Error node is not needed because error can be
indicated by a subset of possible vveights (low values) for
the fina! result. The elimination of control edges and the
resultant graph's uniformity simplifies the enumeration
and analysis of various alternatives, vvhile stili retaining
the povver to accurately model most hybrid schemes. The
vveight augmentation and reduction functions, ai{w') and
A-j(w), used to adjust the vveight of an accepted and
rejected input, respectively, are nonnegative functions to
be determined (see Assumption 2.9). •

Figure 3 depicts several examples of DD-MTV
graphs, each having six M/T nodes. These can be vievved
as lower-complexity alternatives to 6VP. The examples
in Fig. 3 clearly shovv the vvide variety of multichannel
computational arrangements that can be modeled easily
by DD-MTV graphs [29].

(C) (d)
Fig. 3. DD-MTV graphs vvith six M/T nodes.

2.8. Assumption - Uniformity of modules and ATs:
In the rest of this paper, modules will be assumed to have
identica! reliability, complexity, and execution-time
parameters. Thus, the subscript / will be omitted from
parameters such as p,, q, and the vveight vv = I is attached
to aH module outputs. Similarly, ATs vvill be uniformly
treated by eliminating the subscript / from their
respective parameters such as p'i and p",. ATs vvill be
taken to have perfect coverage and lovver or equal
complexity compared to modules, thus leading to the
assumptions/?'</? and/?"</>. •

2.9. Assumption - Weight augmentation/rediiction
functions for ATs: Selection of appropriate vveight
augmentation and reduction functions, a{w) and /-(vv), can
have important effects on the overall reliability of the
system modeled by a particular DD-MTV graph. In this
paper, vve assume a(w) = /-(vv) = I. These simple constant
functions can be intuitively justified vvhen ATs have
near-perfect coverage and are of comparable complexity
to modules, and they have vvorked vvell in practice.
Hovvever, an extensive study of techniques for optimally
choosing these functions is required. •

The stage is now set for a more detailed examination
of certain classes of DD-MTV graphs and the systems
they model. Before that, vve recap the abbreviations used
and introduce some needed notation.

2.10. Notation and nomenclature - The follovving
is a list of symbols and abbreviations used in the paper:

AT Acceptance Test(ing)
CRB Consensus Recover/ Block (Fig. 2b)
Cjj, Binomial coefficient =x!/[y!(x-_y)!]
DD-MTV Data-Driven MTV graph (Def 2.7)
M Module; node in (DD-)MTV graph
MTV Module-Test-Voter graph (Def 2.1)
NSCP N-Self-Checking Program (Fig. 2a)
/iVP /?-Version Program(ming); e.g., 3VP
P Failure probability = unreliability = 1 - g

538 Informatica 25 (2001) 533-543 B. Parhami

Q (2x) Reliability (of system or configuration X)
Rkji, Reliability of A;-out-of-m system
RNVB Recoverable N-Version Block (Fig. 2a)
T Test (AT) node in (DD-)MTV grapli
V Voter node in (DD-)MTV graph •

3 Replacing one version with an AT
Wlnen one module in 3VP is replaced by an acceptance
test, a recovery block scheme with one alternate is
obtained (Fig. 4a). Note that Fig. 4a is a correct model of
recovery block scheme as far as reliability estimation is
concerned. The fact that M, and M^ appear to be running
in parallel rather than iVl2 following M|, and then only in
čase T rejects M|'s result, is irrelevant to the reliability
calculation. In this section, we generalize this notion by
analyzing the effect of replacing one module in «VP with
an AT (Fig. 4b). Reliability expressions for 3VP and the
alternate scheme ALT2 of Fig. 4a are as follovvs:

ftvp =q' + 'iq'p = q{\+p-2p^)
QhLi2 = qq'+ qp'q + pq"q = q[] +p-p(p' + p")]

The equation for the reliability of the alternate
configuration in Fig. 4a, QALT2> is derived as follovvs. The
first term, qq', is the probability of Mi producing the
correct result and T accepting it. The second term, qp'q,
covers the event of M| producing the correct result, T
rejecting it, and MT getting the correct result. The third
term, pq"q, corresponds to Mi producing an incorrect
result, T catching the error, and M2 being fault-free.
Comparing the expressions above, we find that SALTŽ >
23VP iff p ' + p" < 2/?. Hence the discussion preceding
Def 2.7 applies here as well. Figure 5 shows the
unreliability P = 1 - g o f 3VP and ALT2 whenp' = /7".

(a) ALT2 (b) ALT3
Fig. 4. Replacing one module with

acceptance test in 3VP and «VP.
an

It is relatively straightforward to generalize the
analysis above to the comparison of «VP and the
alternative scheme ALT3 depicted in Fig. 4b. However,
we first need some notation. Let Ri,,„ be the reliability of
a homogeneous A:-out-of-w system in which each module
fails with probability p (for brevity, the parameter p is
not explicitly shovvn).

Rk,m ~ 2j/e [«•, m] C„,j q'p"' •'

where C„,j is the binomial coefficient. /?̂ ,„ is detlned to
be O for k> m and 1 for A< 0. We nowwrite reliability
equations for «VP and the ALT3 scheme of Fig. 4b as
follovvs. To simplily the formulas, let h = _n/2J. Each of
the follovving expressions is vvritten by considering the
four possible cases vvith respect to the presence of faults

in tvvo modules or in one module and its associated AT
and for each čase figuring out hovv many of the
remaining n - 2 modules must be fault-free in order to
guarantee a correct result.

2«VP = Rh+l,n = q Rh-\,n~2 + 2pqRi,„-2 + P Rh+],n-2

2 A L T 3 = qq'Rh-\,n-2 + qP'Rh,n-2 +pq"Rh.n-2 + PP"Rh+).n-2

To compare these reliabilities, let us compute their
difference Ag = QALJ3 - 2»vp:

AQ = q{p -p')Ri,-,,„-2 + \P(P-P") - q(p -pW>,,n-2
-p{p-p")Rlm.n-2

= q{p-p%Rl,-\,„-2-Rh,n-2]
+ p{p-p")[Rl,,„-2-RhH.n-2]

Because each of the tvvo terms vvithin the square brackets
is positive, a sufficient condition for reliability
improvement over «VP is immediately obtained as
max{p',p") <p, vvhich always holds by Assumption 2.8.

1

II
0.

Fig. 5. Unreliability P = \ - Q of 3VP and
••p"=^s.

Rk-\,m~ Rk,m~ Cm,k-\q P

= m t

ALT2, assuming/i' =

To continue the analysis, vve note that:

m\q- •p"'-''^'l[(k-\)\{m-k+\)\'\

Hence, vve can revvrite Ag = 2ALT3 - Qn\? as:

^Q =q(p-p%n-2)\q"''p"-'-'/[ih-mn-h- 1)1]
+ p(p -p"){n - 2)\ci'p"-"'-l[h\{n -h- 2)!]

= {{n-2)\l{h\{n-h- 1)!]} q''p"-'"'
x[{n-\)p-hp'-{n-h-\)p"]

Therefore, the sign of Ag = SALTS - S«vp depends on the
sign of the last expression vvithin square brackets. For n
odd, vve have h = {n-\)l2 and Ag > O \ff p' + p" < 2p.
For n even, vve have h = nl2 and AQ > O \ff{nl2 - \)(p' +
p") + p' < {n -])p. In this latter čase, p' is somevvhat
more important than p". As an example, for « = 6, vve
must have 3p' + 2p" < 5p if the alternate vvith one AT
(Fig. 3d) is to be more reliable than 6VP.

4 Replacing k versions with ATs
We novv consider the čase vvhere k of the n modules are
removed {k < n/2) and replaced by ATs follovving k of
the remaining n - k modules. As shovvn in the MTV
graph of Fig. 6a, k branches vvith modules Mi, M2, . . . ,
Mk include acceptance tests Ti, T2, . . - , T^ and n -2k
branches have just modules (indexed from ^+1 to n-k).

COMPONENT-BASED FAULT-TOLERANT SOFTWARE... Informatica 25 (2001) 533-543 539

As in Section 3, let /?i_,„ be the reliability of a
homogeneous k-out-of-m system in which each module
fails with probability p and let h = _n/2} for notational
convenience. We can then write;

~ Rh+\,n ~ 2jielli+l,n] C i n-i

n.iqp
QM:YA = E;e [O, k\LjE [O, A-/] { CkjCk-ijipp ")'{pq " + qpy

^ (W ') ' ^Rh+2i+j-2k+\,i,-2k}

The reliability expression gALT4 for the alternate
configuration is derived as follows. Let of the k branches
containing ATs, / have faults in both the module and in
the AT,y have a fault in either the module or the AT but
not both, and k - i -j be fault-free. The / branches with
double faults ali potentially produce incorrect results
with vveight 2. The j branches containing single faults
produce results with \veight O, vvhether the fault is in M
or in T. Finally, the k - i -j fault-free branches produce
correct results with vveight 2. If c of the remaining n - 2k
modules produce correct results, the foUovving condition
must be met for the output to be guaranteed correct:

c + 2(k- i -J) >(n-2k-c) + 2i
=^ c>h + 2i+j-2k+\

This justifies the term Rhm+j-2k+\,n-2k in the expression for
2ALT4- The remaining terms are the probabilities of the
indicated number of faults raised to appropriate povvers.
For example, the probability that M is faulty but T
catches the error or M is fault-free but T rejects its output
\spq" + qp' = p+ p'-pp'-pp".

MandTfaulty MorTfaulty MandThealthy n~2k
(/channels) 0'channels) (/c-j-jchannels) channels

(b) nVP

Fig. 6. Replacing k modules with ATs in «VP
and the notation for reliability analysis.

As written, the expressions for g„vp and gALT4 are
difficult to compare vvithout resorting to numerical
calculation. To facilitate comparison, we rewrite the
expression for 2«vp in the following way. We divide the
set of n modules into k module pairs plus n - 2k
individual modules, as shown in Fig. 6b. Each of the k

pairs can have 2, 1, or O faulty modules. Let i, j , and k - i
- j be the number of such pairs, respectively. The k
module pairs contribute incorrect results with total
weights of up to 2/ + j and correct results vvith total
weights of at least 2k - 2/ - / Again, if the remaining n -
2k modules produce c correct results and n — 2k - c
incorrect ones, we must have c + 2k- 2/ -J >{n-2k- c)
+ 2/ + J, or C > h + 2i + J - 2k + 1, to guarantee a correct
output. The probabilities of having 2, 1, ore O faultv
modules in a pair of modules are p^, 2pq, and q ,
respectively. Thus:

Qi,vp ~ 2jie[o.k]ljjs[o,k-q{Ck,iC!,_ij(p)(2pq)

'>^(.q) R-h+2i+j-2k+\,n-2k

Comparing the corresponding ij terms in the expression
for 2ALT4 to the above expression for g„vp provides some
insight but no general conclusion. For example, for/?' =
p" = s, corresponding terms become identical and the two
schemes are equivalent with respect to reliability. For p'
= p" = s, the ij term in QAm divided by the ij term in
g„vp yields the ratio:

, is/py[(p + s - 2psyi2pq)y[i l - s)/qt^-J
For particular values of s and p satisiying s <p, the first
and the second term above are always less than 1 while
the third term is always greater than 1. Hence, the ratio
can be less than or greater than 1 depending on the values
of / and 7 and no conclusion can be drawn based on this
term-by-term comparison.

Fig. 7. Unreliability P=]-Q of 5VP and ALT4
withA=l or 2, assuming/7' = /?" = 5.

For « = 3, the only acceptable value for k is 1 and
Fig. 5 depicts the corresponding changes in the
unreliability P = \ - Q. To note the effect of changing k,
the expressions for g;,vp and 2ALT4 have been evaluated
for rt = 5, vvith A: = 1 or 2, and /? = 0.1, 0.01, or 0.001,
assuming p' "= p" = s. Figure 7 depicts the resulting
unreliabilities as functions ofs.

As expected, the unreliabilities P„yf and /'ALT4 are
identical for s = p (see the crossover points in Fig. 7).
The 5VP scheme is uniformly better for s> p. In the čase
of s < p, both alternates are uniformly better than 5VP
and the alternate vvith k = 2\s better than that vvith k= \.
It is worth noting that the improvement in reliability
achieved for s < p is smailer than the degradation
suffered for s > p, particularly for larger k. Therefore,
modules must be replaced vvith ATs only if the condition
s <p\s reasonably certain.

file:///veight

540 Infomiatica 25 (2001) 533-543 B. Parhami

5 More general schemes
As seen from the examples given in Fig. 3, DD-MTV
graphs and the systems they model can be composed in
many different ways. The systems discussed and
analyzed in Sections 3 and 4 ali involve a single level of
voting. In this section, we discuss a system involving two
levels of voting as an example of more general schemes.
It is hoped that several other arrangements will be
covered in the continuation of this research.

Consider the MTV graph ALT5 depicted in Fig. 8 as
an alternative to nVP. The result of A:-way voting on k of
the modules is given to T and is then combined with the
results of n - k - 1 modules through a second-level
weighted voter. This may be vievved as a generalized
recovery block scheme in which the primary computation
consists of a A;-way voted block and the alternate consists
of an (« - A: - l)-way parallel block. In an actual
implementation, modules in the alternate block may be
executed sequentially until sufficient votes are coUected,
given the outcome produced by the primary voting block.
The reliability of ALT5 is:

2ALT5 ~ ^ie[0,lk/2]i{Ck.i^P

^ ['j"^(n-i)2ln-k-t+P"^(n-i)2}i-\.n-h~\]}

+ ^/E[L*/2>1, k]{Ck,iq'p

^ ['3'^(n-k-i)2Xn-k-] + P'^(n-4-02>l, H-*-l]}

The reliability expression 2ALT5 'S derived as follows.
Let there be / correct results among the k channels of the
primary voting block. This event has the probability
Ck,iq'p ''• Now if / < Vkl2\, the plurality voting result must
be assumed incorrect in the worst čase. If T rejects this
incorrect result (probability q"), its vveight is decreased to
/• - 1 and a correct fmal output will be produced as long
as at least L(« - i)l2\ of the remaining n- k- \ modules
are fault-free. On the other hand, if T erroneously accepts
the incorrect result (probability p"), thus increasing its
vveight to / + 1, then at least [(« - i)l2\ + 1 of the
remaining n - k - \ modules must be fault-free for the
fmal result to be guaranteed correct. Recall that /?,,„, = O
iorj > m. Similarly, if / > _k/2} + 1, then the voter output
is correct and has a weight of /. A similar argument
justifies the second half of the expression for SALTS-

To compare 2ALT5 to 2nvp> we divide the n modules
into three groups of k, 1, and n- k~] modules. If / is the
number of fault-free modules in the first group, then:

2"VP - 2ji€[o.k]{Ci,jq'p

^ [qi^l(,ii-k-i)f2in-k-l + pf^{n-k-i)2']^\,n-k-\]}

The two terms within square brackets correspond to the
čase of the single module in the second group being
fault-free (probability q) or faulty (probability p),
respectively, leading to different requirements for the
number of fault-free modules in the third group (/ + 1 + c
> n- k- \ -cinlhe first čase and / + c > « - ^ - l - c i n
the second, where c is the required number of fault-free
modules in the third group). Again comparison of the
expressions for ^ALTS a"d g„vp leads to no general
conclusion. For example, in the čase of p ' = p" = p, we
note that of the corresponding pairs of terms in the
expressions for SALTS and 2nvp, some are larger in SALTS
and others are larger in g„vp-

Fig. 8. A DD-MTV containing tvvo levels of
voting (ALT5).

To get a feel for the relative values of ^ALTS and
Q„yp and conditions under which the alternative scheme
offers a higher reliability than «VP, consider the special
čase depicted in Fig. 3b {n = 6, k = 3). The relevant
reliability equations in this čase are:

Sevp = g\\+2p + 3p^ - 1 6 / + 10/)

eALT5{":6, k:2}= / [1 +2p + 3 / - 3 /
-p\l+2p)p'-3p\\-p)p-']

To compare these reliabilities, let us compute their
difference Ag = 8ALT5 - Gevp-

AQ = / / b (1 3 -lOp)-{\+ 2p)p'-3i\ -p)p"]
Therefore, for the alternative scheme to be better than
6VP, we must have:

{\+2p)p'+3{\-p)p"<p{\3-\Qp)
Observe that p" is more important than p' in that it is
multiplied by a larger factor. In the special čase ofp' = p"
= s, The condition above becomes i </'(13 - 10/7)/(4 -p)
or s < 3p + p{] - 7/?)/(4 - p). Thus, for p reasonably
small, reliability improvement is guaranteed as long as s
is no larger than 3p.

One cannot draw general conclusions on the basis of
a single example, but it is interesting to pinpoint the
cause of the reliability improvement in this special čase.
Both 6VP and the scheme depicted in Fig. 3b produce the
correct result when at least four M/T nodes are fault-free.
To see this in the čase of Fig. 3b, consider the following
five cases which exhaust ali possible double failures.

Čase I - Two failures in {M,, M2, M3}: Fault-free T
rejects the incorrect voter output, reducing its vveight
from 2 to 1. Correct output is produced because M4 and
M5 are both fault-free.

Čase 2 - One failure in {M|, M2, M3} and one in T:
T rejects the correct voter output, reducing its vveight
from 2 to 1. The output vvould be correct even if M4 or
M5 vvere faulty.

Čase 3 - One failure in {Mi, M2, M3} and one in
{M4, M5}: T accepts the correct voter output, increasing
its vveight to 3. The output is independent of M4 or M5.

Čase 4 - One failure in T and one in {M4, M5}: T
rejects the correct voter output, reducing its vveight from
3 to 2. The fault-free module in {M4, M5} creates a
correct majority.

Čase 5 - Tvvo failures in {M4, M5}: T is fault-free
and accepts the unanimous voter output, increasing its
vveight from 3 to 4. M4 and M5 cannot affect this output.

COMPONENT-BASED FAULT-TOLERANT SOFTWARE... Informatica 25 (2001) 533-543 541

Cases 2 and 3 above show that some triple failures
are also tolerated by the alternative scheme; hence the
improved reliability. In certain instances, as in Cases 3
and 5 above, the output of T obviates the need for
executing M4 or M5. These cases correspond to up to one
fault in {M|, M2, M3}, with T fault-free, and have a
probability of g^(l +2p){\ —s).

One should note that if there were no AT betvveen
the two voting levels in Fig. 8, reliability would actually
degrade compared to a single-level scheme with the same
number of modules. The reason is that correct minority
results in the first level are discarded whereas they may
help establish a correct majority if combined with correct
outputs from the remaining modules. So the AT is a key
component in this multilevel voting configuration.
Multilevel voting without some form of intermediate
validation is simply not beneficial.

6 Dealing with correlated failures
General analysis of various hybrid redundancy schemes
with correlated failures becomes significantly more
complex. In this section, we present a simplified analysis
based on a highly pessimistic view of correlated failures:
that they affect a set of modules and ATs in the worst
possible way, causing the modules to produce identical
incorrect results and an AT to reject any correct result
and to accept any incorrect result. We obtain lower
bounds for the reliabilities of pure and hybrid schemes
and show the bounds corresponding to certain hybrid
schemes to be higher. However, this does not necessarily
imply that the hybrid schemes are more reliable, because
a> b, a'> b', and b> b' do not imply a> a'. On the other
hand, reliability of a complex system can never be
computed exactly and we usually settle for lower bound
guarantees. From this viewpoint, a system for which the
lower-bound, or guaranteed reliability level, is higher
must be considered better.

In what follows, we compare «VP and ALT3
configurations (see Fig. 4b) with regard to correlated
failures and show ALT3 to be superior. The comparison
is based on combinatorial analysis. Admittedly, the
application of this method would be cumbersome for
more complicated configurations. However, our aim here
is to validate, in part, the intuition that the possibility of
correlated failures does not alter our earlier conclusions.
The insight gained from this example analysis will help
us understand why replacement of some modules with
ATs improves the probability of obtaining a correct
result under both statistically independent and correlated
failure scenarios.

Because nVP and ALT3 differ only in the use and
placement of M), M„, and T, our model postulates the
occurrence of correlated failures in c modules among
{Ml, • . • , M„_|} and includes probability parameters
relating to how M,, M„, and/or T may be affected. The
parameters /3, /3', a, pi, T, V. V, defined below, should be
interpreted as "probability of event, given that c modules
among {M2, . . . , M«-]} contain correlated/common
failures". Nodes unaffected by correlated failures can
stili suffer from random failures, with corresponding
parameters as defined in Section 2. The events associated
with the conditional probabilities for «VP and ALT3 are:

NVP (3 Both MI and M„ are affected
a Single module: M1 or M„ is affected
v Neither MI nor M„ is affected

ALT3 /?' Both M, and T are affected
H MI is affected but T is not
r T is affected but Mi is not
v' Neither Mi nor T is affected

Clearly, we havey3+2o-+ v/=/?' + / /+ r + K'= 1. Also,
given that two modules are more similar than a module
and an AT, the follovving might be considered reasonable
assumptions:

T<a<iJ. and p<P<a<v<V

These inequalities are essentially the crux of our
comparative evaluation, in much the same way that the
assumption p' + p" < 2p was essential in proving
improvements with independent failures. One last item of
notation: Because the reliability of a A-out-of-(« - c - 2)
system, Rk,n-c-2, is used repeatedly in the following
analysis, we denote it by /?t for brevity. Recall that h was
defined as L«/2j.

We next derive upper bounds on the reliability
reduction due to correlated failures in «VP and ALT3.
The "=" sign denotes proportionality rather than equality.

Aa,vp = Al -Rh^i) + 24^(1 -Rh) +p{\ -Rhn)]

+ \\q\\ -R,,.,) + 2pq{\ -R,) +p\\ -R,,,)]

= 1 - [{/3+2ap+vp^)R^^^ + 2qia+vp)Rh + V^^-i]

ASALTS = A l -R>^d + Mi^V-Jih) +P"(\-RM)]

+ T[q{\-R,,) +P{\-RM)] + V'[qq'{\ - R,.,)

+ p'q{\-R,)+pq\\ -R„)+pp"il-R>,.,)]

= 1 - [(y9' + IJp"+Tp+ v'pp")R,^,

+ {jJq"+Tq+v'p'q+Vpq")Rh+ v'qq'Rh.t] '

Ae„vp-AeALT3 = W-/3+fJp"+tp-2op+v'pp"-ip^)Rh^i

+ (juq"+ Tq-2 aq+ v'p 'q+ v'pq "Rh-2 vpq)Rh

+ q(v'q'-Vq)Rh-^

To simpliiy the expression for Ag„vp - A^ALJS, note the
follovving equalities:

Rh = Rh+\ + C„^c-2.h q p " ^
jf — T> 4- n r, ''„«-'•-2-/! 4_ r" J'-^ n-c-\-h
"/1-1 ~ /v/j+i + C^c-2,h q P + C„.c-2,h-} q P

Substituting the preceding in the expression for Ag„vp -
A2ALT3, the coefficient for Ri,+[becomes 0. Dividing both
sides by (« - C - 2)[q'y-'-^-''/[h\{n - c - 1 - /J)!], yields:

AQ„yp - A2ALT3 = (n-c-\-h)[q(juq"/q+T-2a+v'-v)
+ p{ v'q "- vq)] + hp(v'q'- vq)

Because by our assumptions both v'q" - vq and v'q' - vq
are nonnegative, a sufficient condition for the difference
A2nvp - AgALT3 tO bc nonncgative is to have juq"/q + z-
2a+ v'- r >0.

juq "lq+ r-2 a+1/'- v= iu{q "-q)lq + 0 + r+ v') - (2 0+ v)
= iu{q"-q)lq + (l-^-) - (l-y9) = fi{q"-q)lq + J3- J3'

This last expression is nonnegative by our assumptions;
hence Ag„vp S A^ALTS and the conclusion that correlated
failures have a less serious effect on ALT3 than on «VP.

542 Informatica 25 (2001) 533-543 B. Parhami

7 Conclusion
The methodology presented in this paper unifies
previously proposed hybrid NVP-AT schemes and leads
to many nevv variants. Given the extensive literature
available in softvvare fault tolerance and continued rapid
developments in the field, such unifying methodologies
(see, e.g., [49]) are clearly in demand and must be given
high priority by the researchers in the field and within
our educational programs. A component-based approach
is particularly appropriate in that it allovvs:

• Easy exploration of the vast architectural design
space for fault-tolerant soflware

• Building up of trust and the emergence of
trusted components due to reuse

• Svvapping of components for more reiiable
versions as they become available

Continued research in this area vvill enhance the
utility of the proposed general framework for the study of
hybrid NVP-AT schemes, leading to more specific
design techniques, performance comparisons, and
tradeoff guidelines. Results of such extended studies vvill
contribute both to fundamental understanding of voting
and acceptance testing as "dependability enhancement"
mechanisms [29] and to their practical application in the
realization of ultrareliable computations from standard
components. A number of specific problems for future
investigation are suggested directly by the discussions in
the preceding sections of this paper. Examples of
promising research directions inciude:

Optimal vveight augmentation and reduction
policies; the a(w) and r{w) functions
Effects of unequal module complexities and/or
reiiabilities as well as imperfect voters
Effects of different voting schemes on optimal
configurations and their reiiabilities
Optimal number of modules to be replaced by
ATs (parameter k of Fig. 6a)
Optimal partitioning of n modules for tvvo-level
voting (parameter k of Fig. 8)
More general multilevel voting schemes and
their attendant design tradeoffs
Effects of combined correctness and timeliness
requirements [28], [31]

The ultimate goal is to solve the follovving problem:

Given a set of components with associated
values for p, p', and p", as well as other system
cost and reliability parameters (in particular
those characterizing correlated failures), what is
the most cost-effective choice and arrangement
of computation modules, ATs, and voters?

As this problem is quite challenging, any approach to its
solution vvill necessarily proceed through a number of
simpler intermediate problems. For example, one might
ask: What is an optimal arrangement of n M/T modules
to maximize the overall reliability?

8 References
[1] Ammann P.E. & Knight J.C. (1988) Data Diversity:

An Approach to Softvvare Fault Tolerance. IEEE
Trans. Computers, Vol. 37, pp. 418-425.

[2] Avizienis A. & Kelly J.P.J. (1984) Fault Tolerance
by Design Diversity: Concepts and Experiments.
IEEE Computer, Vol. 17, No. 8, pp. 67-80.

[3] Avizienis A. (1985) The A -̂Version Approach to
Fault-Tolerant Softvvare. IEEE Trans. Sofnvare
Engineering,Vo\. 11, pp. 1491-1501.

[4] Banerjee P. & Abraham J.A. (1986) Bounds on
Algorithm-Based Fault Tolerance in Multiple-
Processor Systems. IEEE Trans. Computers, Vol. 35,
pp. 296-306.

[5] Belli F. & Jedrzejovvicz P. (1990) Fault-Tolerant
Programs and Their Reliability. IEEE Trans.
Reliability, Vol. 39, pp. 184-192.

[6] Blum M. & Wasserman H. (1996) Reflections on the
Pentium Division Bug. IEEE Trans. Computers, Vol.
45, pp. 385-393, 1996.

[7] Butler R.W. & Finelli G.B. (1993) The lnfeasibility
of Quantilying the Reliability of Life-Critical Real-
Time Softvvare. IEEE Trans. Software Engineering,
Vol. 19, pp. 3-12.

[8] Chen L. & Avizienis A. (1978) A -̂Version
Programming: A Fault Tolerance Approach to
Reliability of Softvvare Operation. Proč. Int'1 Symp.
Fault-Tolerant Computing, pp. 3-9.

[9] Di Giandomenico F. & Strigini L. (1990)
Adjudicators for Diverse-Redundant Components.
Proč. Symp. Reiiable Distributed Systems, pp. 114-
123.

[10]Dugan J.B. & Lyu M.R. (1994) System-Level
Reliability and Sensitivity Analyses for Three Fault-
Tolerant System Architectures. Proč. Jnt'1 Working
Conf. on Dependable Computing for Critical
Applications, pp. 295-307.

[ll]Dugan J.B. & Lyu M.R. (1994) System Reliability
Analysis of an N-Version Programming Application.
IEEE Trans. Reliability, Vol. 43, pp. 513-519.

[12]Eckhardt D.E. & Lee L.D. (1985) A Theoretical
Basis for the Analysis of Multiversion Softvvare
Subject to Coincident Errors. IEEE Trans. Software
Engineering, Vol. 11, pp. 1511-1517.

[13]Eckhardt D.E. et al (1991) An Experimental
Evaluation of Softvvare Redundancy as a Strategy for
Improving Reliability. JEEE Trans. Software
Engineering, Vol. 17, pp. 692-702.

[14]Gantenbein R.E., Shin S.Y. & Covvles J.R. (1991)
Evaluation of Combined Approaches to Distributed
Softvvare-Based Fault Tolerance. Proč. Pacific Rim
Symp. Fault-Tolerant Systems, pp. Id-lS.

[15]Gersting, J.L., Nist R.L., Roberts D.B. & Van
Valkenburg R.L. (1991) A Comparison of Voting
Algorithms for N-Version Programming. Proč.
Hawaii Int'l Conf. System Sciences, pp. 253-262.

[16]Kelly J., McVittie T. & Vamamoto W. (1991)
Implementing Design Diversity to Achieve Fault
Tolerance. IEEE Software, Vol. 8, pp. 61-71, July.

[17]Kersken M. & Saglietti F., Eds. (1992), Software
Fault Tolerance: Achievement and Assessment
Strategies, Springer.

COMPONENT-BASED FAULT-TOLERANT SOFTWARE... Informatica 25 (2001) 533-543 543

[18]Kim K.H. & Welch H.O. (1989) Distributed
Execution of Recovery Blocks: An Approach to
Uniform Treatment of Hardware and Softvvare Faults
in Real-Time Applications. IEEE Trans. Compiiters,
Vol. 38, pp. 626-636.

[19]Kim K.H. & Kavianpour A. (1993) A Distributed
Recovery Block ApproacJT to Fault-Tolerant
Execution of Application Tasks on Hypercubes.
IEEE Trans. Parallel & Distributed Systems, Vol. 4,
pp. 104-111.

[20]KiiTi K.H. (1994) Distributed Execution of Recovei-y
Blocks: An Approach to Uniform Treatment of
Hardvvare and Softvvare Faults. Proč. Conf.
Distributed Computing Systems, pp. 526-532.

[21]Knight J.C. & Leveson N.G. (1986) An
Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming. IEEE
Trans. Soflware Engineering, Vol. 12, pp. 96-109.

[22]Laprie J.-C, Arlat J., Beounes C, Kanoun K. &
HourtoUe C. (1987) Hardware- and Software-Fault-
Tolerance: Deflnition and Analysis of Architectural
Solutions. Proč. Int'l Symp. Fault-Tolerant
Computing, pp. 116-121.

[23]Laprie J.-C, Arlat J., Beounes C. & Kanoun K.
(1990) Defmition and Analysis of Hardvvare- and
Software-Fault-Tolerant Architectures. IEEE
Computer, Vol. 23, No. 7, pp. 39-51.

[24]Leveson N.G., Cha S.S., Knight J.C. & Shimeali T.J.
(1990) The Use of Self Checks and Voting in
Softvvare Error Detection: An Empirical Study. IEEE
Trans. Software Engineering, Vol. 16, pp. 432-443.

[25]Littlewood B. & Miller D.R. (1989) Conceptuai
Modeling of Coincident Failures in IVIultiversion
Software. IEEE Trans. Software Engineering, Vol.
15, pp. 1596-1614.

[26]Liu C. (1992) A General Framevvork for Software
Fault Tolerance. Proč. IVorkshop Fault-Tolerant
Parallel & Distributed Systems, pp. 84-91.

[27]Nicola V.F. & Goyal A. (1990) Modeling of
Correlated Failures and Community Error Recover/
in Multiversion Softvvare. IEEE Trans. Software
Engineering, Vol. 16, pp. 350-359.

[28]Parhami B. (1990) A Unified Approach to
Correctness and Timeliness Requirements for
Ultrareliable Concurrent Systems. Proč. Int'1
Parallel Processing Symp., pp. 733-747.

[29]Parhami B. (1991) A Data-Driven Dependability
Assurance Scheme with Applications to Data and
Design Diversity. in Dependable Computing for
Critical Applications, Ed. by A. Avizienis and J.C.
Laprie, Springer, pp. 257-282.

[30]Parhami B. (1992) Optimal Algorithms for Exact,
lnexact, and Approval Voting. Proč. Int'l Symp.
Fault-Tolerant Computing, pp. 404-411.

[31]Parhami B. & Hung C.Y. (1993) Scheduling of
Replicated Tasks to Meet Correctness Requirements
and Deadlines. Proč. Hawaii Int'l Conf. System
Sciences, pp. 506-515.

[32]Parhami B. (1994) A Multi-Level Vievv of
Dependable Computing. Computers and Eleclrical
Engineering, Vol. 20, pp. 347-368.

[33]Parhami B. (1994) Voting Algorithms. IEEE Trans.
Reliability, Vol. 43, pp. 617-629.

[34]Parhami B. (1996) Design of Reliable Softvvare via
General Combination of N-Version Programming
and Acceptance Testing. Proč. Int'1 Symp. Software
Reliabilily Engineering, pp. 104-109.

[35]Partridge D. (1997) The Čase for Inductive
Programming. IEEE Computer, Vol. 30, No. 1, pp.
36-41. .

[36]Prata P. & Silva J.G. (1999) Algorithm Based Fault
Tolerance Versus Result-Checking for Matrix
Computations. Proč. Int'1 Symp. Fault-Tolerant
Computing, pp. 4-11.

[37]Pucci G. (1990) On the Modeling and Testing of
Recovery Block Structures. Proč. Int'l Symp. Fault-
Tolerant Computing, pp. 356-363.

[38]Randell B. (1975) System Structure for Softvvare
Fault Tolerance. IEEE Trans. Software Engineering,
Vol. l.pp. 220-232.

[39]Randell B. (1987) Design Fault Tolerance. In 77;e
Evolution of Fault-Tolerant Computing, Ed. by A.
Avizienis, H. Kopetz, and J.-C. Laprie, Springer, pp.
251-270.

[40]Scott K., Gauh J.W. & McAllister D.F. (1983) The
Consensus Recovery Block. Proč. Total System
Reliabilit}' Symp., pp. 74-85.

[41]Scott K., Gault J.W. & McAllister D.F. (1987) Fault-
Tolerant Softvvare Reliability. IEEE Trans. Software
Engineering, Vol. 13, pp. 582-592.

[42]Scott R.K. & McAllister D.F. (1996) Cost Modeling
of A -̂Version Fault-Tolerant Softvvare Systems for
Large N. IEEE Trans. Reliability, Vol. 45, pp. 297-
302.

[43]Siewiorek D.P. & Svvarz R.S. (1992) Reliable
Computer Systems: Design and Evaluation, Digital.

[44]Sitaraman R.K. & Jha N.K. (1993) Optimal Design
of Checks for Error Detection and Location in Fault-
Tolerant Multiprocessor Systems. IEEE Trans.
Computers, Vol. 42, pp. 780-793.

[45]Sklaroff J.R. (1976) Redundancy Management
Techniques for Space Shuttle Computers. IBM J.
Research & Development, Vol. 20, pp. 20-28.

[46]Sullivan G.F. & Masson G.M. (1990) Using
Certification Trails to Achieve Softvvare Fault
Tolerance. Proč. Int'l Symp. Fault-Tolerant
Computing, pp. 423-431.

[47]Sullivan G.F. & Masson G.M. (1991) Certification
Trails for Data Structures. Proč. Int'l Symp. Fault-
Tolerant Computing, pp. 240-247.

[48]Sullivan G.F., Wilson D.S. & Masson G.M. (1995)
Certification of Computational Results. IEEE Trans.
Computers, Vol. 44, pp. 833-847.

[49]Suzuki M., Katayama T. & Schlichting R.D. (1994)
Implementing Fault Tolerance with an Attribute and
Functional Based Model. Proč. Int'1 Symp. Fault-
Tolerant Computing, pp. 244-253.

[50]Tai A.T., Meyer J.F. & Avizienis A. (1993)
Performability Enhancement of Fault-Tolerant
Softvvare. IEEE Trans. Reliability, Vol. 42, pp. 227-
237.

[51]Voges U., Ed. (1988) Software Diversity in
Computerized Control Systems, Springer.

[52]Xu J. & Randell B. (1997) Softvvare Fault Tolerance:
//(rt-1)-Variant Programming. IEEE Trans.
Reliability, Vol. 46, pp. 60-68.

Informatica 25 (2001) 545-553 545

Evolution of fault-prone components in legacy systems: a čase study

Magnus C. Ohlsson
Dept. of Communication Systems

Lund University, Box 118
SE-221 00 Lund, Svveden
Magnus_C.Ohlsson@telecom.lth.se

Keywords: software evolution, fault-prone components, prediction, tracking, legacy systems

Received: June 29, 2001

Prediction ofproblematic soft\vare components is an important activity todayfor many organisations as
they manage and maintain Iheir legacy systems and the maintenance problems they caitse. This means
that there is a needfor methods and models to identify problematic components. We apply a model for
classification of software components as green, yellow and red according to the mimber oftimes they
reguired corrective maintenance over successive releases. Further, we apply principa! component
analysis (PCA) and box plots to investigate the caitses for the code decay and structural changes. The
čase study includes five system releases and 80 software components. A large set of non fault-prone
components was identified. The system did not contain any large structural changes, which was
indicated by the PCA and the box plots. Most ofthe changes were smallfault corrections. A number of
design improvement suggeslions had been identified by the developers bitt not carried out. Overall, the
model was successful in identifying the most problematic components andprovided Information aboul
the evolution of the system. The strength ofthe model was the combination of both a short-term view
and a long-term view.

1 Introduction
Many of the systems around us today are what vve refer
to as legacy systems, i.e. systems that evolve and go
through a number of maintenance releases and naturally
inherit functionality and characteristics from previous
releases. The maintenance releases could include both
corrective actions and enhancement vvith nevv
functionality. Even though a system is being improved,
both from a quality view and from a functional view,
some parts of the systems may be difficult to maintain
due to different reasons. Exampies are lack of
documentation, po.or processes and deteriorating
architectures. Another reason could be adding nevv
functionality, resulting in components vvith high
complexity and problematic relationships. To avoid
problems with this type of components, it is necessary to
identif/ them and keep track of their evolution, i.e. both
have a short-term view and a long-term view.

A number of models have been presented to classify
components and to predict vvhether they will be fault-
prone in the future. Most of them have a short-term view
and are based on the outcome from one project, validated
for a second project and finally used in a third project
and refined based on the outcome. Another approach has
been to take the outcome from one project and divide the
data set into two parts and build the model based on one

half and validate it for the other half or build the model
in one iteration and test it in the subsequent. Further,
most models are based on statistics, for example,
Principal Components Analysis [1], Boolean
Discriminant Analysis [2], Spearman Rank Correlation
[3], Optimised Set Reduction [4], Regression Analysis
[5] and Classification Trees [6][7].

An important issue is to enable practitioners from
industry to use the models and therefore they should be
easy to use but stili be capable of performing well.
Therefore our objectives of this study are to create
models that are easy to use and embody a long-term
view. Another objective is to further evaluate and refine
existing methods, which vve propose to do. The approach
used in this paper is based on how components evolve
over successive releases to capture both the short-term
vievv and, most important, the long-term vievv. Instead of
using only two successive releases vve base our models
on a number of successive releases. This should handle
different problems like, for example, fluctuations
betvveen releases.

The paper is organised as follovvs. In Section 2 vve
present the background for the approach presented in
Section 3. The approach is illustrated in a čase study is in
Section 4. Finally, a summary can be found in Section 5.

mailto:Magnus_C.Ohlsson@telecom.lth.se

546 Informatica 25 (2001) 545-553 M.C. Ohlsson

2 Background

2.1 Classification Model
To enable identification of the problematic legacy
components, we use a model for classification of
software components based on fault-proneness [8]. The
components are classified according to a colour code
depending on the amount of decay. The components
should be classified as green, yellow or red. The amount
of decay should be judged based on the outcome of
previous releases and the criterion is the number of
faults. Other possible criteria are time to perform certain
types of maintenance activities or that the structure of the
component is becoming more and more difficult to
understand and handle. An important issue is to use
available data instead of launching a new measurement
program. This could be argued about, but our concern
has been to not increase the burden for the developers
and instead to use existing data to calculate our
measures. The number of faults is therefore often
appropriate. The colouring scheme denoted GYR, vvhich
is illustrated in Figure 1, should be interpreted as
follovvs:

• Green components (normal evolution). Green
represents normal evolution and some amount of
fluctuation is normal. These components are
easily updated, i.e. new functionality may be
added and faults corrected without too much
effort. Furthermore, we do not need system
experts to maintain the components. The
components should be tracked from release to
release to be able to find trends and when a
component exceeds a certain limit (referred to as
the lower limit) it becomes yellow.

• Vellovv components (code decay). As a
component exceeds the lovver limit, it is
classified as yeIiow, so particular attention has
to be paid to this component to avoid ftiture
problems. Components in the yellow region are
candidates for specific directed actions. These
may include launching a more thorough
development process or identifying a component
as a candidate for reengineering. If the yellow
components are not treated properly, the
components may exceed the upper limit and
become a red component.

• Red components ("mission impossible"). A
red component is difficult and costiy to
maintain. It is often the driving factor for
schedules and cost. in other vvords, the red
components have a tendency to end up on the
critical path of a software project. In order to
change the components, we need experts, and
the components are often vievved as "mission
impossible" tasks. The components are no
longer candidates for reengineering; they need
reengineering.

Mission impossible"
•Upper limit

Code dccay
Lower iimit

Normal evolution
Release

Figure 1. Grovving amount of decay for a Iegacy
component |8|.
The classification scheme embodies two limits, one
lower and one upper, to be able to separate the three
classes. These limits should be determined based on the
historical data and continuously updated according to the
fact that we improve the quality of the components. It is,
of course, not possible to state generally where the limits
are located. The limits are governed by our
interpretations of green, yellow and red legacy
components, and they are dependent on factors, which
must be determined for each čase separately. The
inteipretation may depend on, for example, company,
application domain, system and customer requirements.

It is important to have a long-term view even though
some components indicate a high leve! of decay because
there might be confounding factors or the release as a
whole affecting the results, e.g. lack of resources,
unsatisfactory process etc. For example, we may have
found that components with more than a certain number
of faults in testing should be classified as yel!ow, but
when looking at the system as a whole we realise that the
total number of faults is very high. This may indicate that
the component as such is not the problem, we may have a
problem with the release as a whole. Therefore, the
whole system must be studied in conjunction with the
individual components prior to finally identiiying certain
components as being of a specific class. One possibility
is to visualise the trends by plotting the degree of decay
for each release and graphically make a decision (see
figure 2). Another possibility is to use rankings or
standardisation to handle the variations.

Dceay

Red

—Upper limit

Ycllow

— Lowcr limit

Green

^ Release

Figure 2. Trend for a number of different releases [8].

As mentioned earlier, decay could depend on structural
changes. For example, new components, inheriting from
other classes, are added and cause problems because of
coupling problems or lack of cohesion. An important part
is therefore to find and analyse structural changes in the
code. The GYR model proposes to use Principal

EVOLUTION OF FAULT-PRONE COMPONENTS IN. Informatica 25 (2001) 545-553 547

Components Analysis (PCA) [9]. This analysis method
groups a number of correlated variables into a number of
factors. Changes in the number of factors and variables
changing factors are indicators that the system is not
stable and indicate areas for further analysis.

2,2 Evaluation
To evaluate how well a model performs it is necessary to
have some criterion that relates to its ability to point out
components as fault-prone and non fault-prone. Here we
use two types of errors that may be conducted when
trying to predict fault-prone components:

• Committing a Type I error means classifying
actually fault-prone components as non fault-prone.

• Committing a Type 11 error means classifying
actually non fault-prone components as fault-prone.

The rate of the two error types as such has been used as
an evaluation criterion [2][6]. The approach, which
minimises the misclassifications, is then considered the
best. The overall misclassification is the total number of
the misclassifications of Type I and II, normalised by the
total number of components. The criteria can be found in
Table 1.

Outcome of
Release n+J

Non fault-
prone
Fault-prone

Prediction from Release n
Non fault-
prone
A

C

Fault-prone

B

D
Type I rate: C/(C+D)%
Type II rate: B/(A+B)%
Overall misclassification: (B+C)/(A+B+C+D)%

Table 1. Evaluation criteria.

3 Approach
The approach used in this paper is an extension of the
GYR model [8], described above, and includes five main
steps, which are applied to the čase study in Section 4.
The different steps in the approach try to identifi/
problematic components, both from a short-term vievv
and a long-term view, to reveal structural changes and to
find indicators of decay among softvvare components.
The steps are the foIlowing:

1. Determine variables to include in the
analysis. Based on the purpose of the models,
different criteria for inclusion of variables exist.
For code decay, the most interesting variables to
include are the number of reported faults and
those related to the nature and size of code
changes, including structural changes.

2. Identify most fault-prone components (short-
term view). The short-term vievv first classifies
fault-prone components in each release and
ranks them according to the fault reports vvritten
against them. The advantage of using ranks
instead of number of faults is that differences.

related to number of faults reported in the
releases, are nullified. Components among the
top 25 percent in terms of fault reports written
against the component are considered fault-
prone. Thus aH components whose number of
fault reports is in the upper quartile are
considered fault-prone. In čase of ties in ranking
that wouId cause more than 25 percent of the
components to be included, the smaller set is
chosen. Secondly, looking at two consecutive
releases, we analyse how components change
status according to this classification.
Components that are fault-prone in two
successive releases are considered red, those that
are not fault-prone (normal) in either release are
considered green. Components that change
status (from fault-prone to normal or from
normal to fault-prone) are classified as yellow.

3. Identify most fault-prone components (long-
term view). The long-term vievv utilises the
same concepts as the short-term vievv except for
hovv the rankings are handled. With the long-
term vievv the rankings are accumulated after
each release. The advantages are that
fluctuations betvveen the releases are taken čare
of and components with rankings in the middie
segment or close to the fault-prone threshold
that consistently generate faults but are not
considered fault-prone, are idendfied. The
classification criterion for green, yelIow and red
are the same as for the short-term vievv, i.e.
components vvhich are fault-prone in two
successive releases are considered red, those that
are not fault-prone in either release are green
and components that change status are classified
as yellow.

4. Analyse structural changes. PCA on the
variables of interest determines vvhich groups of
variables are related and hovv this relationship
changes across releases.- For code decay
analysis, analysis of structural changes may help
maintainers to identif/ and to react to major
changes in the components. Changes in the
system's structure might be indicators of future
problems regarding the ability to change the
component. Interesting indicators may be when
the number of factors increases or decreases, or
when some variables svvitch betvveen PCA
factors over successive releases. We intend to
use PCA to reveal relationships and
characteristics of changes made to the system.

5. Analyse variable distributions. To further
analyse the reasons for code decay and structural
changes, box plots should be created. They
visualise the distribution of variables and aid the
interpretation. They can be very useful to
identify outliers and, more specifically, factors
that may affect decay among the softvvare
components.

548 Informatica 25 (2001) 545-553 M.C. Ohlsson

An important part of this study is also to further evaluate
the usefulness of the GYR model vvhen it is used in
different domains. The model was developed based on a
Telecommunication system [8]. In this study we apply it
to a completely different system to further evaluate and
refme the model.

4 Čase Study

4.1 Step 1: Environment

This čase study is based on data from 80 software
components and five releases of a development tool for
developing real-time software. It utilises the object-
oriented design language SDL [10] and the trace
language MSC [11] to generate code for integration with
several real-time operating systems. The system studied
is one of the company's main products and each sixth
month a new version is released (for more Information
see [12]). Therefore, the releases investigated are
considered typical for releases of this particular system.

The development tool is mainly developed with C and
C++ although it contains some automaticaIIy generated
code. The approximateIy size of the whole system is
5.000 KLOC. For each of the components, the number of
fault reports from fault handling and test cases are
counted from their internal fault database. A
disadvantage is that some of the faults reported are
postponed and not assigned until a subsequent release
and might therefore be counted twice. The reason for
including a postponed fault is that it is considered a fault
as long as it is evident.

To collect data from the code we used Logiscope® from
Telelogic. Logiscope® parses the code and coUects a
large amount of different measures, which describes
different aspects of the code. Since some of them are not
related to our objectives of this study we have selected
the most appropriate ones. The selection can be found in
Table 2 and includes class specific, inheritance and use-
graph related metrics that relate to the length of a chain
of use and usage of other classes [13]. Together with the
number of faults, 19 different measures were collected
for the modules included in the system.

iVleasure

C/l
C/l

(D

a
3 -O.

C

J 3
D.

OD
D
C/l

ID

ci_cyc]o

ci_data_ciass

cl_data_vare

ci_data_vari

cl_func_calle

cl_func_calli

cl_dep_deg

ci_dep_meth

cl locm
cl data inh
cl func inh
in depth
in_dderived

in_derived

cu_level

cu_cused

cu_cusers

Faults

Description
Sum of the methods static
cyclomatic complexities in a class
Number of class type attributes for
a class
Total number of times attributes
vvhich are external to a class are
used by the class's methods
Total number of times a class's
attributes are used by the class's
methods
Total number of calls from a
class's methods to functions
defined outside a class
Total number of calls from a
class's methods to member
functions of the same class
Class coupling is an indicator of
the degree of dependency of a class
Number of methods (within a
class) vvhich depend on other
classes
Lack of cohesion of methods
Number of inherited attributes
Number of inherited methods
Depth of inheritance tree
Number of classes vvhich directly
inherit from a class
Total number of classes vvhich
inherit from a class directly or not
Maximum length of a chain of use
starting from a class
Number of classes used by a class
directly or not
Total number of classes vvhich
directly use a class or not
Number of fault reports from fault
handling and test.

Table 2. Measures collected.

4.2 Fault-Prone Components

4.2.1 Step 2:
View

Identification with a Short-Term

The purpose of the short-term prediction is to evaluate
our hypothesis that it is always the same components that
are among the most fault-prone ones. Of course it is
natural to have some fluctuation because nevv
components may be integrated in the system or some
niay be detached or replaced. This should be considered
vvhen doing the predictions, but in this čase study the
Information has not been available. A way of using the
GYR model, vvith a short-term vlevv, Is to define green,
yellow and red components as follovvs:

• Green - not in the fault-prone quartile for the two
consecutive releases.

• YelIow - in the fault-prone quartile for one of the
two releases.

EVOLUTION OF FAULT-PRONE COMPONENTS IN... Informatica 25 (2001) 545-553 549

• Red - in the fault-prone quartile for both releases.

Compared to Table 1, this means that the number of
green components can be found in celi A, the yellow
components in the B and C cells, while number of red
components can be found in celi D.

Correct
non f-p
(A)
Correct f-
P (D)
Typel
error (C)
Type II
error (B)
Type I
rate
Type II
rate
Overall
misclassif
ication

Release I
to
Release 2

61

13

4

2

23.5%

3.2%

7.5%

Release 2
to
Release 3

56

12

7

5

36.6%

8.2%

15%

Release 3
to
Release 4

55

13

6

6

3 1.6%

9.8%

15%

Release 4
to
Release 5

55

11

6

8

35.3%

12.7%

17.5%

Table 3. Prediction results.

Table 3 show the results for aH five releases with a short-
term view. The table includes ali Information from Table
1 but in more compact format. The results indicate an
increasing problem of pinpointing fault-prone
components because the Type 11 error (B) increases, i.e.
it becomes more and more difficult to pinpoint the right
components as fault-prone. The amount of red
components (D) is stable betvveen 11 and 13 components,
which also is true for the green components (A). The
ones that are problematic to predict are the yellow ones
(B and C), i.e. Type 1 and Type II errors. It is those
components that should be further investigated to find
out what the reasons have been for the shift in
classification, i.e. why they became fault-prone or what
activities improved them to "green" status.

Type II error indicates the number of components that
were improved from fault-prone to non fault-prone. It
could be seen as an indication of improving quality. The
major problem is components that decay from being
nonnal to fault-prone, i.e. Type I error. The Type 1 rate is
fairly high (23.5 percent to 35.3 percent) and should be
further investigated. As mentioned earlier, one reason
can be that it was new components that vvere integrated
into the system and therefore could not have been
classifled. as fault-prone earlier. UnfortunateIy, no
Information was available about components that vvere
new (or deleted) in each release.

4.2.2 Step 3: Identification with a Long-Term View

To avoid to problems with the Type I and Type II errors,
which are mostly correlated to the fluctuations betvveen
the releases, we propose to accumulate the rankings.

Accumulated rankings have two advantages. First,
components with rankings in the middle segment or close
to the fault-prone threshold that consistently generate
faults but are not considered fault-prone, are identified.
Secondly, fluctuations among components that, for
example, are classified as fault-prone in Release n, non
fault-prone in Release n+] and finally fault-prone in
Release n+2 are smoothed out and only the consistently
fault-prone components are highlighted.
The disadvantage is that new components from later
releases, vvhich consistently also are fault-prone, never
are able to accumulate rankings so that they will be
among the most fault-prone ones with the long-term
view. But these components will be visible with the
short-term view or as soon as the most fault-prone
components from previous releases are taken čare off.
Another possibility could be to normalise a component's
accumulated ranking according to the number of releases
it was evident in. This has not been done because of lack
of Information.

The results from using the accumulated rankings are
summarised in Table 4, vvhich could be mapped to Table
1. For example, in column 3 the accumulated rankings
from Release 1 and Release 2 are used to predict the
outcome from Release 3, vvhich are the rankings from
Release 1 to Release 3. For column 1 this means that the
rankings from Release 1 are used to predict the
accumulated rankings from Release 1 and Release 2.

Correct
non f-p
(A)
Correct f-
P (D)
Type I
error (C)
Type II
error (B)
Type 1
rate
Type 11
rate
Overall
misclassif
ication

Release 1
to
Release 2

62

15

3

0

16.7%

0%

3.8%

Release 2
to
Release 3

61

18

1

0

5:3%

0%

1.3%

Release 3
to
Release 4

60

18

1

1

5.3%

1.6%

2.5%

Release 4
to
Release 5

60

18

1

1

5.3%

1.6%

2.5%

Table 4. Accumulated prediction results.

Compared to the results in Section 4.2.1, the
misclassification rates are much lovver and more stable.
In column 2 the values have not stabilised, but as more
releases and rankings are accumulated the trend stabilises
even though there are tvvo components in columns 4 and
5 that are misclassified. Table 5 shovvs the range of fault
reports for the twenty most fault-prone components and
their rankings in Release 5. The ten least fault-prone
components aH had an accumulated ranking of 23.

550 Informatica 25 (2001) 545-553 M.C. Ohlsson

Problematic
Accumulated ranking
Problematic
Accumulated ranking

61-70
238-309
71-80
329-386

Table 5. Accumulated rankings for the components.

We can see that the threshold from the tenth most fault-
prone components and down decreases, which support
our hypothesis that the same components are the most
fault-prone from release to release. It is noticeable that
the maximum number is 400 and that 386 is very close to
this value, which also is an indication that supports the
hypothesis.

In this čase we have not specified the upper and lower
limits as presented in Section 2.1 but it could easily be
done and further evaiuated. For example, the maximum
ranking a component can get in a release in this study is
80, which means that after two releases it is 160 and after
five it is 400 (as mentioned above). Again we can use the
quartiles and say that the upper limit is 75 percent of the
maximum ranking and include the 50 percent quartile as
the lower limit. The limits may not be the best ones and
could be chosen differently, but in this čase it is chosen
to illustrate the classification method. The results can be
found in Table 6. Release 1 is not included since no
rankings could be accumulated.

Red
Yellow
Green

Rel. 2
Upper:
120
Lower:
80
16
4
60

Rel. 3
Upper:
180
Lower:
120
13
12
55

Rel. 4
Upper:
240
Lovver:
160
12
14
54

Rel. 5
Upper:
300
Lovver:
200
11
16
53

Table 6. Results from using upper and lower limits.

The results show that the red components are practically
stable while more and more components are classified as
yellow. These components should be paid attention to
before it is too late. A disadvantage with limits is that
there are always components that are just below a limit,
which actually need special attention. This is the main
problem using classification models, but being aware of
the disadvantages and the fact that many problematic
components are identified makes it beneficial.

4.3 Step 4: Structural Changes
PCA is a statistical method that groups correlated
variables in factors. This eases the process of identifying
underlying structures in complex data sets. The basic
idea behind using PCA is that a major change in the
structure may be a potential source of future problems. It
should, hovvever, be remembered that we do not expect
that this type of model gives us necessarily the optimal
prediction in terms of problematic components. An
expert must take a closer look at the components being
depicted vvith this type of model, or for that matter, any

other model. We do not expect to replace the expert, but
to point the expert in the right direction, guide further
work with the system and provide better understanding
of the system's evolution.

To extract the factors we applied PCA with an
orthotran/varimax transformation and only extracted
factors vvith an eigenvalue larger than one or until the
explained variance was at least 75 percent. Dark grey
areas indicate the factors where the variables have the
highest factor loadings, i.e. correlation betvveen variable
and factor. Light grey areas indicate variables vvith
loadings higher than 0.5.

The systein analysed in this study is large and analysing
aH of the components vvould be a too extensive task.
Therefore, vve have focused on some of the components
that are considered fault-prone and some that are not.
The results from analysing the files in Component A,
vvhich is one of the larger and more fault-prone ones, can
be found in Table 7. The differences among the releases
are very small and therefore the result from one release is
provided.

Variable

cl_cyclo
cl_data_class
cl_data_vare
cl_data_vari
cl_func_calle

cl_func_calli
cl_dep_deg

cldep meth
cllocm
cl data inh
cl_func_inh
in_depth
in dderived
in_derived
cu level

cu_cused
cu_cusers

Eigenvalue
Accumulated
variance

Factor
1

.984

.667

.882

.934

.989

.974

.957

.993

.075
-.418
-.069
-.142
.040
.004
.079

.100

.098

7.039
41.4%

2

-.009
-.122
-.017
-.061
-.003

-.010
.016

.005

.751

.836

.609

.826

.043
-.021
.870

.876

.093

3.906
64.4%

3

.015

.155
-.025
.042
.011

.013

.024

.035

.108
-.072
-.085
-.156
.840
.886
.171

.187

.308

1.687

74.3%

4

.016
-.484
.045
-.065
.013
.032
-.008

-.011
.200
.265
.429
.121
.130

.006
-.282

-.320
.536

.978
80.1%

Table 7. PCA result from Release 1 for Component A.

Among the releases there are small variations in the
factor loadings and the factors' explained variance. The
only variables that are not stable are cujevel, cu_used
and cu_cusers, vvhich are use-graph metrics (see Section
4.1). In Release 2 and 3, cu_users are not grouped vvith
any of the variables, vvhile in Release 4 and 5 it has a
negative factor loading related to the other two variables.

EVOLUTION OF FAULT-PRONE COMPONENTS IN.. Informatica25 (2001) 545-553 551

i.e. if the number of classes used by a component
increase the number ofclasses that use it (directly or not)
decrease. The reason why culevel and cucused have
high loadings in two factors are difficult to teli but
should be further investigated even though the variations
are not that large.

In Component B (it is also one of the more fault-prone
components) the pattern is a little bit different. In Table 8
the result from Release 3 is presented. The results from
the other releases are again very similar except for
Release 2, vvhich had one more factor. The reason why
Release 2 is different could be an indication of some
large changes made to the system. Compared to
Component A, some of the variables are grouped in
separate factors. For example, cl_data_class and
cl_data_vari form a factor on their own and are related to
the class attributes and how the class ušes them.

improvements have been proposed to improve the
structure but not carried out. The problem is, as in most
cases, lack of tirne and resources.

4.4 Step 5: Data Distribution

To further investigate changes to the system in more
detail we compare the actual measurements or
distributions of these variables. Figure 3 and Figure 4
show box plots of some of the variables for the releases.
The variables were selected based on the results from the
PCA. For example, cujevel was included because of its
high loadings in two factors (see Section 4.3). A box plot
shows the 25th and 75th quartiles as a box vvith the 50th
(the median) as a line in the box. The lOth and 90th
quartiles are shown as vertical lines and the small circles
are outliers [14].

Variable

cl_cyclo

ci_data_class

cl_data_vare

cl_data_vari

cl_func_calle

cl_func_calli

cl_dep_deg

cl_dep_meth

cl locm

cl_data_inh

cl_func_inh

in_depth

in_dderived

inderived

cu_level

cucused

cu cusers

Eigenvalue

Accumulated
variance

Factor

1

.956,, „ii

.153

•896 ,;i!
.369

•965 -1̂

ii.83,6i,,|j(| 1
•1' (IHMllIi ' ' l l t l l '

.880

.876 .,

.069

-.007

.106

.040

-.005

-.010

.266

.303

.072

6.719

39.5%

2

.154

.018

.027

.059

.190

.105

.246

227

'".644''

-.048

.424

654 "

.060

.098

,-845,|;,i,
llllll'l>llllllllM',

f.823'" '

,i?MB
2.833

56.2%

3

.008

-.006

-.051

.026

.001

-.001

-.006

.051

.025

.028

-.005

-.040

.933 '•*

,••.932 "'P

-.003

.001

.202

1.768

66.6%

4

.169

• .937

-.107

,,883

.107

.387

.140

.319

-.046

-.018

.123

.063

.002

.014

.116

.126

-.035

1.562

75.8%

5

.058

.070

-.077

.013

.043

.051

.045

.082

.059

.889 , ,

. .775'l|l|||

.598

.028

-.015

.101

.060

.044

1.171

82.7%

Table 8. PCA result from Release 3 for Component B.

Looking at some of the other components in the system
the results is almost identical to Component A, i.e. very
stable factors. This could have two explanations. Firstly,
since PCA groups correlated variables the changes made
to the system are of the same magnitude and do not affect
the structure of the components and the relationships
betvveen them. Secondly, the changes are small patches
and fault fixes that do not affect the overali structure or
the underlying architecture. In discussions with people
from Telelogic it seems that the reason for the stable
structure depends on the fact that most of the changes are
patches according to some faults reported. But many

Figure 3. Box plots of clfuncinh for Component A
and Component B.

In Figure 3, the results for cl_func_inh are presented.
This variable describes the number of inherited methods,
which are not overridden in that class. Again there are
some outliers and the values of Component A's classes is
higher than for Component B. For Component A the
values are very stable. For Component B there is a group
of classes separated from the rest in Release 3 and
onvvards. The box is also becoming smaller and smaller,
vvhich is an indication of that more and more classes are
overridden and therefore this subset of classes is
separated from the rest.

552 Infonnatica 25 (2001) 545-553 M.C. Ohlsson

35

30

25

o 20

Ž, 15

" l O

5

O

-5

Figure 4. Box plots of culevel for Component A and
Component B.

In Figure 4 the distributions of cu_Ievel are presented to
ftirther show the difference betvveen the components. It is
a use-graph metric describing the maximuni length of a
chain of use. For Component A it continuously increases
over the releases. We can also see that the median is
increasing from Release 1 to Release 5. For Component
B it is the opposite where the median instead decreases
even though the upper quartile increases and finally
stabilises. Overall it is a fairly stable system.

5 Summary
Identification and prediction of fault-prone components
are very important tasks to be able to direct effort to
improve quality. It is also important to identif/ causes for
code decay to understand and avoid future problems by
identiiying problematic constructions.

This paper reported on a study vvhere the objectives were
to focus on the evolution of software components and
possible causes for fault-proneness and decay. The
purpose was also to use an existing model to ftiither
evaluate its usefulness and appropriateness in different
domains. Therefore we extended a model that classifies
components as green, yellow and red depending on how
fault-prone they were over successive releases, and
finally applied it in a čase study.

The study also investigated structural changes and tried
to identily causes for the problems. The approach applied

in the study used PCA to reveal structural characteristics
of the changes made to the components and box plots to
highlight and visualise distributions of different
measures. The fault data used in this study was extracted
from an internal fault database, while the structural data
was extracted with Logiscope®. The data came from five
successive releases.

The result, for fault-prone components with a short-term
view, shows some variations between the releases. The
overall misclassification rate varies between 7.5 percent
and 16.5 percent. Some of the variation could be
explained by the components added to the system. These
components were sometimes fault-prone in the release
vvhere they were introduced and not fault-prone in the
successive release. With a long-term focus it was
possible to identiiy the most problematic components in
the releases and avoid the previous mentioned problems.

Both the short-term and the long-term view have
advantages and disadvantages. The short-term view helps
focus on components that are problematic for the
moment vvhile the long-term view captures the
consistently problematic ones even though they not
necessarily are among the most fault-prone ones in each
release. The strength is to use both views in conjunction
with each other to capture different aspects and for
guiding improvements.

The second part of the approach, structural changes, did
not provide any novel results. The different components
analysed had very stable factors with only small
variations in factor loadings and variable groupings.
There were only some small differences between the
components. This was an indication of a stable structure
of the components (or even the system as a vvhole). The
box plots also confirmed this. In discussions with people
at Telelogic we found that most of the changes only
affected small parts of the components, i.e. a few lines of
code. Developers have identified code parts and classes,
which could be re-designed and if these changes are
carried out the PCA and box plots should indicate this.

Finally, the approach has overall been successful in
identifying that the most fault-prone components in one
release are the same in the successive. Even if the
structural analysis only shovved stable components, it is
stili valuabie to carry out this part and especia!ly in the
future if the system is re-designed to be able to keep
tracking the evolution of fault-prone components.

6 AcknowIedgement
We would like to thank VINNOVA for partly funding
the research under grant for LUCAS, Center for Applied
Software Research at Lund University and aH the people
at Telelogic for their support, help and fruitful
discussions. We vvould also like to thank Claes Wohlin
for his review comments.

EVOLUTION OF FAULT-PRONE COMPONENTS IN.. Informatica 25 (2001) 545-553 553

7 References
[I] T.M. Khoshgoftaar, E.B. Allen, K.S Kalaichelvan

and N. Goel, "Early Quality Prediction: A Čase
Study in Telecommunications", IEEE Software,
pp. 65-71, January 1996.

[2] N.F. Schneidevvind, "Software Metrics Model for
Integrating Quaiity Control and Prediction",
Proceedings of the International Symposium om
Soft\vare Reliability Engineering, pp. 402-415,
November 1997, Albuquerque, New Mexico,
USA.

[3] N. Ohlsson, M. Heiander and C. Wohiin, "Quality
Improvement by Identification of Fault-Prone
Modules using Software Design Metrics",
Proceedings of the International Conference on
Softvvare Quality, pp. 1-13, 1996, Ottawa,
Ontario, Canada.

[4] L.C. Briand, V.R. Basili and C.J. Hetmanski,
"Developing Interpretable Models with Optimized
Set Reduction for ldentiiying High-Risk Software
Components", IEEE Transactions on Software
Engineering, 19(11), pp. 1028-1044, 1993.

[5] M. Zhao, C. WohIin, N. Ohlsson and M. Xie, "A
Comparison betvveen Software Design and Code
Metrics for the Prediction of Softvvare Fault
Content", Information and Software Technology,
40(14), pp. 801-809, 1998.

[6] T.M. Khoshgoftaar, E.B. Allen, W.D. Jones and
J.P. HudepohI, "Assessing Uncertain Predictions
of Software Quality", Proceedings of the
International Softvvare Metrics Symposium,
Metrics'99, pp. 159-168, November 1999, Boca
Raton, Florida, USA.

[7] T.M. Khoshgoftaar, E.B. Allen, W.D. Jones and
J.P. HudepohI, "Classification Tree Models of
Softvvare Quality Over Multiple Releases",
Proceedings of the International Symposium on
Softvvare Reliability Engineering, ISSRE'99, pp.
116-125, November 1999, Boca Raton, Florida,
USA.

[8] M.C. Ohlsson and C. Wohlin, "Identification of
Green, YelIow and Red Legacy Components",
Proceeding of International Conference on
Softvvare Maintenance, ICSM'98, pp. 6-15,
November 1998, Bethesda, Washington D.C.,
USA.

[9] R.L. Gorsuch, "Factor Analysis", 2:nd edition,
Laurence Eribaum Associates, Hillsdale, New
Jersey, 1983.

[10] ITU-T, "Standard Z. 100: SDL - Specification and
Description Language", International
Telecommunication Union, 1992.

[II] ITU-T, "Recommendation Z.120: MSC - Message
Sequence Chart", International
Telecommunication Union, 1996.

[12] ' B . Regnell, P. Beremark and O. Eklundh, "A
Market-Driven Requirements Engineering Process
- Results from an Industrial Process Improvement
Programme", Requirements Engineering Journal,
3(2), pp. 121-129, 1998.

[13] Telelogic Technologies Toulouse, "Logiscope
C++ Audit - Reference Manual", Version 5.0,
2000.

[14] C. VVohlin, P. Runeson, M. Host, M.C. Ohlsson,
B. Regnell and A. Wesslen, "Experimentation in
Softvvare Engineering - An Introduction", Kluvver
Academic Publishers, 1999.

Informatica 25 (2001) 555-564 555

The need for speed: a practitioner's view of rapid application
development in e-business
Patricia Carando
IT Essential Technologies
43024 Hedgeapple Court, Ashburn, VA 20147 USA
Phone: 703.724.4367, Fax: 703.724.4367
carando@aol.com ''

Keywords: e-business, reuse, software engineering

Received: June 10,2001

Thispaper reflects apraclitioner's view on the present state of component-based soft\vare development
in eBusiness; the observations are motivated by a recent software effort that created an eBusiness
trading system. We observe which types of componenls significantly increased the speed of our
development and which types, while promising, did not realize their potential. Of particular concern
here are the reasons the promising components did not \vork in our application; we reflect on what
issues should be addressed when attempting to employ components of this type.

1 Introduction
A Practitioner's Vievv. For the modern practitioner of
software development, the current landscape of
possibility is huge. There is a plethora of components,
tools, and techniques from which to choose in developing
new softvvare applications. These components-tools-
techniques ali promise to enhance the software process in
some way; and most promise to enhance the speed at
which applications can be built, because speed of
development is a live-or-die proposition for nearly aH
technology companies.

This pressure has acted as a kind of evolutionar/ force on
the way we do softvvare development. In the 10+ years
since this practitioner was a researcher in softvvare reuse,
burning issues in softvvare engineering and reuse research
have become commonplace realities. The controversy
over object technology has all-but disappeared as Java
captures the hearts and minds of today's programmers.
With it, the "reflex to reuse"—the initial impulse iofmd
a component that does vvhat you need rather than write
it—has spread from tiny communities, like Smalltalk
users or Common Lisp users, to the sizeable community
of Java.' Large-scale architectures like the Softvvare
Backplane'̂ '̂ [1] and the Portable Common Tools
Environment (PCTE) [22] that supported "pluggable"
components for ČASE tools, have given way to the more
general architectures like the Common Object Request
Broker Architecture (ČORBA) [20,21] and the Java 2
Platform, Enterprise Edition (J2EE) [24].

It is likely that the ready-availability of reusable components
for these languages played a significant part in the aclive reuse
vvilhin these communities; but perhaps an equally strong force
was the visual development environments that made the search
for and understanding of the components a transparent process.

Successes and Non-Successes. While this paints a rosy
picture, not ali changes vvere successes. Some of these
changes might be called non-successes rather than
failures because, although they contributed in many ways
to softvvare development, they failed to hit their target—
impacting the cost or speed of softvvare production.

One example of success is the architectures for ČORBA
and J2EE. These have given the multi-user system
dev61oper a big boost in capability. Before the
implementations of these standards, this practitioner built
numerous systems that required custom solutions for
marshalling and de-marshalling, multi-threading for
concurrent users, relational database access, and database
connection pooling. The availability of ČORBA and the
ČORBA services or J2EE could have reduced these time-
consuming coding efforts to one of declaration:
marshalling and de-marshalling reduced to defining IDL
interfaces for communicating processes; multi-threading
for concurrent users reduced to choosing vvhich policy to
employ; relational database accessed reduced to utilizing
JDBC [25] calls; database connection pooling reduced to
specifying the parameters for database login and the size
of connection pools. The availability of implementations
of these architectures has been a big vvin in rapid
application assembly.

An example of a non-success is object technology.
Touted as a foundation for reuse and enhanced
productivity, it didn't pay off as anticipated. Object
technology supports encapsulation, believed to be an
effective means of creating Softw>are ICs [11,12]—
integrated components for softvvare. It vvas hoped that
these Softvvare ICs, like their computer hardvvare

mailto:carando@aol.com
file:///vork

556 Informatica 25 (2001) 555-564 P. Carando

analogues, would promote standardization and use of
interchangeable parts, so that software could be
assembled, not crafted. The use of inheritance as a means
of customizing an existing component was seen as
another form of reuse, allovving a class designer to
capitalize on the work of others. These capabilities of the
technology have—in the author's opinion—paid off in
terms of better design and perspicuoits representation;
they have not paid off in terms of cost. Research has
indicated that there was no real impact to the cost of
softvvare in using the small, concrete components
supported by the reuse of object classes [6]. The
Software ICs were not sufficiently significant
contributors to the effort of systeni building to impact its
overall cost.

Choosing Wisely. Avvareness of vvhat are major enablers
of speedy development and what are minimal—though
valuable—enablers, guides the conscious and
unconscious choices of most software practitioners. The
modem "Softvvare BackPIanes" like ČORBA and its
services and J2EE are major enablers of development.
Where the requirements call for a multi-user server, one
or both technologies are obvious considerations. Small-
scale components, such as collection classes, are part of
detailed design choices. These are usually reflexive
choices on the part of the developer. Who would develop
their own List/Set/Queue, when these classes are readily
available? But these are examples—large and small-—of
horizontal components; horizontal components are assets
reusable across application domains or industry sectors.
Horizontal components fill an obvious need in rapid
application assembly and have been some of the most
successfijlly reused components. However, vertical
components serve an equally important need in rapid
development within a specific domain, such as
manufacturing or finance. Traditionally, they have been
less successful, possibly because of inadequate domain
analysis or immaturity of the domain [10].

This paper discusses our experiences in rapid application
assembly with a large-scale horizontal component (J2EE)
and a large-scale vertical component, the eBusiness
framework, part of the Commerce Server from BEA [3]
In the following section we describe the motivation for
the application and the challenges faced, particularly our
need for rapid decision-making when selecting
architectural components. In Section 3 we describe the
software and hardware architecture chosen; and in
Section 4 we identify the matches and mismatches in
utilizing a vertical component for a domain new to
Computer support. Section 5 is a reflection on vvhat we
and other practitioners should consider when selecting
large components for reuse.

2 Motivation and Challenges
The application that is the basis of the experiences in this
paper is eSoitrce. eSource is an innovative business-to-
business (B2B) application that allovvs members of the
American Warehouse and Manufacturers Association

(AWMA) to trade with one another electronically. The
application provides the ability for trading members to
log on to the web site, view the on-line catalogue of their
trading partners, select items from the catalogue, and
then generate purchase orders for those items. The
purchase orders are transmitted to the trading partners in
one of the specified formats: electronic data interchange
(EDl)^, e-mail, or FAX. The major benefits of the
application to the AWMA Community are:

1. Members who previously have little-to-no
automation support for purchase order creation
can easily create purchase orders for their
trading partners.

2. The application enables trading partners that are
not EDI-enabled to trade with EDl-only
members; this is a tremendous benefit to the
members who do not want to make an
extremely complex and costly investment into
EDI technology.

The eSource application was created for a group of
entrepreneurs who have formed a company around the
technology. They are referred to in this paper as "the
Business Analysts." The Business Analysts were very
familiar with the AWMA members and with the trading
domain.

Hedonic Considerations. Prior to the development of
eSource, another company had created a prototype
system for the AWMA Community. The Business
Analysts indicated that the prototype had been expensive
to build and had taken too long to create. Moreover, the
prototype had failed to impress. Complaints were
registered about the prototype's limited functionality—an
inherent aspect of a prototype—but the Business
Analysts felt that one of the major concerns with the
prototype was the user interface. This was a simple
interface that was free of adornment, merely emphasizing
the functional aspects of the system. The implication of
the Community's complaints was that they felt the
interface was pedestrian. It was unsuitable as a vehicle to
carry the Community into the 2 P' century.

While focus on the attractiveness of the interface may
seem superficial, there are valid reasons to consider its
importance. For many individuals, shopping is a hedonic
experience—a source of pleasure that is separate from
the goal of purchasing products [16]. Research with
traditional shopping environments indicates that
environments that are made more enjoyable and exciting
may inject positive affect into the product evaluation and
decision-making process [16] and as a result, reflect
more positively on the environment that supports the
process. The implications for eSource were clear: "the
eSource experience" must be not only functional but fun.

^ EDI (Electronic Data Interchange) is a standard format for
exchanging business data. The standard is American National
Standards Institute X12 and the Data Interchange Standards
Association developed it.

THE NEED FOR SPEED... Informatica 25 (2001) 555-564 557

The elaborate sites on the World Wide Web had set a
very high acceptability an level for eSource.

Model and Metaphor Challenges. The diversity of the
AWMA community presented another challenge to the
system design. Many members of the community have
deep Computer knowledge, so the on-line shopping
experience would fit their present knowledge. Many
other members, however, have very little computer
experience and limited access to the Internet. For these
individuals great čare was required in the choice of the
model for interaction. Not only must the interface exploit
a povverful metaphor^, so as to be intuitive to the
computer neophyte, but the task model [5], as
implemented in the application must be responsive over
s]ow dial-up lines and resilient to unexpected
communication drops.

The Speed Challenge. The Business Analysts had an
opportunity to develop an application that would be
adopted by the AWMA Community, but the window of
opportunity for funding was very limited. The failure of
the previous prototype had made the Community wary of
follow-on efforts. It was necessary to quickly create and
make available an application the Community could try
and consider. Thus, with funding in jeopardy, the clients
anxious, and the use cases and requirements incomplete,
we dashed forward.

3 The Application Architecture
One of many eCommerce platforms under evaluation in
the development lab was BEA's WebLogic [2] . BEA
had recently added two components to the EJB 1.1
compliant WebLogic server: the Commerce Server [3]
and the Personalization Server [4]. These were added to
allow WebLogic to compete in the eCommerce market.
A demo application, "Buy Beans", was packaged with
the evaluation software. The demo highlighted the
capabiiities of the components; it also was visually
dramatic. The Business Analysts, upon seeing the Buy
Beans demo, felt it was a very close match to the
functionality they needed and the look-and-feel was a
major selling point. The final eSource interface is based
on the Buy Beans demo.

We chose to use the WebLogic server because of
previous familiarity, its plače as market leader for Java
application servers, as well as the fact that it runs on
Windows NT (the initial target platform) and Sun
Solaris (a possible follow-on platform if more povverful
servers are needed). The WebLogic server turned out to
be an excellent choice. Hovvever, the Personalization
Server and the Commerce Server were unknowns that
presented major developmental challenges.

The Personalization Server. The Personalization Server
supports customization of Web content for the individual
user through Java Server Pages and specialized EJBs.
The Personalization Server allovvs the developer to
manage users, tailor Web content, defme and manage
rules for the content, and create and control "portlets". A
portlet is a specialized content area that occupies a small
'window' in the portal page. The portlet can contain
content quite independent of anything else on the page.

The Commerce Server. Much of our expectations for
leveraging the capabiiities of the WebLogic eCommerce
components rested vvith the Commerce Server. The
Commerce Server is a framevvork of Java classes vvith
considerable automation support for generating
eCommerce applications. The name of the framevvork is
"eBusiness". We discuss in detail our efforts in utilizing
this framevvork within eSource in Section 4.

The Platform TopoIogy. The application architecture
and platfonn topology is shown in Figure 1. It consists of
BEA's WebLogic Server, running WebLogic 5.1 [2] that
provides Web support to Members (users). The
additional components that enhance the functionality of
the VVebLogic server for eBusiness and run on the same
machine are the Commerce Server 2.0 and the
Personalization Server 2.0''. The WebLogic server sends
data on purchase orders to the EDI Server. Both the
WebLogic server and the EDI Server store data onto an
Oracle 8i database, running on a separate machine. Bach
of the machines is running Windows NT 4.0, configured
with 2 gigabytes of memory.

EDI Server

m

Oracle
Database

VVebLogic
Server

Figure I: The eSource Platform Topology

An appropriate metaphor is an unconscious
consideration in most modern interface design; it is
worth noting here because, in developing for neophyte
users within a new domain, initial assumptions may need
re-examination.

"* Current versions of the BEA eCommerce components
are at revision 3.5. They have been extended
considerably from the 2.0 version.

558 Informatica 25 (2001) 555-564 P. Carando

4 Match and Mismatch in the
eBusiness Domain

Electronic commerce—the interactive merchandising of
consumer goods—is a relatively new area for computer
support. Uniike other domains that have long profited
from electronic technology, such as accounts receivable
systems and biiling systems, the domain of eBusiness is
very recent. As a noted in the Model and Metaphor
section, the questions we faced in evaluating the
Commerce Server eBusiness framevvork focused on the
follovving:

• Is the metaphor for interaction effective?
Wiil the diverse AWMA community fmd the
interface consistent with their intuitions
regarding ordering business items?

• Is the interaction style, defined by this
metaphor, vvell supported in the design and
implementation model? To be perceived as
useful, the system must demonstrate adequate
response time and up-time [14]: implying that th
implementation must support adequate
throughput and scale.

Does the Framovork Match the Domain: Is
B2B = B2C?
In one sub-domain of eBusiness, the Business-to-
Consumer (B2C) domain, an effective metaphor has been
the individual person shopping in a store. Everyone has
had the experience of going to a store, examining goods,
and purchasing those goods. Adopting this metaphor for
the B2C experience has been very successfiil. Those
Web sites that created a sense in the consumer of
familiarity vvith the scenario, while supporting the
essential functionality needed for eCommerce—have
prospered; those that did not have failed (or changed).
These Darvvinian experiments in B2C metaphors have
resulted in a quick evolution in creating effective models
for these kinds of system.

Another sub-domain of eBusiness, the Business-to-
Business (B2B) domain, is less vvell explored. One might
guess that it is likely to have a great deal of commonality
vvith the B2C domain because they are essentially about
purchasing merchandise, but the immediate selection of a
metaphor that captures the essence of the experience is
likely to elude. Far fevver people participate in
merchandise selection betvveen business entities. There is
also a sense that, vvith ali the possibilities for
relationships betvveen businesses, there might be fevv
universals. Except in specific cases vvhere interactions
are regulated or defined or conventionally performed in a
given way, it might be difficult to articulate vvhat is an
effective support mechanism for B2B eCommerce.

In the eSource application, the Business Analysts vvho
vvere driving the effort had narrowIy defined the B2B
interaction. The B2C experience of a single Consumer
shopping in a store vvould be very similar to the B2B

experience in eSource, except for a fevv differences.
These differences seemed small:

• The Consumer did not buy goods from a store,
but created purchase orders to be sent to the
"store" for fulfilment;

• The Consumer vvas not a single individual, but
an agent for a Company;

• The Consumer did not shop in one store, but in
a mega-store, vvhere he/she can choose products
from multiple vendors ali at once.

With more famiiiarity vvith the sub-domains, vve might
have seen that these "small" differences had big
implications for the supporting model. Unfortunately,
like everyone else in unexplored terrain, vve had no such
avvareness, proceeding as vve vvere vvithout a "map." Our
first finding vvas thus:

• The Framevvork Employed Must Be a RenI Match
for the Domain

The differences betvveen the B2C and the B2B
interactions are synopsised in Table 1 and Table 2. We
characterize the mismatches betvveen the framevvork
needed and the framevvork available in subsequent parts
of this section.

Table 1: A B2C Scenario

1. The B2C scenario begins vvith a Customer visiting
a Web site for a virtual store vvhere he/she is seeking
merchandise to buy
2. The Customer examines available products on the
site.
3. The Customer may select one or more products for
purchase by placing them in a virtual Shopping Cart
4. The Customer can make modifications to these
purchasing decisions by manipulating the contents of
the Shopping Cart: deleting items, changing item
quantities or properties; the Customer may decide at
any point to abandon the shopping activity and leave
the site.
5. If the Customer chooses to buy the products in the
Shopping Cart, he/she proceeds to Check Out. At this
point, Customer Identification, credit Information,
and shipping Information is coUected. Most systems
allovv the consumer to save this Information in a
profile to be used later for the Customer's
convenience and as data in developing marketing
strategy for the virtual store.
6. When the purchase activity is complete, the
customer receives a confirmation code whereby
he/she can track the status of the order.

Table 2: A B2B Scenario

1. The Customer in a B2B is a Company, rather
than an individual, as in the B2C. The Company may
have one or more agents or Members vvho are
authorized to trade (buy) for the Company. The

THE NEED FOR SPEED. lnfonTiatica25 (2001) 555-564 559

Member visits the Web site for the virtual store vvhere
he/she is seeking merchandise.
2. Unlike the B2C example vvhere the Customer
can begin shopping immediately by examining
products, ihe Member miist present aiithorization lo the
systems that he/she is a valid Member of the Irading
alliance. Unlike the B2C vvhere ali Customers are
allowed to shop in the virtual store, in a B2B, only
validated Members whose Companies have established
trading agreements are al]owed to enter the store.
Another difference between a B2B and a B2C is that, in
most cases, the relationship betvveen Customer and
virtual store is a many-to-one relationship: many
Customers and one store. In a B2B, the relationship
between Companies is a many-to-many relationship:
many Companies can trade with many Companies.
This is a more complex model to support electronically
than is the many-to-one relationship and has
development implications, which we will see later.
3. Steps 3 and 4 in the B2C activities covering
selection and purchase of merchandise are very similar
for B2B Members, but again there are differences that
impact the domain model and the system
implementation:)wt ali Members of a Company have
equal capabililies:
• One ar more Members may have administrative
ar managerial rights for the Company. This may
include extra privileges to allow them to audit buying
activity of other Members, authorize or revoke
permissions of a Member, including revoking their
authorization.
• Members may be restricted to trading with only
a subset of the trading partners of their Company.
In short, ali the complexities for hierarchical authority
that are unnecessary in a B2C may be pari of a B2B.
4. Check out for a B2B Member does not regiiire
Identification or profiling because this Information has
been collected when the Member vvas authorized to use
the system. Customisation of the order may occur at
this point, however, including indications of where to
ship the goods, specifving a shipping cut-off date, etc.
5. When the purchase is complete, the Member
receives one or more confirmation notices whereby
he/she can track the order. Multiple confirmation codes
may be generated if goods are requested from multiple
partner Companies.

ShoppingCart
{from order)

T ''•X ->-̂ -'
StandingOrder

(from order)

0..n
1 OrderLine
[(Irom order)

Perso "1
Y'"

Member
(from member j

""'V """
1..n

J
- [("

Company
om member)

/ /,.„
PurchaseOrder

(from purchase Order)

I...̂
PoOrderLine

(from pufchaseOrder]

Catalog
(from cablog)

l..n
[rades vw(ft

con arns

i'-"
Catalogltem

(from catelogl

•

(n <= 1500]

Figure 2: The Domain Frameworkfor the eSource B2B System

A Member, who is a kind of Person, is an associate of a
Company. A Company trades with one of many companies.
Each Company has one or more on-line Catalogs. (Only one
Catalog vvas allowed in the llrst release.) Each Catalog contains
1 to many Catalog Items, typically the number of items didn't
exceed 1500. The Member can select items for purchase from
Catalogs belonging to trading partners of his/her Company.
Selected Items are placed into a Shopping Cart. The Shopping
Cart then contains Order Lines Ihat include Item Information,
Quantity ordered, and the Priče for that Quantity. The Shopping
Cart can be saved as a Standing Order, to be activated at
another time when the Member wishes to purchase the same
items. (The content of a Standing Order is then added to the
Shopping Cart; one or more Standing Orders can be added to
the Shopping Cart.) Upon checkout, Purchase Orders are
created from the contents of the Shopping Cart. A Purchase
Order contains PoOrderLines with an immutable Priče for the
Items and Quantities. (Purchase Orders are saved into the
database and must never be change once created.) A separate
Purchase Order is created for each Company's items in the
Shopping Cart. Ali Purchase Orders generated remain the
property of the Member and may be viewed on-line.

The eBusiness Framevvork from BEA's Commerce
Server. Figure 3 illustrates a portion of BEA's
Commerce Server framevvork that was relevant to the
eSource project. Shovving this limited view of the
framework probably is an injustice; it has a far richer
structure than is illustrated. In addition to classes shown
here, the Commerce Server provides packages that
support a gift registry, inventory, invoicing, shipping,
tax, trouble tickets, and a shopping advisor that matches
customers to items.

The eSource Domain Framework. A simple
representation of the final framework for eSource is
shown in
Figure 2. While Company is a primary element in a B2B
framework, as noted in
Figure 2 most of the relationships are associations
between the company Member and other framevvork
elements.

ItTvdce
(frofninvdclngj

""V"
Crder

(hmonlGr)^

^-';^, Y I Ouanlt/ I
Cr<kxPriceCi\ciiatortki\cy I / \ (»omurilslJ'~~

(fomortfcil / V •-"•

/ [(tomurtl^J

J rtckln((Jst
i(rromship(dng)|

(fromccntac

en (Trcmcustirmrl

OtlerUra I

Ckjatl(y j
(Aominits)

em I
nlteiTf

l«nf^ceCalciJatlanRQllcy
(frcmlfefrf

Figure 3: Some ofthe Classes from BEA's Commerce Server

560 lnformatica25 (2001) 555-564 P. Caiando

The eBusiness Framework is a very rich structure for
creating eCommerce applications. It is well modelled and
makes few, if any, compromises with its "object-
oriented-ness"; prices and quantities for goods are
modelled as objects, as are policies for pricing. This
approach promotes flexibility in areas where flexibility is
important. Unfortunately, it may not promote optimal
performance, particularly where such flexibi]ity isn't
needed. The next section discusses such issues in detail.

Differences in the Frameworks and
Implications
This section covers the differences between the final framework
for eSource and that of BEA's eBusiness. Design of the
eSource framevvork was not even begun when we had to choose
the architeclural components of the system. Tlie subsequent
divergence of the two models was a result both of grovving
avvareness of differences betvveen B2B and B2C domains and
the inevitable churn of requirements changes. These changes
were particularly viruient wilh eSource, perhaps because of the
nuinber of stakeholders involved. Table 3 is a synopsis of the
similarities and difference in the models.

Table 3: Differences in the Frameworks

eSource Class
Person
Company
Member
Shopp ingCar t
S t a n d i n g O r d e r
C a t a l o g
C a t a l o g l t e m
No eguivalent
Default priče or
promotional priče
O r d e r L i n e

Invariant attribute of
Catalogltem
P u r c h a s e O r d e r

Hard-coded

PoOrderLine

Attribute of
PoOrderLine
Some similarities to
PurchaseOrder
Handled externally
to eSource through
billing syslem:
Information
extracted through
company relations

eBusiness Class
Pe r son
No equivalent
Customer
Order
No ecjuivalenf
No equivalent
I t em
Q u a l i t y
I t e m P r i c e C a l c u l a t i o n P o l i
cy
Similar to eBusiness OrderLine
but not identical
P r i č e

Similar to Order and
PackingList
OrderLineCalculationPoli
cy
Similar to PackingList, but not
eguivalent
Q u a n t i t y

P a c k i n g L i s t

I n v o i c e

Person. Fortunately, a Person is just a Person in both
systems, with first and last name, etc. Many of the
descriptive attributes of a Person were not necessary for
eSource.

Company. Company Information includes Company
name, tax id or DUNS number, billing address, and
default shipping address, trading partner relationships,
among other Information.

Member versus Customer. While a Customer is
similar to a Member, a Customer is an individual
Person in the eBusiness application but a Member is an
agent for a Company in eSource. Company affiliation is
extremely important in eSource because this is how an
agent is authorized. Moreover, some Company Members
have special privileges allovving them to change the
Company profile or administer the rights of other
Company Members.

ShoppingCart versus Order (and secondary classes) A
shopping cart in most B2C applications is simply a
means for holding items selected for purchase by the
Customer. While also is true in eSource, there are
crucial differences:

1. The shopping cart must hold items from
multiple catalogues. This facility is needed
because the Member might examine catalogues
from multiple companies and buy from several.

2. The shopping cart could be loaded with items
from Standing Orders, see below.

• OrderPriceCalcuIationPolicy. A class used to
compute the total cost of the Order, including
costs for shipping and tax. Not used in eSource
because shipping was not relevant and tax vvas
left out of the first release.

StandingOrder. A StandingOrder is a collection of
goods routinely ordered by a Member. Standing orders
might be goods ordered \veekly or monthly, or they
might be goods ordered only during a particular season,
such as summer merchandise. Because a
StandingOrder may reference Catalogltems whose
availability and prices vary over tirne, operations on a
StandingOrder differ from the simple
add/modify/delete operations Members perform on a
ShoppingCart. When adding the items in a
StandingOrder tO a ShoppingCart, the availability
and current priče must be checked to be sure that the
addition is valid.

Catalog. A Catalog is an aggregation of
Catalogltems. A single catalog per company is
allovved for the first release. Subsequent releases may
support multiple catalogs to allow for tier pricing.

Catalogltem versus Item (and secondary classes) A
Catalog contains a Vector of Catalogltems are
objects in eSource, but an item is an Entity Bean in the
eBusiness framework. (See 'Does the Persistence
Model Fit the Interaction Paradigm?' belovv.)

• "Hard coded" Priče Calculation versus
ItemPriceCalculationPolicy. In the eBusiness

file:///veekly

THENEEDFORSPEED. Informatica 25 (2001) 555-564 561

.framework the l t emPr iceCalcu la t ionPol icy is an
aggregate of policies that can be associated with an
I tem to determine its priče. The
I temPr iceCalcula t ionPol icy implements the
Strategy Pattern [15] allowing specialized pricing
policies to be associated with an item This supports
fine-turning of pricing for different Items, quantities,
occasions—a wide variety of situations. Using the
Chain of Responsibility Pattern [15], "pluggable"
policies can be selected appropriately for the
circumstances.

We had expected considerable benefit from the
I t e m P r i c e C a l c u l a t i o n class because pricing is a
very complex aspect of eBusiness, particularly in B2B
relations. Prices vary according to quantity ordered,
promotions, and established relationships betvveen
businesses, among many other options. AUovving this
level of flexibility to pricing and being able to
encapsulate these policies in a pricing policy class
seemed to be a good means of capturing the
Information. Unfortunately, in going to the AWMA
members, we found that there was little consistency
amongst their pricing policies; they varied widely. It
became clear that encapsulating their policies vvould be
impossible. Even getting them to articulate them for
encapsulation wouid be an arduous process,
prohibitively time consuming. We abandoned it in
favor of a single priče within a Catalog, with an
optional promotional priče valid for a specified range
of dates. Priče changes could only occur with Catalog
updates. While this simplified approach did not flt the
pricing strategies for any but the smallest of AWMA
member companies, ali agreed that they would adopt
this approach in order to get started in using the system.
• Quality. Used to match Customers to items.
Not applicable to eSource.

Order versus PurchaseOrder . An Order (equivalent
to a ShoppingCart in eSource) is not a
PurchaseOrder. Multiple PurchaseOrders may be
created from the ShoppingCart on checkout.

eSource OrderLine versus eBusiness OrderLine (and
secondaiy classes) The aggregation of aH ordered items
in the ShoppingCart, the two OrderLines differ
primarily in the representation of Priče and Quantity.

• Priče. Priče is a single value in the Catalog
within eSource, except where there is a promotional
priče for specified effective dates. Within the eBusiness
model, Pr iče specifies both a value and a currency,
allowing for conversion betvveen currencies. Although
the eSource application is intended to become
internationally available, requiring the facility for
currency conversion, that capabiiity was not foreseen in
any anticipated release.
• Quantity. Like Priče, Quanti ty Stores a
value and a unit, supporting unit conversion betvveen
differing measures. Unit conversion was considered too

idiosyncratic for goods vvithin the domain to be useful
to eSource.

"Goodness of Fit" of the Persistence Model to the
Problem. The persistence model for an application—
hovv and vvhat Information in the application is stored—
follovvs from the domain model. That is, there is a high
correspondence betvveen the domain model and the
logical format of the data in the database.' Clearly, there
should be a good "fit" of the problem to the persistence
model. In hindsight, these are some issues vve found vve
must consider in determining "goodness of fit":

1. Does the persistence model fit the interaction
paradigm?

2. Are there implicit scale limitations in the
persistence model that are in conflict with
requirements?

3. Does the persistence model support sufficient
"separation of concerns" betvveen the logic tier
and the data tier?

4. Does the framevvork support some degree of
automation to ease the more rote coding tasks?

Does the Persistence Model Fit the Interaction
Paradigm? In selecting a persistence model for an
application, the interaction paradigm of the user must be
carefully considered. Some of the many questions
designers ask before solidifying a model include:

• What data does the user access frequently?
• What activities are most data-intensive?
• What data is modifiable and hovv frequently is it

updated?
• What data is read-only?

Ali of these questions drive persistence modelling
decisions:

• Data frequently accessed is made readily
available; possibly this data is cached in the
server to speed acquisition. This approach is
modelled on techniques used in OODBMS [8,9]

• Data-intensive activities must be treated
carefully because a poorly. implemented
persistence model could slovv performance for
ali users.

• Data that can be modified by the user must be
protected vvithin transaction boundaries;
composite objects must be ensured data integrity
through atomic commit [9]. Performance issues
also complicate modifiable data because the
designer must balance loss of user edits, stili
uncommitted and residing in server memory,
against too frequent transactions that might
impact performance.*

Where this isn't the čase, there are likely to be
performance problems. These may be unavoidable vvhen
grafting a nevv application onto a legacy database.
* As noted in the Model and Metaphor Challenges
section, many members of the AWMA user community
dialled in over communication lines that might

562 Informatica 25 (2001) 555-564 P. Carando

• Read-only, invariant data is the easiest to handle
because complications involving the integrity of
concurrently accessed data aren't an issue [13]
The structuring of this data can often be fairly
lightweight because the mechanism for
modification and update need not be part of the
persistence model.

When a framevvork incorporates a persistence
mechanism into its capabilities, the designer must
carefully assess the assumptions built into that
mechanism against the reality of the user interaction
model.

In ansvvering the design questions about user interaction
in eSource, we found the following: the user's
ShoppingCart, StandingOrders, Catalogs of
trading partners, and Catalogltems are the most
frequently accessed data. Less frequently accessed
information includes previous PurchaseOrders,
limited to 250 that are "vievvable" on-line, and Company
and Member profile information. The most data-intensive
activity engaged in by the user is search of the
Catalogs. Although the Catalogs are limited initially
to no more than 1500 items, a Member may search many
Catalogs if his/her Company has many trading partners.
A naive search could result in the request for ali items in
ali Catalogs—a possibly very data-intensive operation.
Fortunately, the Catalogltems are not modifiable; the
data in them is read-only to the searching Member.
(eSource personnel do Catalog update through a
separate process as an administrative function.)

The eBusiness framework supports a persistence model
that turned out to be a poor match for this interaction
paradigm. Much of the mechanism for persistence was
auto-generated from a Rational Rose model [23] through
the Smart Generator. (This is a valuable capability,
discussed later under 'Is There Automation Support?')
There also was a niče separation between the domain
class, such as Member, and the Data Access Object or
"DAO" [19] class that encapsulated the JDBC code for
persistence management. There were some niče
optimisations, similar to those described in [17,18] for
handling EJB Entity Bean references to contained
elements. These minimized niemory usage through
judicious loading of primary keys. The framevvork also
supported key comparators to check equality relations
betvveen objects through their primary keys. Hovvever,
the framevvork required that a persistent object be an EJB
Entity Bean. This caused us initial concern about
performance and these concerns vvere borne out. Prior to
committing to a detailed design, we gathered
performance metrics [7] using Entity Beans on our target
hardvvare. We found it prohibitively slovv. Moreover,
because there is very iittle modifiable data vvithin
eSource, the full capabilities of Entity Beans vvere not
needed. We found vve could get very good performance

and ali the management capability vve needed by
modelling the Catalog using Bean Managed persistence
and the Catalogltems as a collection of simple objects
referenced by the Catalog.

Does the Persistence Model Fit the Requirements?. As
discussed in Section 3, under The Platform Topology, the
eSource application ušes an Oracle database as a
repository for both EDI information and company
information (Company, Member, Catalogs, etc). One of
the implicit requirements for the repository vvas that is
transparent to SQL queries; by that vve meant that access
to and modifications of the data store could be
performed, if necessary, completely through SQL
commands. It vvas important that there be a separation of
concerns betvveen each of the system tiers (interface
layer, logic layer, data layer); that is, each tier vvas
independent of any other. Not only did vve adhere to this
as an architectural principle to promote plug-
compatibility amongst layers, but also vve needed to be
able to extract data for the eSource billing system,
independent of the logic layer'. The billing system
required access to partner data so as to bili eSource
customers for using the trading service.

Unfortunately, a late discovery was that the automation
support provided by the Commerce Server stored
aggregate elements as LONG RAW values in the
database. The priče of an item, for example, vvas stored
as a serialized object in a LONG RAW format. This
approach is commendable in that it minimizes the
number of "Iittle objects" that must be tracked when a
primary, domain object is made persistent, vvhile
allovving for the object to be materialized vvhen needed
as an object. Hovvever, this approach conflicted vvith our
requirement.

Given aH the conflicts betvveen our performance
requirements and our data transparency requirements, vve
jettisoned the modelling approaches that supported
automation and vvrote our own DAO classes.

Are There Implicit Scale Assumptions? Some
modelling decisions may inadvertently build in an
assumption of limited scale. In considering the elements
supported in the eBusiness model and the way in vvhich
they are made persistent, one gets the impression that the
framevvork is targeted at an application vvith rather
limited scale. If one considers the majority of shopping
systems on the Web (vvith the exception of mega-portals
like Amazon.com), a limited scale is perfectly
appropriate. Most shopping systems don't carry hundreds
of thousands of items. Probably, most shoppers don't
vvant to see that many. A few hundred or a thousand
items probably are sufficient. Our early performance
metrics gathering suggests that this perception of limited
scale is probably correct—at least for our target

unexpectedly drop; loss of user edits vvas a primary
concern in application design.

This vvas both a "separation of concern" issue, as vvell
as a performance issue.

THE NEED FOR SPEED... Informatica 25 (2001) 555-564 563

architecture. Anecdotal evidence from another eBusiness
developer indicated that on a iarge Sun server,
performance was quite acceptable.

Is There Automation Support? The eCommerce
framevvork automates many of the tasks of creating a
B2C application. These automation procedures have been
mentioned in passing, but because they are such a good
example of support, we highhght them here:

• A Rational Rose model is supplied that models aH
the framevvork elements and documents the elements
and reiationships;

• Stereotypes on the elements and reiationships specify
how the elements will be made persistent;

• Export of the model in the proper form for the
SmartGenerator is supported as a Rose add-in tool;

• The SmartGenerator ušes the exported model to
generate the supporting interfaces and classes
necessary to create Entity Beans; behavior for the
Impl classes must stili be hand coded.

• The DAO classes with the requisite JDBC code are
generated automatically.

• The database code can be automatically generated (if
using Bean Managed Persistence rather than
Container Managed Persistence) from a mapping file
of database properties.

These facilities stand as an examp]e to be emulated by
other framework providers.

5 Conclusions

Our experiences in using the J2EE horizontal component
of the application were more successful than using the
vertical component, the eBusiness framevvork. The
reasons for this disparity seem to be:

1. A greater familiarity with the J2EE standard and
the BEA WebLogic implementation;

2. A poor match of the B2B domain with
eBusiness B2C framevvork.

3. A lack of familiarity with the rich and deep
technologies supporting the eCommerce
mechanisms.

Our difficulties vvith employing the vertical framevvork
have lead to the foUovving observations:

• The Framework Einployed Must Be a Very
Close Match for the Domain

A vertical component is a very specific perspective on a
domain. Unless there is a near perfect match betvveen
your application's perspective and the framevvork,
specialization of the framevvork probably won't vvin you
much. It would be best to- choose these large-scale
vertical components after finishing detailed design. At
that point you can determine hovv close the match
betvveen your design and the framevvork is and vvhether
you can modify your design to get more utiiity from the
framevvork—or live vvith the mismatches. Where this
timing of choice isn't possible, prepare to factor into
your schedule enough time to create your ovvn
framevvork if you must jettison the vertical component.

• The Persistence Model Must Fit the
Interaction Paradigm

The designer must be aware of which data is most
frequently accessed, vvhich is modifiable or read-only,
and vvhich activities are most data-intensive in order to
correctIy choose a persistence model.

• Implicit Scale Assumptions Must Be
Carefully Considered

Design assumptions vvithin the framevvork may assume a
small user base or may assume depIoyment on a very
Iarge server. Knovving the assumptions beforehand can
minimize dashed expectations.

• Automation of Rote Coding Tasks Is Very
Helpful

Much of the effort of creating the code to support EJB
definition, domain object vs. DAO object separation and
JDBC coding can be automated—and should be.

6 References
1. Paseman, W. (1989) "The Atherton Softvvare
BackPlane—Architecture for Tool Integration," Unix
Revievv, April.
2. WebLogic Server 5.1, documentation available from
BEA web site: http://vwvw.beasvs.com.
3. BEA Systems, Inc. (2000) BEA WebLogic Commerce
Server Components Developer's Guide, BEA WebLogic
Commerce Server 2 .0, Document Edition, 2.0.
4. BEA WebLogic Commerce Server Components
DeveIoper's Guide, BEA WebLogic Commerce Server 2
.0, Document Edition, 2.0.1.
5. Benbasat, I. and P. Todd (1993) "An Experimental
Investigation of Interface Design Alternatives: Icons vs.
Text and Direct Manipulation vs. Menus", International
Journal of Man-Machine Studies 38:369—402.
6. Biggerstaff, T. (1994) "The library scaling problem
and the limits of concrete component reuse," In Srd
International Conference on Softvvare Reuse, pages 102-
109, Rio de Janeiro, Brazil, November 1994.
7. Carando, P. (2001) "Performance Assurance: An
Architectural Approach to Meeting Server-Side Java
Performance Requirements", Java Report 6(4):36—43,
April.
8. Cary, M., DeWitt, D., and Naughton, J. The 0 0 7
Benchmark, Computer Sciences Department, University
of Wisconsin-Madison.
9. Cattell, R. G. G. (1991) Object Data Management:
Object-Oriented and Extended Relational Database
Systems, Addison-Wesley, Reading, MA.
10. Carnegie Mellon Softvvare Engineering Institute
(2000) Domain Engineering and Domain Analysis,
Softvvare Technology Revievv document.
11. Cox, B. (1986) Object-Oriented Programming, An
Evolutionary Approach, Addison-Wesley.
12. Cox, B. (1990) Planning the Softvvare Industrial
Revolution, November 1990, IEEE Softvvare Magazine.
13. Date, C. J. (1995) An Introduction to Database
Systems, 6* Edition, Addison-Wesley, Reading, MA.
14. Daviš, F. D. (1993) "User Acceptance of Information
Technology: System Characteristics, User Perceptions

http://vwvw.beasvs.com

564 Informatica 25 (2001) 555-564 P. Carando

and Zbehavioral Impacts." International Jovrnal ofMan-
Machine Studies 38:475-487.
15. Gamma, E., R. Helm R. Johnson, and J. Vlissades
(1995) Design Patterns, Elements of Reusable Object-
Oriented Softvvare, Addison-Wesley.
16. Holbrook, M. B., and E. C. Hirschman (1982) "The
Experiential Aspects of Consumption: Consumer
Fantasies, Feelings, and Fun." Journal of Consumer
Research 9(September):132-140.
17. Holland, G. (2001). "Entity Bean Relationships in
EJB 1.1, Part 1: The Basic Technique", Java Report,
6(4):12.
18. Holland, G. (2001). "Entity Bean Relationships in
EJB 1.1, Part 2: Robust and Practical Techniques", Java
Report, 6(6):58—61.
19. Kassem, N. and Enterprise Team (2000). Designing
Enterprise Applications with the Java 2 Platform,
Enterprise Edition, Addison-Wesley, and at
http://java.sun.com/i2ee/blueprints.
20. The Object Management Group (2000). The
Common Object Request Broker: Architecture and
Specification, ČORBA 2.4.2, available through the

Object Management Group web site:
http://w\v\v.omg.org.
21. The Object Management Group (2000) Individual
service specifications available at the Object
Management Group web site: http://www.omg.org.
22. Long, E. and F. Morris (1993) An Overview of
PCTE: A Basis for a Portable Common Tool
Environment, Ed Long and Fred Morris, Technical
Report CMU/SEI-93-TR-1, ESC-TR-93-175.
23. Rational Software Corporation (2001) Rational Rose:
Model Driven Development with UML, data sheet,
available through the Rational web site:
hltp://www.rational.com.
24. Shannon, B., M. Hapner, V. Matena, J. Davidson, E.
Pelegri-Llopart, L. Cable, et al. (2000) Java™ 2 Platform,
Enterprise Edition: Platform and Component
Specifications, Addison-Wesley.
25. Sun Microsystems Inc. (1999) JDBC™ 2.1 APl,
final specification, available at:
http://iava.sun.com/products/idbc.

http://java.sun.com/i2ee/blueprints
http://w/v/v.omg.org
http://www.omg.org
http://www.rational.com
http://iava.sun.com/products/idbc

Informatica 25 (2001) 565-573 565

Management process for supporting the component development

Haeng-Kon Kim'
Dept. of Computer Engineering, CathoHc University of Daegu ,KyungSan, TaeGu, 712-702, Korea.
hangkon(fl),ciith.cataegii.ac.l<r

Roger Y. Lee
Dept. of Computer Science, Central Michigan University, Mt.Pleasant, Ml 48859, U.S. A.
lee@cps.cmich.edu

Keywords: Component-Based Development, management process, independent extensions, cost effective, component
repository

Received:lVIay28, 2001

CBD (Component-Based Softvvare Development) has rapidly become a substantial and interesting field
in the development of business applications. Because CBD represents a new development paradigm
composing applications from software components, increasing requirements for productivity of the
flexible systems development can be solved by CBD technologies. It must be recognized that CBD does
not mean acquiring parts from anywhere. CBD is a nevv discipline and there are many associated
problems which remain unsolved

In this paper, we try to clarify the CBD-related theories as practical techniques to be applied to real
systems. So, we suggested technical theories for guidelines management for supporting the development
of the CBD process, especially for component development. We focus on setting standards for
components and address the impact that CBD has on managing component development. This includes
the model management strategy, development and delivery of components, adoption by an organization
and the capability to add new releases of components or parts of components.

1 Introduction

We have pressure for bringing new products to the
market, but we don't think the softvvare development life
cycle is becoming shorter. To be able to provide required
functionality to the customer, the use of standard
components and components developed by a third party
supplier are becoming more and more important.

CBD(Component-Based Development) as a vision and
an approach offers many exciting possibilities in
terms of reducing application development costs,
providing greater software reuse, and facilitating
maintenance and evolution of systems[l,2,3]. However,
to achieve this vision in practice requires a number of
hurdles to be overcome. How does one puli off this feat
of architecture? Where do the components come from?
What must you do to ensure you get the advertised
benefits? If you are in the hot seat labeled 'architecf,

This research was supported by the Research
Grants of Catholic University of DaeGu in 2001.

what should you do?
The foUovving appear to be the most significant factors of
CBD:
Reduced time-to-market. The availability of
components of the sort just described also promises to
drastically reduce the tirne it takes to design, develop and

field systems. Design tirne is drastically reduced because
key architectural decisions have been made and are
embodied in the component model and framework.
Component families such as those found in the Theory
Center obviously contribute to reduced time to market.
Even if such component families are not available in an
application domain the uniform component abstractions
will reduce development and maintenance costs overall.
Component markets. Component models prescribe the
necessary standards to ensure that independently
developed components can be deployed into a common
environment, and will not experience unanticipated
interactions such as resource contention. The integration
of support Services in a framework also simplifies the
construction of components, and provides a platform
upon which families of components can be designed for
particular application niches.
Independent extensions. One problem that plagues
legacy software is lack of flexibility. Components are
units of extension, and a component model prescribes
exactly how extensions are made. In some cases the
framework itself may constitute the running application
into which extensions (components) are deployed. The
component model and framevvork ensure that extensions
do not have unexpected interactions, thus extensions
(components) may be independently developed and
deployed[4,5,6].
Improved predictability. Component models and
frameworks can be designed to support those quality
attributes that are most important in particular application

mailto:lee@cps.cmich.edu

566 Informatica 25 (2001) 565-573 H.-K. Kim et al.

areas. Component models express design rules that are
uniformiy enforced over ali components deployed in a
component-based system. This uniformity means that
various global properties can be "designed into" the
component model so that properties such as scalability,
security and so forth can be predicted for the system as a
whole. For example, EJB ^'^^ [7] is touted as promising
scalable, secure, and distributed transactions by virtue of
its component model and frameworic services. It might be
argued that there are other benefits that accrue froni a
component-based approach to systems.

It must be recognized that CBD does not mean
acquiring parts from anywhere: they are unlikely to be
compatible without a great deal of integration. Instead,
components must be designed to vvork together, and
designed for a particular domain or business:
interoperability standards for components must be agreed
upon within a project, company, or industry.

These standards involve much more than
interconnection and container technology such as
C0RBA[8], COM[9] or EJB[7]. A distinction between
the tasks of the product builder, component designer, and
component composer and product line architecture must
be made.

In this paper, we try to clarily the CBD-related
theories as practical techniques to be applied to real
systems. So, we suggested technical theories for
standard management in supporting the CBD process
especially implementation and delivery phases. We
focus on setting standards for components and
addressing the impact that CBD has on managing
component development. This includes the model
management strategy adopted by an organization and
the capability to add new releases of components or
parts of components.

2 Related Studies

2.1 Component Repository

Component repository is a library systern that
supports finding, providing and managing
components for building a business application. So
it is a kind of tool to store, register and manage ali
of the artifacts produced in the component life
cycle based on component architecture, and support
a "Reuse with component" in the CBD process
through performing advanced retrieval and
brovvsing of Information. Most of ali, component
repository is a central mediator for component
generation and utilization. So,
applying consistent meta and
information can establish the
including creation, verification.

analyzing and
user feedback
CBD process

conflguration
management and circulation of component[3][4].

2.2 CBD Process

CBD promises cost-effective productivity assuring a
high flexibility and maintenance by assembling the
components as independent business processing. The
CBD environment is divided into two aspects according
to process evolution level. That is, we consider the CBD
process as a supply process producing and providing the
commercial components into a repository, and consume
process supporting component utilization for
constructing business soiutions[l,2,3,4,5,6,7]. The big
picture represents essentiai works for realizing the CBD
process, subjecting the basic principles for component
reuse that is acquisition-understanding-applying, is
shown in figure 1.

Oomoin v Oomain _ ^ Component _v Component v Component

Anol/sis Design Extraction Design Implementation

Component ^ |

Distribution

'^ • Classif icotion..«

'»Eonfiguration Motiagai

' RetrievQl/Explanatipn

CiMMiiflit bttifn Pottvni

Component ^

Qudif icatlon

Reuse FOP

Component

_ . Component ^

Customization

Component

' Composition

CBD .

Design Process

Application

Requirement

Reuse Wi1h j

Component ,'•''

Fig. 1. CBD Process

2.3 Current States in CBD

CBD has rapidly become a substantial and
interesting field in business applications, especially since
CBD is primarily used as a way to assist in

Tools

~RepositorY

^ ^ ^ ^ ^ E t o l o g i n g

5^i)resit;'A^'flireetun5

aošsiflcotldhAiionajBiiBBt

of m«ta i r i^fmation^glE

Configuratj^iManogcpertt

B S ^ T S ^ S S ^ ^

Fig. 2. Basis techniques for CBD process

controlling the complexity and risks of large-scale
system development, providing an architecture-centric
and reuse-centric approach at the build and dep]oyment
phases of development. So novv, many vendors and
researchers have tried to establish the CBD maturity by
involving the following strategies [9,10]:

MANAGEMENT PROCESS FOR SUPPORTING THE. InformaticalS (2001) 565-573 567

1) efficient building of individuai components,
2) efficient building of development solutions of in
a new domain effectvely,
3) efficient adapting of existing solutions to new
problems and efficient evolution of sets of
solutions.
But, by the lack of standardization and clearness for
the CBD approach method, we can't expect a
practice benefits in business solutions. So, we need
the approach techniques in each step for organizing
and practicing the CBD process like figure 2 [6].

It is extremely important to test an imported component
in the environment in which it wi]l operate.
• Provide source code if possible, it might help the
application developer to understand the semantics of
your component.
• Make the components so they easily integrale into
existing components. Describe vvhat the component
works with and describe how to make it work with other
components as well.
• Components need to be carefully generalized to enable
reuse in a variety of contexts. However, solving a general
problem rather Ihan a specitlc one takes more work.

3 Management Process for
Components Development

CBD softvvare systems are developed on an
underlying process different from that of traditional
software, so their management and quality assurance
models should address bolh the process of components
and process of the overall system. It is also essential that
standards for components be in plače before the
components are built. Also needed are standards defining
the contract between the component consumer and the
component provider. Two types of standards are critical:

- Implementation
Because components can be delivered with or without
the implementation, standards for the implementation are
critical for component builders and for the component
consumers who may modiiy the implementation al some
other time. Implementation standards cover building the
component, as well as its naming, Identification,
versioning, error handling, and security.
- Delivery
Delivery standards define a componenfs operations,
specification type, and interfaces for the consumer.
Delivery standards should cover at least error handling,
naming conventions, consumer information, and test
plans and procedures.

3.1 Component Development
Management

Component development is the process of implementing
the requirements for a functional, high quality
component with multiple interface. The objectives of
component development are the final component
products, the interface, and developments documents.
Component development should lead to the final
components satisfying the requirements with correct,
vvell-defined behaviors and flexible interfaces. When
developing and designing components, we recommend
the follovving criteria:
• Provide test-suites with the component so that the

customer can test your component in their environment.

Make sure that the application developers can adopt the
component to their requirements. This can be done with
sink interfaces where the user adds its own interface to
the component so that the component can use that
interface to communicate with the user. In our project,
we studied managing the component development
process for CBD software development paradigm as the
follovving phases: 1) Requirement analysis; 2) CBD
development; 3) Certification 4)

iiiiiii|ii.rt;|ii;wr

ReCfiraTdts

Tedni cfEs
E^eqiiireiT£its

Cbonutdticn t Inplmtrtattai

X Dafts Carpoiots

SelfT(st!ry,
• (FuncOoreliM.t,

VVaiRraicral
X Ctiipaiols

'I SdfTsbuj jjjjf I
(Rdiabilrty)1 1 jij

RdiaUeGnpcfiats

Rderaioefcr
MiirtaBiice ^iiiillllii

Doamalzitiai i

Sumil fcr Coiponert
''Gjnfianicn

Fig. 3. Component implementation process

Customization. We suggest the
as shown in

component
figure 3. implementation process as snown m rigure J .

Component implementation process consists offour sub
processes: implementation, function testing, reliability
testing and development document.

The input to this phase is the component requirement
document. The output should be the developed
component and its document, ready for the following
phase of component certification and system
maintenance, respectively.

568 Informatica 25 (2001) 565-573 H.-K. Kim et al.

3.2 Defining a Model Management
Strategy

Each component is described in a component model.
Component model is used to differentiate it from an
application model. Component model is a type of support
model. Component Models, on their own, may or may
not provide a business solution. If they do not provide
value on their own, they should do so when combined or
assembled with several other components. This allows
the organization to understand hovv to create, use, and
maintain components. A model management strategy is
an approach set up to organize and work vvithin the
component repository. The strategy is defined in terms of
model types and their interrelationships. The model
management strategy also includes procedures for

This refers to the amount of reuse through copying and
sharing that the organization plans, as well as the degree
of integration desired. Model management is the primary
means by vvhich an organization realizes its development
coordination strategies in actual operation. An
organization may defme a model management strategy
that has one or more of the component model types
described in table 1. We suggest the model for
management strategy as in figure 4.

With reuse of components, new types of models will
be introduced into the model management strategy.
These model types are described CBD model type vvith
component, component catalog vvhich contains the
specification for component, and component pattern
vvhich will contain pattern to be used for developing
component in the future.

Table 1. CBD Common Model Types for Management in our vvork

creating, maintaining, retaining, synchronizing, and
versioning models. The mode! management strategy is
based on an organization's development coordination
strategy. The types of models and the number of models
per model type are dependent on:
• Diversity vvithin the organization

This is both business and technical (iocation or
department, user organization, target production
environments, security requirements).

• Complexity of development efforts
Large efforts should be segmented into natural clusters
to make the model more manageable and
understandable. Implementation of business
functionality should be incremented to minimize the
impact to the user organization.

• Evolutionary development efforts
Concurrent projects in various life-cycle phases are
difficult to manage vvithin a single model. Incremental
and manageable releases into production should be
supported.

• Technical capabilities
This addresses the number of encyclopedias,
performance of encyclopedia functions, and contention
for reusable objects.

Architecture
Common
Design
Objects

Legacy
Vifrappers

Shared
Objects

komponent
Catalog

Component
Patterns

I I Project
' ' Model

I 1 Support
Model

I I NewCaO
Support
Model

Fig. 4. Model for management strategy
The arrovvs between the models in figure 4 represent
likely flovvs of Information betvveen the models. For
example, the method of information flovv may be copy,
migrate, and create model from a subset.

MANAGEMENT PROCESS FOR SUPPORTING THE... Informatica 25 (2001) 565-573 569

Model Type

Architecture

Common design
objects

Legacy vvrappers

Shared objects

Project

Project integration

Test

Production

Emergency fix

Description

Hoids a higii-level model for an organization. It can be created
as a result of a strategic planning or an Information needs
structuring activity.

Holds business system design standards. This model can be
created or purchased and customized by an organization to
propagate appllcation design standards.

Holds logic to enable access to commonly used legacy
applicatlons. VVrappers can be developed to reasonably insulate
the using appllcation from changes to the legacy appllcation.

Holds definitlons for common objects that are being used by
multiple projects.

Holds the documentation about the requlrements and design
efforts for the project.

For large projects or programs, vvhere there Is a need to
distribute development or "divide and conguer," a project
Integration model may exlst. This model facilitates holding,
synchronlzlng, and propagating the common objects across the
sub-project models.

A project may have one or more test levels, for example unit,
system, Integration, and acceptance. For each leve! of testing,
there may be a separate supportlng model:

• System - testing the functlonally testing appllcation flows

• Integration - testing appllcation vvithln the planned production
environment

• Acceptance - user acceptance test

These test levels are examples of model types that can be used
to progress a project from development through test.

Represents the source of the last released appllcation.

Represents the fixes that have been applied to production since
the last release. This may be a whole model that mirrors the
Production model Rx, or it may be created when needed based
on the production model. Production Rx+1 is the next release of
production.

3.3 Management Process for Delivering,
Publishing and Integration of
Components

With our work, vve suggest the management process
for delivering, publishing and integrating of component.
ldeally, there is a model for each components. The
component model can hold the component specification,
interface, and implementation design. There are three
options for delivering a component:
(l)Deliver the whole component in vvhich the complete
component model with executable softvvare modules is
delivered. (2) Deliver the executable component in which
the component model is delivered with specification,
interface and executable software modules. (3) Deliver
the component implementation design is which the

component model is delivered with specification,
interface and implementation design.

A softvvare vendor who intends to seli a
component is likely to protect the component
implementation and use the second option. It will
be important to have a central model, such as the
component catalog model, to publish the component
specifications.]f this approach is used, it will be
important to define and enforce component naming
standards so there is no conflict when the
specifications are migrated into this-model or other
models. Assuming the component consumer is an
appllcation model, the component specification is
replicated in the application model, vvhich then links
to the generated executable software module.
After a component is built, its operations must be
published or made public. The component catalog model

570 lnformatica25 (2001) 565-573 H.-K. Kimetal.

is used for this purpose. Publishing Component
Specifications is the process for publishing the
specifications of components. To malce browsing more
manageable, a model referred to as the component
calalog model can be introduced to centrally hold the
component specifications. After the component
specifications are migrated into the model, they may
need to be edited to ensure that the specification contains
only the operation specifications. The operations action
diagrams must contain only the import and export vievvs,
notes for the pre-/post-conditions, return codes, and its
source member name. The component catalog model will
then be the source for the component specifications.

When an application is initiated, there vvill be tasks to
analyze or determine what is available for reuse that
matches the requirements through component brovvser
process as in figure 5. The component catalog model, if
it exists, can be used to browse what is available as well
as the source of the specifications. Alternatively, each of
the component models can be reviewed. The required
component specifications vvill be migrated into the
application models. Applications may stili reuse objects
by replicating them in their models. The application
integrate in figure 6 shovvs that a nevv application model
has several sources to start assembling the application. If
the application reuses software components, the source
of the specification can be the component catalog model.
When an application reuses in this manner, it is
important to remember that the software executable
modules have been generated by its source component
model. Therefore, during test and construction, it is
important that the using application be linked to the
correct softvvare module.

At this point, the components must have a
specification defined and should be tested. For example,
the component must have been used and tested in two or
three applications. Component consumers can then
obtain the required interface from the component model.

Coirponert Catalog Model
ProductionIVbdel

]iTftmaticriD^iyrg

ŽE
tetrie^rg AfetaFtetriad Gntedtetriad

Gnpreri repaa1ay in V^spre

Fig. 5. Component brovvser process

=^^B]

G = 5

r

CZ3

\ /
yApplicationlVtxlel / Legacy Application VUappere

m ^
-,;

fed)
CZD

Fig. 6. Process for Application Integration of
Component

Before acting and making decisions on hov/ to build
applications from components, we recommend that the
follovving questions and thoughts be considered;
• The time your product is off the market can be greater
than the time saved getting your product to market if
your component supplier drops the product. Can you
accept this risk?
• The functionality provided by the component may not
remain precisely what you need over time, forcing you to
create vvrappers that get around this. Things are getting
even vvorse if you are not getting support from the
vendor.
• The functionality of the component may be more than
you actually need, requiring you to vvrite restrictive
vvrappers for functionality that you do not vvant to be
used. Use of unintended functionality may cause
problems.
• If you succeed in getting the source code from the
component vendor, can you really maintain it if
something goes vvrong?
• A malfunction in the component iTiay cause an error in
your product. Are you vvilling to have a certification
strategy for this. Your customer vvants your product to
vvork vvithout having to think about your internal design.
You have to provide a fix for the problem even though
the error is in the third-party component.

• If you ask the component vendor to customize the
component for you, are you aware that you novv are
strongly dependent on the vendor? The vendor can
manufacturers are sharply reduced because their over
time, there can be many component models, and it may
be difficult for an application assembler to determine
vvhat is available for reuse.

In some cases, the application may choose to replicate
the softvvare executable modules in production.
VVhichever approach is used, it is important to ensure that
the right module is linked each time the calling module is
constructed or the reused softvvare module is re-
generated.

MANAGEMENT PROCESS FOR SUPPORTING THE. Informatica 25 (2001) 565-573 571

Table 2. Releasing meta-information of component
Category

Registration

Management

Composition
Functionality

Environment
User
Repository
Retrieval

Elements
Vendor, Address, Partncrs, Tcl-NO, Fax-NO, Mail-Address, URL, Component-Name, Classification-NO,
Domain, Version-NO, Brief-Dcscription, Assurance-NO, Registration-Date
Classificalion-Info(l-Iierarcliy), Sale-Rate, Usage-Rate, Version-Histor>', Quality-lnfo, Priče, Priority

Family-Classificalion-NO, Family-Componcnt, Rolc-Relationship, Use-Case
Inlerface, Functionality-Dcscription, Parameter, Constraint, Usage-Scenario, System-Requirement

Platform, Middle, Database, Development-Tool, Description-Language, Refercnce-Model
User-ID/Name, Password, User-Email, Visit-NO
Management-Domain, Management-Component, Implement-Environment, Error-History
General

Functional
Environment
Circulation

Component-Name,
Business-Domain, Dcscription

Interlacc, MetJTOd,
Container, Family, Platform
Deliver-Status, Creation-Date,
Priče, Vender

The application integration process requires the
following capabilities in the component repository:
• To browse available component specifications can be
done by maintaining the component catalog model.
• To create an aggregate set for each component
specification interface.
• To concatenate aggregate sets for component
specification. This is necessary to migrate several
component specifications at the same tirne.
We have the recommendations to the component
integrator:
• Make a thorough evaluation of the component
suppliers. Are they suitable as a supplier? Do they have
good quality products and support? Check their financial
condition so they don't easily bankrupt.
• Put a lot of effort into the legal agreement with the
supplier. This may save you if the supplier goes out
of business or if they refuse to support you.
• Have key persons that are assigned to supervise the
component market. They shall keep track of new
components and trends.
• Test the components in your environment.

One of the most important implications of this
approach is that the application source will be
fragmented across the application and a collection of
source component models. Until the components are
error-free, such an environment will make maintenance a
challenge.

environment, and retrieval Information as table 2
addition to the specification of the previous release, such
as additional specification types, attributes, relationships,
and constraints, or additional operations. This vvould be
done without removing anything from the original
specification.
(2) Have an identical specification to the previous

release but a different implementation.
(3) Be allowed to read and update data storage from the

previous release.
(4) Include alterations to the previous specification; that

is, the changes may not be simply additions to the
original specification.

(5) Be a combination of any of the above.

In order to make a distinction between a change that
impacts the consumer of a component and one that does
not, two terms are being introduced. 'Version' is a new
release of a component that impacts the consumer and
'revision' is a new release of a component that does not
impact the consumer. It is important to make these
distinctions to determine whether a component can be
upgraded and the old release removed without impacting
a consumer, or whether there needs to be a transition
time where both the old and new releases co-exist.
The figures 7 and 8 are scenarios shovving version and
revision changes where an operation for an interface in a
component is first built. The component, interface and
operation version, and revision number aH start at 1. At
Keyl, the operation is revised such that it does not
impact the consumer of this component.

Management Process for Releasing
a New Component

In this paper, we suggest the techniques apply to the
publication of a new component that is an upgrade to a
previously published component. The new release may:
(1) Include meta Information of component such as
registration, management, composition, functionality,

572 Informatica 25 (2001) 565-573 H.-K. Kim et al.

OderlVfet . Revise Cferalion

2AddQ}eratiaTS
0<fa-_Ga»d

lAddlrterfaos

)Qder(vK

OnirJSrvtii:

OtlrJftlK

1 Ardasmg

Fig. 7. The version/revision scenarios for l "

The revision number on the operation, its interface, and
the component are ali incremented by 1.
At key 2, An operation is added. This does not impact the
consumer. The operation is new so the version and
revision numbers start at 1, but the interface and
component revision numbers are incremented by 1. At
key 3, An interface is added. Since it is a brand new
interface with new operations, the version and revision
number for the operation and interface are one, but the
component has changed so the revision number for the
component is incremented to 4

Invoicing
vereion 1
revision 4

) OrderMgt
Otikr Civale

OtlerUptiMe

) Archiving
Aix;h_BiMhip

4. Version Inlerface

Invoicing
version I
revision 5

J

—O OrderMgt
arkrSmjIe
Otxhr_Cfvt>je
axkrjjfxhle

—O OrderMgt2
0}\k'rJ^ivate2
Oixlcr_b'iJik»te

Archiving
Atth_ajLhip

5. Remove Interface

Invoicing
vefsion 2
revision 1

OrderMgt2

Orihrjjpi/iire

—O Archiving
An:hJiiLbip

Fig. 8 The version/revision scenarios for 2"''

At key 4 in figure 8, a new version of the interface is
published. This changes the versions of the operations
and interface, but it is only a revision to the component.
At key 5 in figure 8, An interface is removed. This
changes the way a consumer can use the component.
Managing Versions:

Higher version numbers normally indicate improved
functiona]ity, which must be an extension to the previous
release. Higher revision numbers vvithin the same
version number normally denote a fix or clean-up of the
previous release.
Operation Version :

An operation version is created when the operation

specification is changed. The operation version

changes when:
(1) The operation "signature" changes are adding or
removing import and/or export vievvs, changing

Table 3. Scenarios Shovving Version
and Revision Changes

Component

1 1

1 2

1 3

1 4

1 5

2 1

v

2

2

Interface

r

1

2

3

1

1

1

v.

1

1

1

1

2

2

Operation

r

1

2

1

1

1

1

1. Revise op

2. Add op

3. Add interface

4, Version interface

5. Remove inlerface

specification type of import and/or export views and
changing the order of import and/or export views.
(2) Changes are made to the existing specification types,
subtypes, attributes, and/or relationships:
- Add, remove, or change the constraints such as
cardinality, optionality, and uniqueness
- Change the length or data type of attributes

Remove specification types, attributes and/or
relationships
- A pre- or post-condition changes such that it no longer
has the same implications as the old pre-/post-condition.
- Add or remove return codes
- A documentat ion change that no longer has the
same implications as the old documentat ion. For
example, the pre- or post-condition changes, and the
documentat ion needs to reflect the change.
Interface Version:
The interface version changes when: An operation is
removed. An operation version number changes and the
new version of the operation is no longer compatible
with the version of the interface that contains the
operation.

Component Version :
The component version changes when an interface is
removed.

A revision does not impact the consumer of the
component; therefore revisions would be recorded in the
documentation of the interface operations but would not
effect the name of the interface or operation. Only the
name of the component changes vvhen the revision
number is increased.
Operation Revision:
The operation is considered revised :

MANAGEMENT PROCESS FOR SUPPORTING THE. Informatica 25 (2001) 565-573 573

(1) When the operation specification is extended.
Extensions to operation specifications are defined
as: - Additional specification types, subtypes,
attributes and/or relationships have been added.
- Constraints are added to new specification types,
attributes, and relationships on]y.
- Constraints on existing types, attributes, and
relationships must remain the same in order for this
change to be a revision. Othervvise, it vvould be a new
version.
- A change is made to pre- and post-conditions so they
will conform to standards.
- Corrections and updates are made to documentation so
it will conform to standards.

(2) When the implementation and executable is updated,
such as "Bug" fixes, Performance improvements.

Interface Revision:
The interface is considered revised vvhen an existing
operation is revised and an operation is added. This
includes an operation that leaves the interface compatible
vvith the previous release. Interface revisions affect the
interface description, vvhich must be changed to reflect
the revision.
Component Revision:
The component is considered revised vvhen an existing
interface revision occurs and an interface is added
Component revisions affect the component model name.

5 Conclusion
. Designing, developing and maintaining components
for reuse is a very complex process vvhich places high
requirements not only for the component functionaIity
and flexibility, but also for development organization. In
this paper, we described the important issues to the
development and management of components. We focus
on setting standards for components and addresses the
impact that CBD has on managing component
development. This includes the model management
strategy, development and delivery of components,
adopted by an organization, and the capability to add
new releases of components or parts of components.

We vvill put more effort to create an open and
extendable architecture. We also vvill address the
standard issues for component based softvvare and CBD
process, vvhich covers component requirement analysis,
component development, and component certification.

References

[1] George T. Heineman and William T. Councill,
Component Based Sofitvvare Engineering, Addison
Wesley Publication Company, June,2001.

[2] Clemens Szyperski, Component Software : Beyond
Object-Oriented Programming, January 1998,
Addison-wesley.

[3] Mikio Aoyama, "Nevv Age of Softvvare Development
: Nevv Component-Based Softvvare Engineering
Changes the Way of Softvvare Development," 1998
International Workshop on Component-Based
Software Engineering, ICSE, p.l24~ 128,1998.
http://wvwv.sei.cmu.edu/cbs/icse98/papers/pl4.html

[4] Robert C. Seacord, "Softvvare Engineering
Component Repository," Proceedings of 1999
International Workshop on CBSE, Los Angeles, at
URL:http://vvww.sei.cmu.edu/cbs/icse99/cbsewkshp.ht
ml

[5] Luqi, Jiang Guo, "Toward Automated Retrieval for a
Software Component Repository," IEEE Conference
and Workshop on Engineering of Computer-Based
Systems,Mavch, 1999.

[6] Peter Herzum, Oliver Sims, Business Component
Factory : A Comprehensive Overview of CBD for the
Enterprise, OMG press. December, 1999.

[7]URL:http://java.sun.com/j2ee/tutorial/doc/EJBConcep
ts.htm

[8]URL:http://www.omg.org/gettingstarteded/specintro.h
tm/CORBA

[9]URL:http://www.effiel.com/doc/online/effiel45/paper
s/com/com/htm

[10] Haeng-Kon Kim, Jung-Eun Cha, Ji-Young Kim,
Eun-Ju Park, Identification of Design Patterns and
Components for Network Management System_,
SNPD '00 International Conference, Vol. 1, NO. 1, pp.

4 2 6 - 431, May, 2000.

[11] Desmond Francis D'Souza, Alan Cameron Wills,
Objects, Components, and Frameworks With UML :
The Catalysis Approach, October 1998, Addison-
Wesley Object Technology Series.

[12] Mark R. Vigder and W. Morven Gentleman and
JohnC. Dean. components Software Integration: State
of the Art. National Research Council of Canada,
Institute for Information Technology report 39198,
1996.

[13] Alan W Brown and Kurt C. Wallnau "Engineering
of omponent-Based Systems," Component-Based
Software Engineering: Selected Papers from the
Software Engineering Institute. Los Alamitos, CA:
IEEE Computer Society Press, pp.5-7, 1996.

[14] Oh-chun Kwon, "CBD Environment Model : An
Integrated Approach of Object-Oriented Programming
and Other Technologies", KIPS Software Engineering
Review, 1999.

http://wvwv.sei.cmu.edu/cbs/icse98/papers/pl4.html
http://vvww.sei.cmu.edu/cbs/icse99/cbsewkshp.ht
http://java.sun.com/j2ee/tutorial/doc/EJBConcep
http://www.omg.org/gettingstarteded/specintro.h
http://www.effiel.com/doc/online/effiel45/paper

Informatica 25 (2001) 575-592 575

Image processing and becoming conscious of its result
Mitja Peruš
BION Institute; Stegne 21; SLO-1000 Ljubljana; Slovenia
Phone & fax:+386-1-513-1147; mitia.perus@uni-lj.si: http://www.bion.si/mitja.htm

Keywords: image processing, brain, vision, striate cortex = VI, consciousness, quantum associative net, Pribram

Received: March7, 2001

Based on the Holonomic Brain Theory by Kari Pribram and relaled models, an inlegraled model of conscious
image processing is proposed. It optimally incorporates conlemporary limited knowledge starling from a sys(ematic
search for fit between existing computational models, and between available experimental data, and between data and
models. Since we are not yet able to tackle qualitative conscious experience directly, processes for making an image
(or result of image processing, respectively) conscious are discussed.

A quantum implementalion of holography-like processing of images in the striate cortex (VI) is proposed
using a computational model called quantum associative netivork. The input to the guantum net could be the Gabor
wavelets, together with their coefficients, which are infomax-constrained spectral and sparse neural codes produced
in the convolutional cascade along the retino-geniculo-slriale visual pathway using ihe receptive fields as determined
by dendritic processes. Perceptual projections are used as argumeiit for holography-like and quanlum essence of
visual phenomena, because classically (neurally) al one they could not be produced in such a quality. Level-invariant
image attractors are argued to be representations to become conscious in/by a subject, after a similar stimulus has
triggered the wave-function collapse (i.e., recall from memory). Auxiliary representations for simultaneous
subconscious processing, based on phase-information, for associative vision-based cognition are proposed lo be
Gabor \vavelets (i.e., spectral codes in VI receptive fields, or dendritic trees, respectively) and their coefficients (i.e.,
sparse codes in activities ofVl neurons).

1 Introduction
Aims and sources. This paper provides an

information-theoretic integrative model of conscious
image processing "having the kernel" in the striate
cortex (named also the primary visual cortex or V]).
Beside of an attempt to present a model that is an optimal
compromise of bioIogically-plausible ingredients and
relevant information-processing features needed for
describing image processing in man, this study is
interested in the problem how the residt of image
processing (the image representation) becomes
conscious, i.e. how we become conscious of the
perceived image.

The model is based on several earlier
presentations of antecedent and accompanying
physiological processes (Peruš, 2000b) and of
Information transfer and transformation along the visual
pathway from the retina over the optic nerve and through
the lateral geniculate nucleiis (LGN) (Weiiky & Katz,
1999) to VI (Peruš, 2001). To provide a ground for the
present study, a large body of neurophysiologicai,
psychophysica!, biocybernetical, neuropsychological,
and other theoretical, experimental and simulation-based
literature on vision (incl. reviews in: Kandel et al., 1991;
Kosslyn & Andersen, 1992; Arbib, 1995) has been
systematica]ly studied, analyzed and compared in search
for a synthesis (where possible). These data as well as
several relevant models have been considered (Peruš,

2000a) in the context of Kari Pribram's (1991)
Holonomic Brain Theory. Many informative
complementarities were found (Peruš, 2000a, 2001). The
present paper thus suggests a new comprehensive model
of (conscious) image processing, while ali the contextual
processes - like visual attention and memory (Crick,
1984; Bickle et al., 1999; Vidyasagar, 1999; Wurtz et al.,
1980; Desimone, 1996; Goldman-Rakič, 1996),
stereopsis (DeAngelis, 2000; Porrill et al., 1999; Poggio
et al, 1985), segmentation of figure from background
(Sompolinsky & Tsodyks, 1994), perceptual binding
(Roelfsema, 1998; Lee & Blake, 1999a,b) and imagery
(Kosslyn, 1988) - have been integratively considered in
auxiliary literature (Peruš, 2000a,b, 2001).

Early visual processing: infoniax. Along the
retino-geniculo-striate pathway (De Yoe & Van Essen,
1988; Livingstone & Hubel, 1988), a cascade of
encoding / decoding processes, or convolutional
processes, respectively, ensures optimal Information pre-
processing and encoding of images into various
representations needed for visual cognition. Such
preprocessing and encoding are realized, as
psychophysical evidence (Wainwright, 1999; van
Hateren, 1992) shows, so that Information is maximally
preserved, as is also imitated by the so-called "infomca"
models of artitlcial neural net (ANN) processing. Many
of them generate so-called sparse codes where an

mailto:mitia.perus@uni-lj.si
http://www.bion.si/mitja.htm
file:///vavelets

576 Informatica 25 (2001) 575-592 M. Peruš

oligarchy of units is active in encoding the entire image,
but the majority is inactive.

It was realized (Peruš, 2001) that the infomax-
models, like the Independent Component Analysis (ICA)
by Bell & Sejnowski (1995, 1996, 1997) and sparseness-
maximization net by Olshausen & Field (1996a,b; 1997),
outperform the ciassicai Hebbian or Principal
Component Analysis (PCA) models (Haken, 1991,
1996), because they incorporate phase information, or
higher-order statistics, respectively.]nfomax-models
were shown to give much more biologically-plausible
outputs (receptive-field profiles'), but a biologicaily-
plausible implementation on the "hardware"-level is
possible (for now) only for the Olshausen & Field net,
not for the Bell & Sejnovvski net. Relations between the
Olshausen & Field (1996a,b) net and MacLennan's
(1999) dendritic field computation model were found
(Peruš, 2001), which indicate a possibility of dendritic
implementation of the Olshausen & Field net. However,
dendritic processing "following the Olshausen & Field
algorithm" would be strongly constrained by sparseness-
maximization process which could originate from the
lateral inhibition or from top-down (i.e., corticofugal)
influences (e.g., Pribram in Dubois, 2000b; Montero,
2000; Mclntosh et al., 1999; Moran & Desimone, 1985).^

Gabor vvavelets. Since the oscillatory-dynamic
phase-processing is experimentally supported (Gray et
al., 1989; Baird, 1990; Pribram, 1971, 1991; Wang,
1999; IVIannion & Taylor, 1992; Schempp, 1993, 1994,
1995; Sompolinsky & Tsodyks, 1994), a question arose
whether ICA infomax-processing, or at least the
sparsification process, might be realized virtualiy, i.e. on
a "software"-level (higher-order attractor dynaiTiics).
ICA-like infomax processing shapes the receptive-field
profiles into Gabor wavelets, and these are then
convoluted with the sensory inputs (Pribram & Carlton,
1986). The infomax processing is thus vievved as an
information-saving preprocessing procedure for optimal
encoding into Gabor vvavelets (also by other ICA models
like: Harpur & Prager, 1996; Hyvarinen & Oja, 1998;
Levvicki & Olshausen, 1999; cf, van Hateren &
Ruderman, 1998).

As will be shown, infomax-based (appropriately
weighted) Gabor wavelets are spectral image-
representations (van Hateren & van der Schaaf, 1998)
which are involved in convolution (during perceptual
processing), or in interference, or in othsr phase-Hebbian
processes (during pictorial cognitive processing and

' A receplive field of a neuron is everytliing (or the whole surrounding
space or netvvork, respectively) that influences its output afler ali the
inputs have entered it along its own dendritic tree. The receptive-field's
profile is a mathematical function describing the effcct of
transformations upon neuron's inputs (the "vveights" of inputs) before
the axonal output is "calculated".
^ A "sparsification pressure" is imposed on dendritic (and maybe also
on neuronal) processing in order to get maximally sparse codes.
Biological realization of sparsification is unknown. It might originate in
virtual higher-level attractor structures (the "software" Icvel), maybe in
a similar way as in Haken (1991). The second hypothesis, i.e. that
lateral inhibition forces sparsification, is reflected in Pribram's (1998a)
words: "[...] As the dendritic field can be described in terms of a spacetime
constraint on a sinusoid - such as the Gabor elementary function, the
constraint is embodied in the inhibitory surround of the field."

associations). Phase-Hebb learning rule, i.e. the Hebb
correlation-rule with phase-differences (because
complex-valued activities are correlated or convoluted)
(cf, Sutherland, 1990; Peruš & Dey, 2000; Spencer,
2001), is a name I coined for the following expression for
"holography-like" memory-storage into so-called
connections (or weights, or interactions, respectively) Jij
betvveen "units" / and '̂:

JIJ = Ek Aik Ajk exp(i((p,k-(Pjk)).
A is the activity-amplitude of a "unit", (p is its phase of
oscillation; k is the eigenstate which represents a pattern
or image.

Quantuiti implementation. In Peruš (1996,
1997a, 1998a) mathematical analogies in holographic,
associative artificial-neural-net, spin-system and
quantum-interference processes which could be
harnessed for parallel-distributed information processing
were systematically presented. Possible (biological)
implementations of these processes were indicated.
Furthermore, the Quantum Associative Network, an
original computational model by Peruš (in Wang et al.,
1998), was presented as a possible core-model for
holonomic associative image processing in Peruš
(2000a). Possibility for such a quantum image processing
implies that the image, vvhich is recognized by the
quantum associative net, becomes the "object of our
conscious experience". This hypothesis results from
numerous indications (e.g., Gosvvami, 1990; Hameroff et
al., 1994—1998; Lockwood, 1989; Rakič et al., 1997;
Stapp, 1993; Peruš, 1997b) that consciousness is
essentially related to quantum processes.

The comparative neuro-quantum study, and
original derivation of the model of quanturn associative
net from the simulated neural-net formalism, are
presented in detail in Peruš (2000c). Some resulting
novel suggestions for flexible image processing (e.g.,
"fuzzification" harnessing "quasi-orthogonar' structure
of data) are described in Peruš & Dey (2000) (cf.,
Kainen, 1992; Kainen & Kurkova, 1993; Kurkova &
Kainen, 1996).

2 Attempt ofan integrated model of
image processing in VI, and
beyond

Introduction to the model. The holonomic
theory (Pribram, 1991) of the retino-geniculo-striate
image processing (Pribram & Carlton, 1986; Peruš,
2000a) ušes Gabor wavelets as "\veighting"- or
"filtering"-functions vvhile performing convolution with
the retinal image. The result of this Gabor transform is a
spectral image-representation in VI. This, roughly
hologram-like, representation in VI is then reconstructed
by an inverse Gabor-transform into the spatial
representation in V2, probably. Thus, the topoIogically-
correct "image" (cf, Tootell, 1998) is recovered in
inverted form in V2.

The overlapped Gabor vvavelets, which are used
in image processing in VI, describe the receptive-field

file:///veighting"-

CONSCIOUS IMAGE PROCESSING. Informatica 25 (2001) 575-492 577

profiles of VI neurons (Daugman, 1985, 1988) which
realize the Gabor transform using their dendritic trees
(cf, Berger et al., 1990, 1992; Artun et al., 1998). Gabor
wavelets were shaped by an ICA-like process. Peruš
(2001, 2000a) stated the reasons why it is good to prefer
the Olshausen & Field (1996a,b, 1997) sparseness-
maximization process over the ICA-variant of Bell &
Sejnovvski (1995, 1996, 1997) for the implementation-
model of shaping the Gabor wavelets g (i.e., the
independent components Y) and especially determining
their coefficients s (i.e., the amplitudes or sparse codes of
the independent components of input-images). The
Gabor coefficients are updated much more rapidly than
the Gabor vvavelets. Coefficients change with each new
input image, but the Gabor receptive fields adapt in a
longer term - after a lot of different images have been
presented. In fact, they adapt slowly ali the time, but
substantial change is seen after a while.

Frotn Gabor receptive fields to vvavelets. A
Gabor elementary function g has two roles in modeling
vision which seem to be somewhat different. First, it is
used as a description of the receptive-field profile, i.e. of
the "weighting" which the synapto-dendritic net imposes
on ali the inputs to a neuron. Second, it is used as a
Gabor wavelet which represents the encoding of an
independent component of input-images. Of course, both
roles have the same origin (a sort of ICA) and "are two
sides of the same coin". However, the consequence of
infomax-processing manifesls in different places: in the
receptive-field profile which "lies hidden" in the
synapto-dendritic net, and in the Gabor wavelet which
propagates to other brain areas and gets involved in
further holography-like processing there. Namely, if the
receptive field is Gabor-shaped, then it gives Gabor-
shaped outputs, or at least something similar or
generalized, on a later stage. These Gabor vvavelets
might be of another sort - e.g., time-dependent or
spectral.^

This effect (i.e., Gabor wavelets produced
because/out of Gabor receptive fields) is more clearly
evident if the retinal input is made uniform (i.e., "white
noise" or Ganzfeld). This is related to well-known
observations that an uniform stimulation triggers a
system's response which is a sort of internal
"expectation" (or a "hallucination", respectively) of the
filtering system (e.g., MacLennan in Pribram, 1993, p.
189).

Sorts of representations. In principle, there
are two sorts of representations in VI available for
further brain processing: the spectral "compound of
images", or equivalently, the sparse assembly of codes
(the so-called sparse codes) representing or "weighting"
the independent components extracted from a collection
of images. The first representation (independent
component) is hidden in VI dendritic fields; the second

' They retain Ihe same form, but vvilli different intcrpretation of
coordinate-axes. The Gabor \vavelet in spectral representation sce in
Daugman & Downing (in Arbib, 1995). This Fourier transform of the
original Gabor profile is expressed in the same functional form as the
original spatial Gabor "vvavelet", but with the spectral («) and spatial
{x) variables interchanged.

representation (sparse coding) is encoded in activities of
VI-neurons (cf, Pribram et al., 1981). After the spectral
representation of VI has been inverse-Gabor-transformed
in the connections between VI and V2, the retinal image
re-emerges in V2. Thus, the usual image, as once
originally fallen on the retina, should be reconstructed
(turned upside-down, maybe also somewhat "deformed")
in V2 or nearby. This "image" is then the third available
representation.

Why three representations? (Cf, Kirvelis in
Dubois, 2000b.) We could suppose that the spectral
(Gabor wavelet) representation is for perceptual image
processing in VI. The sparse-code (Gabor coefficient)
representation is for robust, rough encoding needed for
automatic, immediate, reflex actions — they are
unconscious and probably realized by neural circuits
alone (dendrites just transmit the signals, do not process
them). The "image" representation in V2 is used for the
usual phenomenal conscious experience.

Let me explain. When a person is, say, involved
in conversation, (s)he sees another person and at the
same time processes a lot of Information —- e.g.,
"decodes" the other-person's body-language, not to
mention more multi-modal and symbolic cognitive
processes like understanding of vvords and thinking about
the topic. The person sees the other one in full
phenomenal integrity and quality ali the time, vvithout
interruptions of the Information processing
(understanding body-language and spoken language,
thoughts, etc.) going on in the background. For the
seemingly-direct "realistic" experience of the
environmental image, as conscious process offers it, the
V2 space-time "image" is needed (more in Pribram,
1998a). For the abundant accompanying apperceptual
processing (e.g., Luria, 1983; Stillings et al., 1995),
which is unconscious and abstract, the spectral
representation is needed (Pribram, 1997b). I will suppose
that the "image" is also needed for additional processing,
mainly limited to visual cognition, which ušes
associative processing that is more similar to holography
than the perceptual spectral processing is.

From edge- to object-perception. Edges of
object-forms are the first level of invariance or
perceptual constancy and can be detected by linear
transformations, like those in ICA. Incorporation of
phase processing essentially improves results, as the Bell
& Sejnowski and Olshausen & Field simulations
demonstrate. However, finding transformations that are
invariant to shifting, scaling and rotation of object-
patterns, are mainly an open problem for ICA (Lee after
Bell & Sejnovvski, 1997). These transformations were
with certain success tackled with generalized Hebbian
models using Fourier-preprocessing (e.g., Haken, 1991)
and by other non-infomax specialized models. ICA
seems to be a good model for image (pre)processing, but
not necessarily for object perception (which is well
distinguished from image processing by the holonomic
theory and other models of vision, and this has psycho-
physioIogical reasons) (e.g., see Wallis & Biilthoff,
1999). Object recognition, based on search for perceptual
invariances, might need a combination of ICA and

file:///vavelet

578 Informatica 25 (2001) 575-592 M. Peruš

associative processing (a successful example is: Bartlett
& Sejnovvski, 1997; cf. also Gray et al., 1997), probably
in attractor-networks which manifest gestalt-like
structures (Luccio, 1993; Peruš & Ečimovič, 1998).

Phase-Hebbian associations take over. Peruš
(2001) thinks that visual associative processes of VI,
after perceptual preprocessing has been finished (ICA
has generated Gabor wavelets and Gabor coefficients,
and the Gabor transform using convolution has produced
spectral responses of VI simple cells), could be well
realized by a Hebbian (e.g., Churchiand & Sejnovvski,
1992; Gardner, 1993) or phase-Hebbian mechanism. The
second one, which is most similar to holography, has
much more chances for good performance.

These models may in some respect be less
efficient than other phase-processing models, vvhich are
not phase-Hebbian, like ICA and MacLennan's (in
Pribram, 1993) dendritic model as far as it has
similarities with the Olshausen & Field (1996a,b) model.
But the phase-Hebbian models have a peculiar symmetry
vvhich makes them fundamental and close to physics. So,
1 believe, there is a division of labor. Other models (ICA,
convolution-models, Kohonen's Self-Organizing Maps)
"do the hard job" first. After their processing vvith
nonlinear moments (like sparsification) is finished, the
phase-Hebbian associative dynamics start the "fine job".
Phase-Hebbian models have an ability to construct rich
multi-level attractor-structures. In this, they can go
beyond Hebbian models vvhich are already successful in
flexible attractor-dynamics (Haken, 1991; Peruš &
Ečimovič, 1998).

Attractor processing. For secondary visual
processing (i.e., e.g., object perception, from VI to V2,
and beyond it), processing vvith attractors is unavoidable
(Peruš, 2000b, 2001). Pribram (1971, 1991) also says
that cortical processing ušes largely parallel-distributed
and redundant representations. The model, vvhich realizes
this most directly and is also the best ANN embodiment
of holography (cf, Psaltis et al., 1990), is sketched as
foUovvs. In simple vvords, the vvhole netvvork of units
vvith their connections encodes numerous "images"
simultaneousIy: In the weight-matrix (encoded in the
array of connections / junctions), there is the content-
addressable associative memory. In the configuration-
vector (encoded in the set of units), there is the "image"
vvhich is currently processed (vvhich "vve are conscions
of). Each vector of activity-configurations, vvhich
represents an "image", acts as an attractor of network's
dynamics, because it is at the minimum of its potential
vvell — as in the Hopfield model (details in: Peruš &
Ečimovič, 1998; Peruš, 2000d).

In the matrix of connections (or "hologram"),
not the vvhole patterns or images are stored. Merely pair-
vvise (auto)correlations of ali previously-input images
are stored. With other vvords, condensed Information
about (dis)agreements among aH image-parts of ali the
vvatched images is encoded so that it is parallelly-
distributed across the vvhole matrix. This is sufficient for
reconstruction of an image from the memorized image-
tî aces if a recall-key (i.e., a nevv, similar input pattern) is
presented to the array of connectionist units (formal

neurons) of the netvvork. The interaction of these units
across the connections is modeled by multiplication of
the vector of units' states vvith the matrix of inter-unit
connections (details in: Peruš & Ečimovič, 1998).

Quantum net as the inner processor. The
essential point is that processing of the Quantum
Associative Network (Peruš in Wang et al., 1998; Peruš
& Dey, 2000), as derived from ANN in Peruš (2000c)
based on analogies of Peruš (1996, 1997a, 1998), realizes
the attractor-dynamics, associative processing and image
recognition in a "compact" and effective way. It is
progressive that Hebbian processing is enriched vvith
phase-processing. Because this model can be quantum-
implemented in a natural way, it is, for novv, hard to
imagine anything more fundamental, more holographic,
more effective, and hypothetically more directly linked
to conscious experience, in the sense of associative
processing. Processing similar to that of quantum
associative net might take plače in VI and partially also
maybe in V2.

The quantum associative net can process, by
interference, various kinds of eigen-vvave-functions
(eigen-images). They can be Gabor vvavelets. Gabor
vvavelets are very similar to the natural quantum vvave-
packets (MacLennan in Pribram, 1993). The Gabor
vvavelet, originally proposed by the "discoverer" of
holography D. Gabor in 1946, is a sequence of vvaves
under a fixed gaussian envelope vvhile the frequency of
the vvave inside the envelope varies for different cases.
Such a vvavelet is eguivalent to a family of Weyl-
Heisenberg coherent wave-packets used in guantum
physics (Lee, 1996). This observation allovvs me to relate
infomax image-processing vvith quantum-implemented
holography-like associative processing vvith attractors -
in the quantum associative net. Peruš & Dey (2000)
present interference-processing in the quantum
associative net using the plane-vvaves for image-bearing
eigen-vvave-functions — for simplicity, although
efficient. This is the most usual / basic quantum-type
holography. Interfering Gabor wavelels could enable
more sophisticated, maximally information-preserving
processing, in accord vvith the holonomic theory.

Associative basis for visual cognition. The
uniformity of (neo)cortical structure (Ebdon, 1993;
details in Burnod, 1990) allovvs the use of phase-Hebbian
associative models for a rough (but maybe the best
available) approximation of global (neo)cortical
processing (cf, hovvever, Ingber, 1998; Komer et al.,
1999) vvhich is at roots of visual cognition (cf, Clement
et al., 1999; Pribram, 1997a). The proper modeling
combination, 1 suppose, vvould be: ICA-constrained
convoliitional preprocessing up to VI, followed by
fractal-based associative processing in (neojcortical
neural, dendritic and quantum attractor networks — one
within another inside VI.

My hypothesis is that the multi-level phase-
Hebbian associative processing, having the quantum
associative net as the most deep/inner leve! (for novv), is
currently the most convenient one for cognitive
manipulations of images or, rather, objectforms, as
performed probably in the inferior temporal cortex (ITC)

CONSCIOUS IMAGE PROCESSING. Informatica 25 (2001) 575-492 579

(cf, Miyashita & Chang, 1988; Fuster & Jervey, 1982;
Mishkin et al, 1983; Perret & Oram, 1998). ITC is
specialized for prototype-converging recognition or
comprehension of objects, including discriminations and
choices resulting from it (Pribram, 1971). Global
associations and •context-searches are necessary during
search of the right prototype. In accord with Rainer &
Miller (2000), Riesenhuber & Poggio (2000) argue that
the prefrontal cortex finishes the object-recognition
started by ITC. They write on p. 1202: "In anterior ITC,
invariances to object-based transformations, such as rotation in
depth, illumination and so forth, is achieved by pooling together
the appropriate view-tuned cells for each object." Then
Riesenhuber & Poggio (2000, Fig. 3 caption) continue:
"The stages up to the object-centered units probably
encompass V1 to anterior ITC. The last stage of task-
dependent modules may be located in the prefrontal cortex."
These modules are needed for tasks like object-
identification, -discrimination and -categorization, they
say before.

Experiments of Rainer & Miller (2000) on
object recognition in the prefrontal cortex showed that
familiar objects activate fewer neurons than novel objects
do, but these neurons are more narrowly tuned. Such a
sparse representation of a familiar object is also more
robust to degradation (made after the learning period) of
a newly-posed stimulus-object. Based on ITC inputs (in
vision), the prefrontal cortex is the region most important
for the so-called working memory used in cognition.
Present models use Hopfield-net-produced Hebbian*
attractors for working-memory representations and
attractor dynamics for (visual) cognition. 1 believe,
generalization of these models (which were used in:
Peruš & Ečimovič, 1998; Peruš, 2000d) by incorporating
phase-processing (i.e., using the phase-Hebb rule) and
implementing it in dendritic or/and quantum networks
would be more appropriate.

It should be emphasized once again that image
processing and subsequent object recognition could be
possible only because of "the hard job done" by I CA and
the perceptual convolutional cascade. They provided
Gabor wavelets (cf., Potzsch et al., 1996) and spectral
representations of images which are stili used in many
higher cortical areas for more abstract processing (i.e.,
processing vvithout the topologically-correct pictorial
representation - the usual image). Volition-, "l"-based
control- and symbolic processing are examples of
abstract processing. On the other hand, operations of
visual cognition — like imagery, mental manipulations
of objects, visual modeling or planning (e.g., vividly
imagining how to drive from A to B) (review in Baars,
1997) — could have cortical implementation based on
the quantum associative net, especially if these processes
are performed consciously. This fits the Crick and Koch
(in Hameroff, 1996) hypothesis that we begin to be
conscious of visual processing in V2 and beyond
(encompassing visual cognition based on cooperation of
ITC and the prefrontal cortex).

"' Details on neurophysiological bases of Mcbbian memor>'-slorage see
in: Gardner (1993), Abbot & Nelson (2000), Bear (1996).

3 Addition of conscious experience
and quantum processes into
consideration

From dendrites to conscious experience. The
following citate from Pribram (1971, p. 105) summarizes
the view vvhich has been later elaborated by the
holonomic theory:

"Neural impulses and slow potentials are two kinds of
processes that could function reciprocally. A simple hypothesis
would State that the more efficient the processing of arrival
patterns into departure patterns, the shorter the duration of the
design formed by the slow potential junctional microstructure.
Once habit and habituation have occurred, behavior becomes
"reflex" — meanvvhile the more or less persistent designs of
slow potential patterns are coordinate with awareness. This
view carries a corollary, wz. that nerve impulse patterns per se
and the behavior they generale are unavailable to immediate
awareness. [...]

In short, nerve impulses arriving at junctions generale
a slow potential microstructure. The design of this
microstructure interacts with that already present by virtue of
the spontaneous activity of the nervous system and its previous
"experience". The interaction is enhanced by inhibitory
processes and the vvhole procedure produces effects akin to
the interference patterns resulting from the interaction of
simultaneously occurring wave fronts. The slow potential
microstructures act thus as analogue cross-correlation devices
to produce new figures from vvhich the patterns of departure of
nerve impulses are iniciated. The rapidly--paced changes in
avvareness could vvell reflect the duration of the correlation
process."

Discussion on sorts of representation in section
2 seems to fit this citate. Sparse-coding assemblies of
neurons (i.e., just few neurons fire, and this is enough for
encoding entire images) serve in reflexes vvithout
avvareness. The second representations of images, the
Gabor wavelets, interfere in the (sub)dendritic
microstructure. The correlation process, hidden in
subcellular or quantum (as 1 prefer) interference, could
also be accompanied by awareness. The final result of
interference processing, the conscious image, would be
reconstructed after the coUapse of quantum (or at least
quantum-like) wave-function.

In support for his hypothesis on junctional
electric activity as the substrate for awareness, Pribram
(1971, 1995) mentions that using biofeedback subjects
can discriminate a-EEG waves in their brain by "feeling
them as pleasantly relaxed avvareness". He also cites
Libefs findings that stimulation-produced avvareness
occurs in patients 0.5-5 seconds after the relevant brain-
area has been stimulated — as if some electrical state
would have to be built before the patients can experience
anything.

Neural and quantuin "sides" of dendrites.
lnfomax-processing is probably based in dendritic-y;6er
netvvorks or/and neural circuits - on the (sub)cellular
level, not quantum. VI image processing and subsequent

580 Informatica 25 (2001) 575-592 M. Peruš

visual associations are probably realized by quantum-
based dendritic «i/croprocesses. Dendritic processing
thus combines two levels. Its macroscopic fiber-part is
involved, under some top-down influences probably, in
shaping the Gabor receptive-field profiles by specific
collective dynamics of dendritic trees of many neurons
that criss-cross. Its microscopic membrane-"bioplasma"
part (in the patches or "holes" in-between the criss-
crossed dendritic fibers beneath their membranes)
implements the holography-hke image-processing, as
will be described in section 6, but probably by interfering
a sort of Gabor vvavelets instead of plane-waves.
Wavelets could be naturally rooted in quantum
background.

Why fractal-like inulti-level processing.
Systematic observations show that brain structures repeat
roughly on many levels or scales like in a fractal. Why
such a (seeming?) redundancy? The ansvver is probably:
flexibility, adaptability and universality.

Pribram (1971, 1991) observes that patterns
shaped or learned in one part (area, level) can be
transferred to another part (area, level) of the brain. One
perceives an image, can recall it, manipulate it in
imagination, one can use it to guide and control motor
action directed toward its object (the image of
achievement). In Pribram's example, one can dravv a
circie with a pencil on a paper or wall using fingers of a
hand or even of a foot, or one can put the pencil in the
mouth. The same pattern (circie) can be proditced
(drawn) in different circumslances using differenl body-
actions and different brain areas. Even different levels of
the tissue are needed: microscopic for processing,
macroscopic for execution of action. To mobilize a
muscle, amplification of (sub)neural signals is necessary
- thafs why neurons are needed also, not just dendrites
and quantum systeins. Neurons are cells - like the
muscle cells are also. Since Nature is multi-scale, body
and brain also have to be multi-scale to handle it. The
many levels therefore have to cooperate fluently, so they
must be compatible in information exchange. Patterns as
global information therefore have to be able to travel
from one level to another. This is realizable by fractal-
like dynamics that is intrinsic to coiTiplex (bio)systems
anyway. How the inter-level or inter-scale transfer of
patterns or images is realized is much harder to find out
than to realize that this is indeed happening (J.
Anderson).

Attractors are very probably those emergent
virtual structures which can "travel across the brain".
They are the bioinformational or PDP (parallel-
distributed processing) correlate of gestalts — each
represents an invariant information-unit (percept). An
attractor, a primitive "ghost in the machine", is rooted in
a network-state, but changes its substrate-elements
(Peruš & Ečimovič, 1998) like the electric current
changes its underlying crystal structure or like (water)
waves change (water) molecules while propagating.

4 Quantum associative network
model

Essentials. A verbal (partially metaphoric)
description of processing in the quantum associative net,
in comparison to holography, will now be given
(mathematical details in Peruš, 2000a,c). The processing
of quantum associative net is a sort of hoIography, if one
is allovved to use the term outside classical optics, since
the net interferes quantum waves. In fact, the quantum
associative net is a quantum-mechanics-based
mathematical model which can be computationally
simulated (cf., Zak & Williams, 1998). No reasons have
up to now been found why the model could not be
impiemented in a real quantum-physical system. The
model also needs specific input-output transformations,
therefore it is an informational model as much as it is a
physical one.

Interpretadon of states. The quantum
associative net is the core of basic quantum mechanics
(in Feynman's interpretation) which is put into an
inlelligible interaction with the environment (visual
field). This is new: the input-output dynamics. Another
essential new thing is that eigen-wave-fiinctions (i.e., the
basic, natural quantum states - they are often particles-
waves, but not necessary) are harnessed to encode some
information like an image. An intelligent being must be
there which interacts with the system in such a way that
the input-, output- and internal (memory) states represent
some meaningful information for the being. His
interpretation "transforms " an ordinary guantum system
into an information-processing system as soon as he is
satisfied with the input-to-output transformations. Let us
assume so. (It is like in the čase of a round piece of wood
"becoming" a wheel if put in a proper context - the axis,
other vvheels, upper plate, etc.)

Inputs. Image processing can be done during
the holographic process (Pribram, 1991). It works
perfectly and simply, as aH physicists and opticians know
(Hariharan, 1996). It is natural in holography (as well as
photography and any other optics) that the light encodes
the 3-dimensional form of an object by specific
modulation (i.e., shaping) of amplitudes, frequencies and
phases of its waves (rays). So, it is possible to encode
complicated object-forms into usual electro-magnetic
waves — even with perfect resolution when the code is
being reconstructed. We thus have: objects, their codes
or representations (in a medium), and we need object-to-
code transformations (encoding) and, finally, code-to-
object transformations (decoding or reconstruction).

Because holography works vvith ali sorts of
waves, the information-carrying waves can be quantum
waves. This inight bring new capabilities, but not
eliminate the classical ones. Hence, the input-waves can
be plane-waves, mathernatically described by equation
y/^i?,t) = A^(P,t)exp{i(p^(r,t)) (1),
or the input-waves can be Gabor wavelets (inade of
"increasing and decreasing waves under a gaussian
envelope"). {y/'\s the wave-function, A is its amplitude, <p

CONSCIOUS IMAGE PROCESSING. Informatica 25 (2001) 575^92 581

is its phase - at a specific location r in specific tirne /; k
is the eigenstate index.)

We merely need means for proper manipulations
of waves. Even for quantum waves, technology is so far
•today; Brain might also be able to do it. (Details see in
Peruš, 1997a.) We thus "insert the inputs" by
illuminating an object so that light-rays (or, in brain's
complicated version, ICA-produced wavelets) "fall into"
the quantum associative net.

Interference constitutes memory. We do that
with different objects and let the waves, each belonging
to an object, "mix together" while falling on a medium
(the hologram-plate). This is interference of waves (like
when two water-waves criss-cross) produced so that it
leaves a trace (the hologram) on the medium. The wave-
parts add or suppress each other (the constructive or
destructive interference), and a criss-cross matrix of their
relationships is recorded on the hologram. This hologram
is a "frozen" content-addressable associative memory
which becomes active when light is sent through it!

The quantum interference and quantum
holography are when the waves and the hologram (but
not necessarily the object) are quantum. The quantum
hologram is the interference-pattern of quantum waves
vvhich leaves traces in the guantum medium itself. In
quantum world, "parts are virtually a whole", so the
waves and the hologram "inter-penetrate". Matrix G, as

given by the phase-Hebbian expression
p

k=\

P
,('(Pt(?2. '2)-«'t(' i . ']))) = E A(n,^i)A(^2>^2>^' (2),

k=l

describes the quantum hologram. Its essential mernory-
"traces" are phase-differences in the exponent (cf, Ahn
et al., 2000). Matrix G is at the same time the carrier and
transformer of waves. G is the quantum-holographic
memory which is active - performs associations "through
itself.

G describes the "self-organizing internal
restructuring" of the quantum system by "internal
interactions between its (seeming) parts", i.e. by self-
interference. It should be emphasized here that this is not
an interaction in the sense of chemical or quantum-
particle (nuclear, subnuclear) reaction, but in the sense of
mutual mechanical (or electrodynamic / optical)
influence or re-arrangement on a quantum level. In the
language of quantum informatics, G describes a
compound. (The "deeper, holistic" quantum fields
incorporate entanglements, where parts which have once
interacted cannot be really separated any more, but just
seemingly. See experiment by Aspect et al., 1982.)
Compounds can be "un-mixed" like the images can be
reconstructed from the hologram (memory).

Associative processing. The matrix / hologram
/ propagator G describes phase-relationships between
"infinitely"-small parts of the waves vvhich were
"mixed". This is associative meniory, which also acts
like a "turbine" for associative "computing". Each

quantum wave (//• "flovvs through the C-turbine", and this
changes both the G and the wave. In mathematical
description:

'^'(''2 > ^2) = \\Gif, ,t„r^ .t^ y¥{r, ,t,)dP, dt, (3).

This implies, because equation (2) should be inserted into
equation (3) to replace G, that (and how, why) waves iff
change G and G changes waves }jf. This is called the
coupled dynamics of the quantum system — it is a "self-
holography" triggered by our inputs. We call it
associative processing, because it is realized by
"projecting" the quantum eigen-state or -wave "through
the associative memory or hologram" G. Initial quantum-
encoded informational state (\|/in) is thus transformed into
an associated quantum-encoded informational state

(Voul)-

Image recognition by wave-function collapse.
If we want to recall a memory, or to reconstruct a stored
image out of C, respectively, we have to present a part of
the image or a similar image (the memory-"key") to the
system (i|/in). The similarity activates matching of
relations, encoded in phases, and thus selectively
associates the "key" with the most similar stored image
vvhich then "comes out of the mixture" (i.e., G) in a
clearly-reconstructed form. This is described by the
follovving sequence of equations:

= | [E L Wk(Ay¥k(^2WXr„t,)dr,^

=(f^,(r,m^,o^y,(^2)+-+
{^Wp{r,y'i''ir„t,)dF,y,(r,) = Ay/,if,) + B

(4)
vvhere A=\ ("extracted image") and 5=0 ("noise").

1 can claim that this quantuiTi process, called
"\vave-function collapse", is typically holographic in the
framework of quantum associative nets (details in Peruš,
1997a). It is also essential for ali quantum measurements,
vvhere one "chosen" eigen-state ij/^ is realized in the
quantum state \|/, aH the other eigen-states "retreat" (into
the implicate order). Thus, the input-triggered vvave-
function "collapse" is the memory-to-consciousness
transition. An image is reconstructed from memory and
simultaneously "appears in consciousness", because it
has been associated vvith ali the relevant contexts during
this very process! Therefore, the image is also
(consciously) recognized at the same time!

Remarks. Memory associations are encoded in
correlations of vvave-amplitudes A and additionally in
differences of vvave-phases <p. The latter encoding turns
out to be more important and more fundamental,
although both encodings are complementary (details in
Peruš, 2000a; MacLennan, 1999; Sutherland, 1990).

In sum, the significance of the quantum
associative net is in the fact that ali the elements or
aspects of an input-image are compared vvith ali the
elements or aspects of ali the images, condensely stored
in the system (as described by G or, alternatively, by the

file:////Gif
file:///vave-function

582 Informatica 25 (2001) 575-592 M. Peruš

so-ca\led probability-density matrix p; cf., Alicki, 1997).
An optimal, "compromise" output-image is then given as
the result.

In the foUovving sections, some related quantum
or similar models will be presented, and they will be,
together vvith the quantum associative net, discussed in
the context of consciousness.

5 Holographic perceptual out-to-
space back-projection and
object—image match

Mathematical-physical description of
holography. A hologram is a complex linear
superposition of coUective stationary interference fringe
patterns. Storage of Information (i.e., object-image) is
usually made by global interaction (mixing) of a coherent
information-bearing object-vvave (reflected from the
object) and a no-information-bearing coherent reference-
wave under a particular angle. Information can be later
retrieved by illuminating the hologram (no object needed
any more) vvith the anti-wave of the original reference-
wave used at storage. The anti-wave is an original-like
information-bearing reference-wave (called phase-
conjugate wave) in the opposite direction of the original
wave.

Namely, phase conjugation refers to the change
of sign (direction) of the phase (in exponent) and thus of
the vvave-vector: k to -k. Wave-vectors with opposite
signs (k==27i//i and -k) indicate vvave-propagation in
opposite directions, but with the same wavelength A. The
phase-conjugate wave (-k) has, in the čase of ali local
fields having the same frequency, an unique property to
propagate back, in real or virtual form, along the path of
the original wave (k). The advanced wave k and the
retarded wave -k, which is as-if time-reversed, get
superposed (giving e^'"^ - e'^"^ = 2 cos 2nvt), due to
precise timing. Thus, the phase-conjugate wave (-k)
propagates in the direction opposite to that of the
original wave (k), similarly to propagation of the
original wave backwards in tirne (as well as in space).

Hologram's parallel-distributed organization is
globally regulated by the local relative-phase variable
implemented by the infinite-dimensional irreducible
unitary linear representation of the Heisenberg nilpotent
Lie group (Schempp, 1993, 1994, 1995; Marcer &
Schempp, 1997, 1998, in Dubois, 2000b). The virtual
"slices" (pages) of the hologram are frequency-
organized, selective by incident angle of the page-
oriented retrieval scanning reference-vvave. Pattern/page-
selection is executed by phase-conjugate adaptive
resonance. The fractal self-identity is encoded in a
hologram enabling reconstructional resolution
proportional to any hologram's fraction where the total
Information is enfolded from. (Schempp, 1993)

Phase-Hebbian holographic associative
memory has many concrete implementations, e.g. in
photorefractive media — see Anderson (in Zornetzer,
Daviš &Lau, 1990, ch. 18).

Implementation of (bio)holograms. Hologram
is realizable in fundamentai (quantum)-physical media as
well as in brain tissue. E.g., 0'Keefe (in Oakley, 1985, p.
88-89) gives a concrete proposal of holographic
processing in the hippocampus, and Nobili (1985) using
damping-constant variations of local oscillators in the
cortical glia-tissue. Neural holography could be realized
by dendritic transmembrane-potential oscillations
characterized by microwave-frequency coherence of the
non-thermal excitation-states of biomolecules vvith high
permanent dipole moments. The needed coherent "wave"
could be internally incident. Holograms can be made also
vvith partly coherent waves (Marcer & Schempp in
Fedorec & Marcer, 1996; Hariharan, 1996), although
usually coherent vvaves are used. Information betvveen
neurons is exchanged also independently of synaptic
connections via glia-cells or non-anatomic coherent
resonance coupling. Fundamentai (sub)quantum
holography could be realized vvith coherent overall wave-
functions of dynamic quantum-vacuum (cf., Bohm &
Hiley, 1993). A variety of holographic processes
including single-state (e.g., single-photon) holograms are
possible (why not, at least in a generalized sense, also in
the brain?).

The fundamentai Berry phase or geometric
phase (Anandan, 1992) of the quantum system is
promising for quantum memory and holographic
(bio)information processing. A quantum system, vvhich
evolves so that it returns to its initial state, acquires a
"memory" of this trajectory. This quantum "memory" is
encoded in the Berry phase vvhich is added to the phase
of system's wave-function.

Holographic perceptual projections. We have
an impression that an object we see is located "outside".
The naive vievv is as follovvs; There is an object in the
environment. Perception of it is produced in our brains in
such a way that we see the object as it "really is - in
external space". The perception appears to be somehovv
projected from the brain out to the original location.
Pribram (1998b) mentions several cases of such
perceptual or even cognitive projections: For example,
one feels the paper, on vvhich one is vvriting, at the tip of
his/her pen, not at the tip of fingers holding the pen. A
weil-known čase are also the so-called phantom-limbs —
a patient feels the amputated limb vvhich he has just lost.
The pain is felt outside the remaining part of the limb —
at the location vvhere the former complete limb vvas or
shouid be. In experiments, cited by Trstenjak, subjects
spontaneously write on their own foreheads a letter (e.g.,
F) oriented as if they vvould read it from inside out (vvith
their "mind's eye"), or as if they vvould write it on the
internal side of their own foreheads. Projective nature
and use of percepts are thus a part of human
performance.

Let us illustrate hovv we could start to model
holography-like perception and memory-recall. First, in
stage 1, a subject faces an external, illuminated object.
Light-vvaves reflect from objecfs surface tovvard
subjecfs eyes. Image of the object is processed in his
visual cortex, and gets memorized in a holography-like
manner.

CONSCIOUS IMAGE PROCESSING. Informatica 25 (2001) 575-492 583

Later, in stage 2, the subject faces a similar
object or the same one. Its light-wave indirectly interacts
with holographic memory of the (original) object. A
niemory-image is remembered when the corresponding
hologram-page is selectively reconstructed (as detailed
in: Peruš, 2000c). By a phase-conjugate wave, the
perception (a compromise of the stimulus and memory)
is experientialiy projected back (from brain) into the
surrounding space to the location of the original object.
The Virtual (holographically back-projected) image of
the remembered or perceived object coincidences in
space with the original object. This important and
plausible hypothesis originates from: Marcer & Schempp
(1998, in Dubois, 2000b). The idea of holographic back-
projection by the (quantum) phase-conjugate wave is not
yet fmally proven, but it fits our feeling that the object
and its brain-made and out-projected virtual image
coincide out-there as if they are one!

The perceptual projection has been proven, for
example, by the G. von Bekesy experiments (Pribram,
1971, pp. 168-171; 1991, pp. 90-91), but the guantum-
optical phase-conjugate back-wave remains a question of
quantuiTi "reality" (i.e., theoretically it exists and is
useful, experimentally there are indications, but there are
different interpretations about their "reality"). The
hypothetical back-projection waves would be guantum -
not classical electro-magnetic waves like the input-waves
to the retina. They would not exist really in the ordinary,
i.e. classical-physical, sense. (These waves could
"propagate backvvards in time", "symmetrically" to the
original input-wave, as in quantum field theory.)

To repeat; In stage 1, an original object is seen
— a representation (a virtual "image") of it is produced
in the brain. In stage 2a, a similar or the same object
triggers remembering the original object of stage 1. In
stage 2b, which follovvs stage 2a immediately, a joint
perceptual image (usually a "compromise" of images of
stages 1 and 2a) is projected back to the location of 1 or
2a, respectively. These stages of the dynamic
holography-like process usually iterate and possibly
converge to a maximal agreement of perception with
phenomenal reality. Beside pragmatic advantages to the
organism, this is also necessary for unambiguous,
consistent communication between image-making
subjects, since they share the perceived objects in
positions relative to one another in the 3-dimensional
"Cartesian theatre" they co-create (Marcer & Schempp in
Dubois, 2000b).

Iterative matching loop. Thus, the image,
vvhich brain/mind creates, is perceptually coincident,
maybe also quantumly coincident, i.e. phase-conjugate,
in external space with the object imaged. In physical
terms, there is a coincidence and annihilation {\j/y/*) of
positive phases of forvvard-propagating waves {ij/, having
wave-vector k) with negative phases of backward-
propagating waves (phase-conjugate \i/* with -k).
Forvvard waves encode the original object and backvvard
waves its perceptual image. When they meet and match
(ij/\l/*) on the path they share, the perceptual transaction
is completed, hence the wave-function collapse occiirs

(Cramer, pers. commun.) and so the image becomes
conscious. This adaptive-resonance hypothesis is best
understood with the transactional interpretation of
guantiim mechanics by Cramer (1986).

One can ask: vvhat is (or even: is there any)
difference between the perceived object and the back-
projected image of it (i.e., the image in the original
location in the environment, not the image/code in the
brain, say in VI). Disagreements lead to errors or
misperceptions. The iterative matching process can also
be led to creative generalizations and associations.

In imagery, or more plastically in hallucinations,
the (possibly modified) back-projected image of the
object replaces the non-existent object (which was
present in stage 1, but not in stage 2 when the
reconstructed reference-wave has some internal sources).
In perception, the back-projected image phenomenally
fits the real object.

Why (quantum) hoIography is necessary for
spatial perception. Phase-conjugate projection of the
image back into the space-location of the original object
is an exclusive characteristic of holography (or at least of
optics, if the image would perhaps be processed in
another way, not holographically). Namely, neural
networks or other hard-wired subcellular networks,
without having electro-magnetic or guantum embedding,
can definitely not back-project their images into the
external space on their own. But we experience that
perceptual projection is happening. Because holography
(not photography) is involved, it is not directly the
object-image that is back-projected (as in photography),
but it is the wave (-k), which carries the encoded object-
image, that is back-projected by phase-conjugation
during/after holographic retrieval (Marcer & Schempp,
1998, in Dubois, 2000b). So, the external medium must
be ofthe same or at least similar natiire than the medium
of the brain-hologram. Hence, the common medium can
only be quantumfieldl

Philosophical questions. Actually, there can be
no plastic, geometrically-/ topologically-correct 3-
dimensional perception of the object, which we
experience and call "the real/true perception", without
that fitting ofthe object with the back-projected image of
it (which has been a moment earlier reconstructed from
the "brain hologram"). This iterative fitting seems to
need time, unless the Cramer (1986) transactional
interpretation with "quantum waves backward in time" is
adopted; but in fact space-time is co-created by ("in") our
conscious experience "during" this visual processing.
Objects and brain-states seem to be located in space and
time, but conscious experience "has been / is / vvill be
there aH the time - as long as the Cartesian theatre is in
the play". (E.g., Cramer (1986) even says that his
interpretation, or a quantum transaction, respectively, is
atemporal.)

Nothing is perceived outside mind: There are no
perceptions, which we are aware of, without
consciousness (i.e., conscious experience), and there are
no phenomenal unconscious or subconscious sensations
or "detections" (i.e., perceptions we are not aware of)
without mind. A Kanfs Ding-an-Sich (thing-in-itself) is

584 Informatica 25 (2001) 575-592 M. Peruš

not perceived; just the co-created thing is, i.e. a
"deformed shadovv" of the hypothetical Ding-an-Sich.
Thus, a perception is a Plato's "shadow" created by
consciousness in cooperation with Nature, or "deformed"
by brain-processing.

Various bacic-projections, like visual, tactile,
auditory ones, match with the object and with each-other!
Our vision "quantuiTi-touches" the object successfully as
well as our hands mechanica]ly touch it simultaneously.
Indeed a peculiar space-time fit. (But maybe this
"resonance", and space-time incorporating objects, and
conscious experience including objects, is the same
thing/process... However, this synimetry or harmony
(fit) may be broken, e.g. in hailucinations... The
dilemma of reality thus remains.)

6 Dendritic holography-like image
processing

Bioplasma dynainics. How can a dendritic
netvvork (physiology see in: Pribram, 1991, 1993;
Damask & Svvenberg, 1984; Koch, 1997; Koch & Segev,
2000) implement holography-like image processing of
VI? Stimulus-specific waves of the dendritic field are
produced, and these information-encoding waves
interfere. A phase-Hebbian PDF is realized.

There are (at least, roughly) two related kinds of
collective oscillations accompanying the dendrites cris-
crossed in networks: first, the oscillations of dendritic
membrane potential, and second, the oscillations of
dendritic ionic "bioplasma", or of the electric
polarizations within, respectively. The "bioplasma"
"flows" and "waves" near the membrane-surface of the
dendrite. It depends on the biomolecules (proteins, lipids,
etc.) of high dipole moments located on (beneath, in,
near, along, respectively) the dendritic membrane, and
the ionic charge travels through it.

This membrane-"bioplasma" system of
numerous coupled electric dipoles exhibits dynamic
ordering which is determined by the distribution of
phase-differences in oscillations of the corresponding
dendritic potentials. The isophase-contours of
oscillations in the polarization-field, extended over
dendrites (especially their membranes) and the
accompanying "bioplasma", determine the collective
wave- and fluid-phenomena that are the correlates of
image processing at the subcellular level of VI (after
Appendix A of Pribram, 1991).

The Jibu, Yasue and Pribram model. The
density (or concentration) of the ionic "bioplasma" p(x,t)
changes as a result of the dynamic pattern of
hyperpolarizations and depolarizations across the space
inside and outside dendrites. Yasue, Jibu & Pribram (in
Appendix A of Pribram, 1991) defined a wave-function
y/ = V(p) e'*" {<p is the phase). They derived {ibid., pp.
282-286) a wave-equation for the membrane-
"bioplasma" system:

IV
d\j/

2
+ U„ ¥ (5)

which has the same mathematical form as the
Schrodinger quantum wave-equation (cf, Bonnell &
Papini, 1997), but vvith different interpretations of
variables. [/„ is the external static energy / potential, i.e.
the external electric influence (stimulus). K is a constant
(a "relative" of the quantum Planck constant) equal to a
quotient of "flow"-velocity v and the length of the so-
called vvave-vector k which is equivalent to spatial
frequency, related to the change of phase; k = V(p.

Successfiil derivation of such an equation,
having a characteristic form for wave phenomena, for an
idealized dendritic netvvork / field shows that global
polarization-vvaves, described here by ijf, emerge in the
subcellular medium. As a consequence of these vvaves,
"tlows" and interference are also produced in the
dendritic net. There are, of course, many variations of
oscillations / waves / interferences in that complex
medium. y/ (vvith different interpretations) could be
chosen to approximate (m)any of them.

Phase-Hebb-like memory-storage in
bioplasma. Wave-equation (5) is alone not enough for
image processing. From wavelets

^(^'0 = E„^"
f \\

exp
v - ^ ;

/

v

(In \
vx- kj (6)

xj^«(or

we obtain (details in Pribram, 1991, A, pp. 288-291) the
density pfx,() of charge-distribution in "bioplasma":

p{x,t) ^ \i/{x,tf = y/(x,ty y/{x,t) =

(7).
c„ are the Fourier coefficients; Z, is a characteristic spatial
extent of the dendritic system along the spatial axis x; A„
is a constant; n, n' are integer numbers. The last term
manifests interference, which is essential for holographic
memory, since it has a phase-Hebb-like structure:
C,,' (t)cn(t) represents "interference of amplitudes" and
exp[(2m/L)(n-n')xJ "interference of oscillations" - in the
exponent one finds the phase-differences.

The flow of dendritic perimembranous
"bioplasma" is driven by the phase-differences among
isophase-contours (i.e., curves connecting aH
synchronized oscillations). The "density-based flow"
toward an attractor at the centre of the concentric
contour-family is regulated by the gradient (i.e., maxiinal
change-rate) of phase (V(p). Exactly:

| ^ = - W - (p V < ^) (8).

The wave-equation (5) and equation (8) describe the
subcellular "tluid-dynamical" correlate of associative
image processing in the VI dendritic net.

Papers like Berg et al. (1996), Bray (1995), and
those in Fedorec & Marcer (1996) support the possibiIity
of biomolecular realization of holographic processing at

CONSCIOUS IMAGE PROCESSING. Informatica 25 (2001) 575-492 585

the subcellular level (cf., Nobili, 1985; Psaltis et al.,
1990; Sutherland, 1990; Snider et al., 1999). These
dendritic dynamics (Yasue, Jibu & Pribram in: Pribram,
1991, Appendix A) are in general principles equivalent to
processing of the quanturn associative net, but
incorporate some sophisticated constraints imposed by
characteristics of the subcellular tissue. The difference
also is that the dendritic wave dynamics are quantuiTi-
like, but quantum associative nets are purely-quantuiTi.'

7 Microtubules, coherent subcellular
and quantum processes, and
consciousness

Microtubules. Microtubules, cilindric /
filamentary tubes, are the most important ingredient of
the cytoskeleton vvhich is a protein-made intracellular
network. Microtubules extend. along dendrites, come
together at soma, and extend further along axons. They
consist of oriented assemblies of electrical dipoles, or
permanent electric polarization systems (electrets),
respectively, which globally act as mega-dipoles.

A hypothesis (by Hameroff, 1994) vvith
increasing support has been presented that cytoskeletal
microtubules, constituting a netvvork in cooperation with
MAP (microtubule associated proteins), realize sub
cellular Information processing based on coupled
oscillatory collective dynamics. Since Hameroff &
Penrose (1995) emphasize that mainly dendritic
microtubules act such a role, this hypothesis might not be
entirely incompatible with the holonomic theory, but
complementary. Such dynamics emerges from
conformational transitions of tubulin electric-dipolar
molecules, which act as "bit flips", and from soliton-
based, almost loss-less transfer of energy and
Information (phase!) along the paracrystalline
microtubules. Tubulin states might encode the pixels of
patterns vvhich are processed (Hameroff, 1994;
Nanopoulos, 1995). Globally, the processing is
manifested in changes of concentration of electric
polarization (polarization density), and moving of the
concentration peaks from one side of the tubulin-web to
another.

Long-range quantum coherence and related
laser-like, thermal-noise-free (and information-loss-free)
ordering phenomena, like super-radiance and self-
induced transparency may take plače in microtubules.
The hypothesis that quantum coherence subserves
binding of conscious perceptions is supported by an
increasing number of authors (e.g., Hameroff et al.,
1996). Microtubules are viewed by Jibu & Yasue (1997)
as information-encoders into a coherent subcellular
optical PDP network. Frohlich (1968) has shown the first

' There is a differcnt intcrpretation of the wave-function ^wliicli here
corresponds to the "bioplasnia-density"p - in conlrasl to PeruS, Bohm
and the Copenhagen quantum interprclations. Namely, the "bioplasma-
density" p does not exactly correspond to the quantiim density niatrix p,
because the amplitude of the "bioplasma"-((/is defincd as i/(p) (not
quantum!) to get the "quantum" \/y/ = p.

signatures of interdependence of biological and quantum
oscillatory dynamics.

Frohlich coherence. As proposed by Frohlich
(1968) and succesors, the so-called Frohlich (Idng-range,
microwave) coherence emerges from interacting
osciUating (10"-10'^ Hz) dipoles of biomolecules.
Electric polarization density serves as the biological
order-parameter. Frohlich coherent osciUations may lead
to two sorts of extreme collective states: to the Bose-
Einstein condensate, where aH dipole-elements act as if
they are one, or to loss-less solitonic polarization-waves
(proposed by the Davydov model), where the dipole
order propagates as one traveling condensate (Denschlag
et al, 2000). This is analogous to superconductivity.
Indeed, it was proposed by Jibu & Yasue (1995, 1996,
1997) that the experimentally-supported Frohlich waves
along the protein filaments can propagate without
resistance, thermal loss and damping. Such
superconductivity hypothetically occurs even at body
temperature.

Subcellular automata. Many nanobiological
systems could be represented as assemblies of dipoles: 1.
celi membrane as a double sheet full of dipoles; 2.
cytoplasmatic and extracellular water; 3. microtubules as
systems of tubulins; etc. Systems of dipoles or spins can
be arranged: 1. randomly; 2. ferroelectrically (i.e.,
aligned in parallel); 3. as spin-glass (i.e., in domains of
frozen (dis)order, each with its own parallel alignment)
(Mezard et al., 1987). The membrane bi-layer of dipoles
might incorporate sandwich-like Josephson junctions,
over which superconducting electrical currents vvith
special effects vvould flovv. They might be connected into
a peculiar PDP "Josephson net-computer" (Rein in
Pribram, 1993; Jibu & Vasue, 1995).

Quantuni effects in synapse. Eccles (e.g., in
Pribram, 1993) pioneered the idea that conscious mind,
using attention, could influence the probability of
discrete (quantal) release {exocytosis) of vesicles full
vvith neurotransmitter-molecules at the hexagonal-
paracrystalline presynaptic vesicular grid. Conscious
mind vvould impose effect on probabilistic quantum
processes (e.g., the vvave-flinction coUapse) underlying
the probabilistic exocytosis in synapses. So, conscious
process vvould selectively modulate, through quantum
fields, the essential ingredients of memory-storage and
associative processes - synaptic efficiacies (Rein in
Pribram, 1993). To be precise, quantum influences
should trigger electronic rearrangements resulting in
movement of hydrogen-bridges vvhich vvould effect
vesicle-release from the presynaptic hexagonal grid
(Hamerofi; 1994).

CoUapse and consciousess. The hypothesis of
Hameroff & Penrose (1995, 1996, 1997) advocates
microtubules and their nets as the main subneuronal
substrate of consciousness. They are flexible, fast-
changing and might allovv retrograde signaling, thus
mediating bi-directional subneuronal links betvveen
synapses. Harneroff (1994) argues, based on
observations, that general anaesthetics cancel conscious
experience by operating mainly on specific microtubular
ingredients. He vvrites that an anaesthetized brain usually

586 Informatica 25 (2001) 575-592 M. Peruš

remains quite active (as persistent EEG, evoked
potentials and autonomic fiinctions show), but this
activity is neural, not microscopic quantum. So, quantum
coherence, which gets disrupted by anaesthetics, shouid
be essential for conscious experience.

In contrast to the environment-induced wave-
function coUapse of quantum theory (and of the quantum
associative net), the wave-function collapse in
microtubules is supposed by Hameroff & Penrose (1995,
1996) to depend on quantum gravity: Condensates which
become larger than a threshold-size shouid cause their
common vvave-function to collapse "under their own
mass". This would be thus a self-collapse called
orchestrated objective collapse. Each such collapse is
considered by Penrose and Hameroff to be a single
conscious event. A temporal sequence of such conscious
"nows" would constitute the "flow" of conscious
experience, by this hypothesis.

According to the Hameroff & Penrose (1995,
1996) sketch, preconscious net-computing, when the
classical (sub)neuronal PDP (parallel-distributed
processing) is gradually replaced / complemented with
quantum PDP, leads to emergence of a quantum coherent
superposition. Each of its superposed alternative states
has its own "competing" space-time geometry. When an
instability-threshold is exceeded, the time-irreversible
orchestrated objective self-collapse occurs, and this is the
conscious experience (the "now"). This moment of
maximal coherence "illuminates" the (results of)
preconscious network-processing of images etc.
(executed till the collapse) "by making it conscious" at
the very moment of collapse which "chooses" one from
many alternatives. The selected information-state (e.g., a
recognized image) is flirther-on processed unconsciously
in a classical way — until a new quantum coherence
"consciously illuminates" the new mental state to make a
qualitative experience of it, says the hypothesis.

Subcellular "holography". A number of
oscillatory netvvork-structures were mentioned: electric-
dipole systems, microtubular nets, "bioplasma",
extracellular matrix, protein nets, Josephson-junction
nets, etc. They individually or in cooperation (as is usual)
are able to exhibit holography-like interference
processing (Pribram, 1993). However, molecular
vibrational fields in these nets are just a sort of interface
between guantum networks and neural net\vorks. They
ali are very probably influencing, directly or indirectly,
the synaptic efficiacies (e.g., whether they are inhibitory
or excitatory, and how much) (e.g., Nanopoulos, 1995).

Subcellular coherence. What folIows, is based
on speculations by Jibu & Yasue (1995, 1996, 1997),
derived from quantum field theory of Umezawa.

Beneath many levels of cell's biomolecular
structure, many levels of sub-atomic or inter-atomic
quantum particles, and their ensembles or condensates,
can manifest collective dynamics capable of coherence
and interference processing of holography-like sorts
(revievvs in Pylkkanen & Pylkko, 1995; Pribram, 1993).
They shouid mainly "live" in the intra- and inter-cellular
water which composes more than 70% of the material
composition of brain-cells like neurons and glia. These

particles shouid collectively take part in water's
rotational fields (or spinor-fields, emerging from spins of
particles or from molecular spinning dipoles) and their
interactions with the electro-magnetic field (i.e., with its
quanta - photons).

Of special importance is supposed to be the
Nambu-Goldstone boson (a sort of dipole phonon) which
is a mass-less quantum of a long-range correlation-wave
of the water rotational field created in an ordered
vacuum-state.

Quantum binding. Macroscopic condensates
of Nambu-Goldstone bosons are, after the hypothesis of
Jibu & Yasue (1995, 1996, 1997), the fundamental
carriers of perceptual memory and cues for
reconstruction of the original stimulus-perception. Since
they depend on the interaction of radiation (photons) and
dipoles, they lead to evanescent (i.e., virtual, tunneling)
photons which may collectively produce Bose-Einstein
condensates. In such a condensate, many particles merge
into a collective, unified, macrosopic quantum state.
Particles (e.g., photons), which are able to unite into such
a coherent condensate, are called bosons; particles (e.g.,
electrons), which never occupy the same quantum state,
are called fermions. A Bose-Einstein condensate of
evanescent photons is proposed to be the ultimate
neurophysical correlate of an unified conscious
experience. In Hameroff (1998, Box 1) and Jibu & Yasue
(1995, 1996, 1997) suggestions are given how the Bose-
Einstein condensates could be shielded enough by special
biomolecular structures against the destroying thermal
fluctuations.

The coherent dipole-field (i.e., having dipoles
oriented in the same direction) of vvater might extend
over the whole brain tissue or even whole body, not just
over several cells. The coherence-length, i.e. a
"diameter" of the region of coherent oscillations of ali
net-elements like dipoles, is calculated to be in the čase
of outer perimembraneous water about 20 to 50 |j,m (Jibu
& Vasue, 1997) (more than cell-dimensions). Such
ordered water with presumably laser-type processes is
assumed to enabie photonic holography in and around
microtubules and in extracellular matrices (Jibu &
Vasue, 1995; Hameroff, 1994).

Qualia unexplained. 1 can agree (Peruš, 1996-
2000) with Hameroff and Penrose that the wave-function
collapse seems essential for transitions from
subconsciousness (or preconsciousness, or unconscious
memory) to conscious experience. It also illustrates the
classical-quantum (neuro-quantum, macro-micro)
transitions. But saying (Hameroff & Penrose, 1996) that
only and merely the "orchestrated collapse" (not any
usual stimulus-induced collapse) provides the non-
computable element necessary for consciousness, does
not give any explanation of the qualitative experience.

Namely, the central characteristics of
consciousness are gualia which are subjective,
qualitative, phenomenal experiences ("how things seem
to be to us") (Flanagan, 1992; Davies & Humphreys,
1993; Marcel & Bisiach, 1988). Examples of qualia are
experiencing yellowness of a lemon, feeling pain in own
elbow, and in general also what it is like to be a person.

CONSCIOUS IMAGE PROCESSING. Informatica 25 (2001) 575-492 587

etc. Qualia are felt in first person only, not in third
person. A blind person cannot imagine precisely how it is
to see; person A does not know precisely how person B
feeis. Qualia cannot be identified with their neural
correlates — these are discussed, for example, in:
Nevvman (1997), Frith et al. (1999); for color in: De
Valois & Jacobs (1968), Schiller & Logothetis (1990).

Anyway, one might speculate that the usual
stimulus-induced collapse is related to conscious
perception of the stimulus, and that the orchestrated
objective (if indeed induced by quantum gravity)
collapse is rather related to (introspective) avvareness.
Although this hypothesis provides relations of conscious
process to the origin of space-time, the problem of qualia
remains. Qualia are only (with justice, 1 think)
transferred to the most fundamental level (also). This
could be concluded also for the suggestions of Jibu and
Yasue: They might "explain" the origin of the unity of
conscious experience, but not its qualitative phenomenal
character.

8 Conclusions
This sketched integrated model based in the

abundant literature of cognitive neuroscience (revievv in
Kosslyn & Andersen, 1992), but transcended it by
introducing fundamental informational (bio)physics. The
latter seems to be needed (e.g., Bob & Faber, 1999) and
promising (e.g., Dubois, 2000a,b; Pessa& Vitiello, 1999)
for modeling quantum background of conscious
processing (cf, Ezhov et al, 2000, 2001; Weinacht et al,
1999; Rabitz et al, 2000; Snider et al, 1999; Spencer,
2001; Wheeler & Zurek, 1983; Jones et al, 2000 - for
hints from frontier technology).

According to the holonomic theory (Pribram,
1991), holography-like parallel-distributed processing in
dendritic netvvorks of VI is essential for image
processing. To be more specific, electric polarization
fields or quantum fields and their wave phenomena are
inside dendritic criss-crosses could be the central
"medium" for processing. Here, it was proposed.that the
image-bearing eigen-waves, vvhich interfere in the

quantum associative net, are or at least could be infomax-
produced, quantum-rooted Gabor wavelets. I thus
suggest that the neocortex ušes three types of image
representations: the Gabor coefficients as sparse neuronal
codes for automatic processing, the dendritically-
implemented Gabor vvavelets as spectral codes for
associative visual cognition, and the V2-reconstructed
spatial image used in our "direct" conscious experience.

Because the perceptual image seems to match
precisely the original object in its external location,
holographic back-projections by phase-conjugation have
been argued to be necessary. Since neural or dendritic
nets alone cannot realize such out-to-space projections,
the only medium vvhich is common to holography and to
brain netvvorks was declared ultimately responsible for
conscious perception — the quantum system.

These ideas have been presented in the context
of models by Pribram, Jibu and Yasue, Hameroff and
Penrose, among others. Together they constitute, 1
believe, a view on systems-processing backgrounds of
conscious image processing that provides an optimal
integration of complementary proposals by the
mentioned authors based on current knowledge. In
accord with other views, the wave-function collapse was
argued to be the physical correlate of becoming
conscious of a selected image. The problem of qualia
remains unsolved.

Concerning the kernel of the presented model, 1
can assume with much optimism that the quantum
associative net, if really quantum implemented (as also,
in a way, probably in brain), vvould realize efficient
image recognition and related associative processing.
Systematic comparison with extensive cognitive-
neuroscientific literature allows me to assume that in
cooperation with other brain structures, such an image
processing would probably be conscious. A forthcoming
paper will discuss results of the present paper in the
context of experimental data on neural correlates of
conscious visual experience and its impairments such as
blindsight (Koch in Hameroff et al, 1996; Davies &
Humphreys, 1993).

Acknowledgeinent
1 am much honoured to be able to express

cordial thanks to my great teacher Professor Kari H.
Pribram (Stanford and Georgetovvn Universities) for his
significant help and deep comments during our extensive
discussions or as vvritten notes into an earlier manuscript.
Discussions with Professors D. Kirvelis, J. Bickle, J.
Cramer, J. Gould, J. Glazebrook, G. Vitiello, A. Vogt, A.
Železnikar, A. Župančič, D. Rakovič, with Drs. P.
Marcer and R. Bogacz, and with A. Detela, are gratefully
acknowledged. Many thanks also to Professors J. Musek,
A. Ežov, P. Kainen, S. Dey and S. Pejovnik, to the
National Institute of Chemistry and to MŠZŠ for
financial support, to Drs. M. Škarja, A. Zrimec and R.
Ružič for help, and to Mrs. Katherine NeviUe for
hospitality.

References
[1] Abbot, L.F. & S.B. Nelson (2000): Synaptic
plasticity: taming the beast. Mature Neitrosci. (Suppl.) 3,
1178-1183.
[2] Ahn, J., T.C. Weinacht & P.H. Bucksbaum (2000):
Information storage and retrieval through quantum phase.
5c;ertce 287, 463-465.
[3] Alicki, R. (1997): Quantum ergodic theory and
communication channels. Open Systems & Information
Dynamics 4, 53-69.
[4] Anandan, J. (1992): The geometric phase. Nature
360,307-313.
[5] Arbib, M. A. (Ed.) (1995): The Handbook of Brain
Theory and Neural Net\vorks. Cambridge (MA): MIT
Press.

588 Informatica 25 (2001) 575-592 M. Peruš

[6] Artun, O.B., H.Z. Shouval & L.N. Cooper (1998):
The effect of dynamic synapses on spatiotemporal
receptive fields in visual cortex. Proceedings of the
National Academy of Sciences ofUSA 95, 11999-12003.
[7] Aspect, A, P. Dalibard & G. Rogier (1982):
Experimental test of BelFs inequalities using time-
varying analyzers. Physical Review Lelters 49, 1804-
1807 (and also: A. Aspect, P. Grangier & G. Rogier:
Phys. Rev. Lett. 47 (1981) 460- &. 49 (1982) 91-.)
[8] Baars, B.J. (1997): In the Theater ofConsciousness.
New York: Oxford Univ. Press.
[9] Baird, B. (1990): Bifurcation and category learning in
network models of oscillating cortex. Physica D 42, 365-
384.
[10] Bartlett, M.S. & T.J. Sejnovvski (1997): Viewpoint
invariant face recognition using independent component
analysis and attractor networks. Advances in Neural
Information Processing Systems 9, 817-823.
[11] Bear, M.F. (1996): A synaptic basis for memory
storage in the cerebral cortex. Proceedings of the
National Academy of Sciences ofUSA 93, 13453-13459.
[12] Bell, A.J. & T.J. Sejnowski (1995): An information-
maximization approach to blind separation and blind
convolution. Neural Computation 7, 1129-1159.
[13] Bell, A.J. & T.J. Sejnowski (1996): Learning the
higher-order structure of a natural sound. Network:
Computation in Neural Systems 7, 261-266.
[14] Bell, A.J. & T.J. Sejnowski (1997): The
"independent components" of natural scenes are edge
filters. Vision Research 37, 3327-3338.
[15] Berg, R.H., S. Hvilsted & P.S. Ramanujam (1996):
A^a^i/rele//. 383, 505-508.
[16] Berger, D., K. Pribram, H. Wild & C. Bridges
(1990): An analysis of neural spike-train distributions:
determinants of the response of visual cortex neurons to
changes in orientation and spatial frequency.
Experimental Brain Research 80, 129-134.
[17] Berger, D.H. & K.H. Pribram (1992): The
relationship between the Gabor elementary function and
a stochastic model of the inter-spike interval distribution
in the responses of visual cortex neurons. Biological
Cybernetics 61, 191-194.
[18] Bickle, J., M. Bernstein, M. Heatley, C. Worley &
S. Stiehl (1999): A functional hypothesis for LGN-Vl-
TRN connectivities suggested by computer simulation. J.
Computational Neuroscience 6, 251 -261.
[19] Bob, P. & J. Faber (1999): Quantum Information in
brain neural nets and EEG. Neural Network World 9,
365-372.
[20] Bohm, D. & B. Hiley (1993): The Undivided
Universe (An ontological interpretation of guantum
theory). London: Routledge.
[21] Bonnell, G. & G. Papini (1997): Quantum neural
network. Internat. J. Theoretical Physics 36, 2855-2875.
[22] Bray, D. (1995): Protein molecules as computational
elements in living cells. Nalure 376, 307-312.
[23] Burnod, Y. (1990): An Adaptive Neural Network:
the Cerebral Cortex. London: Prentice Hali.
[24] Churchland, P.S. & T.J. Sejnovvski (1992): The
Computational Brain. Cambridge (MA): MIT Press.

[25] element, B.E.P., P.V. Coveney, M. Jessel & P.J.
Marcer (1999): The brain as a Huygens machine.
//7/o/-/«a?/cfl 23, 389-398
[26] Cramer, J.G. (1986): The transactional interpretation
of quantum mechanics. Reviews of Modem Physics 58,
647-687.
[27] Crick, F. (1984): Function of the thalamic reticular
complex: The searchiight hypothesis. Proceedings ofthe
National Academy of Sciences ofUSA 81, 4586-4590.
[28] Damask, A.C. & C.E. Swenberg (1984): Medical
Physics. Orlando: Academic Press. Vol. III: Synapse,
Neuron, Brain; ch.4: Chemical and electrical properties
of synapses; ch. 5: Neuronal integration and Rall theory.
Vol. I: Physiological Physics; ch. 3: The nerve impulse.
[29] DeAngelis, G.C. (2000): Seeing in 3 dimensions:
Neurophysiology of stereopsis. Trends in Cognitive
Sciences 4, 80-90.
[30] Daugman, J.G. (1985): Uncertainty relation for
resolution in space, spatial frequency, and orientation
optimized by 2-D visual cortical filters. J. Optical
Society of America A 2, 1160-.
[31] Daugman, J.G. (1988): Complete discrete 2-D
Gabor transforms by neural networks for image analysis
and compression. IEEE Transactions on Acoustics,
Speech, and Signal Processing 7>6, 1169-.
[32] Davies, M. & G.W. Humphreys (Eds.) (1993):
Consciousness. Oxford: Blackvvell.
[33] Denschlag, J., et al. (2000): Generating solitons by
phase engineering of a Bose-Einstein condensate.
5c/e/7ce 287, 97-101.
[34] Desimone, R. (1996): "Neural mechanisms for visual
memory and their role in attention. Proceedings ofthe
National Academy of Sciences of USA 93, 13494-13499.
[35] De Valois, R.L. & G.H. Jacobs (1968): Primate
color vision. Science 162, 533-540.
[36] De Yoe, E.A. & D.C. Van Essen (1988): Concurrent
processing streams in monkey visual cortex. Trends in
Neurosciences 11, 219-226.
[37] Dubois, D.M. (Ed.) (2000a): Proceedings of
CASYS'99. Internat. J. Computing Anticipatory Systems
5, 6, 7. Liege; CHAOS. Especially, in vol. 7: Proceedings
of the Symposium "Quantum Neural Information
Processing: New Technology? New Biology?" (espec.
papers by Marcer, Sutherland, Farre, Mitchell, Dubois;
also Citko, Luksza & Sienko).
[38] Dubois, D.M. (Ed.) (2000b): A!P Conference
Proceedings, vol. 517: Computing Anticipatory Systems
- CASYS'99 in Liege. Melville (NY): American Institute
of Physics (especially papers by Marcer & Schempp,
Kirvelis, Sienko, Hoekstra & Rouw, Santoli, Pribram,
Dubois, Araujo).
[39] Ebdon, M. (1993): Is the cerebral neocortex an
uniform cognitive architecture? Mind & Language 8,
368-398.
[40] Ezhov, A.A. (2001): Pattern recognition with
quantum neural netvvorks. Proceedings of ICAPR '01,
Rio de Janeiro, in press.
[41] Ezhov, A.A., A.V. Nifanova & D. Ventura (2001):
Quantum associative memory with distributed queries.
Information Sciences, in press.

CONSCIOUS IMAGE PROCESSING. Informatica 25 (2001) 575-492 589

[42] Ezhov, A.A. & D. Ventura (2000): Quantum neural
networks. Ch. 11 in: N. Kasabov (Ed.): Futiire
Directions for Inlelligent Systems and Information
Sciences (Series "Studies in Fuzziness and Soft
Computing", vol. 45). Heidelberg: Physica-Verlag
(Springer),pp. 213-235.
[43] Fedorec, A.M. & P. Marcer (Eds.) (1996): Living
Computers (symposium proceedings). Dartford:
Greenwich Univ. Press.
[44] Flanagan, O. (1992): Consciousness Reconsidered.
Cambridge (MA): MIT Press.
[45] Frith, C, R. Perry & E. Lumer (1999): The neural
correlates of conscious experience: an experimental
framework. Trends in Cognitive Sciences 3, 105-114.
[46] Frohlich, H. (1968): Long-range coherence and
energy storage in biological systems. Internat. J.
Quantiim Chemistry 2, 641-649.
[47] Fuster, J.M. & J.P. Jervey (1982): Neuronal firing in
the inferotemporal cortex of the iTionkey in a visual
memory task. J. Neuroscience 2, 361-375.
[48] Gardner, D. (Ed.) (1993): The Neurobiology of
Neural Net\vorks. Cambridge (MA): MIT Press.
[49] Goldman-Rakic, P.S. (1996): Memory: Recording
experience in cells and circuits. Proceedings of the
National Academy of Sciences of USA 93, 13435-13437
(organizer's introduction to the symposium with the same
title; whole proceedings in the same vol., pp. 13435-
13551.).
[50] Goswami, A. (1990): Consciousness in quantum
physics and the mind-body problem. J. Mind & Behavior
11 (1990)75-96.
[51] Gray, CM., P. Konig, A.K. Engel & W. Singer
(1989): Oscillatory responses in cat visual cortex exhibit
inter-columnar synchronization which reflects global
stimulus properties. Nature 338, 334-337.
[52] Gray, M.S., J.R. Movellan & T.J. Sejnowski (1997):
Dynamic features for visual speech-reading: A
systematic comparison. Advances in Neural Information
Processing Systems 9, 751-757.
[53] Haken, H. (1991): Synergetic Computers and
Cognition (A Top-Down Approach to Neural Nets).
Berlin: Springer.
[54] Haken, H. (1996): Principles of Brain Functioning.
Berlin, Springer.
[55] Hameroff, S.R. (1994): Quantum coherence in
microtubules: a neural basis for emergent consciousness?
J. Consciousness Studies 1, 91-118.
[56] Hameroff, S.R. (1998): "Funda-Mentality": Is the
conscious mind subtly linked to a basic level of the
Universe? Trends in Cognitive Science 2, 119-127.
[57] Hameroff, S.R., A.W. Kaszniak & A.C. Scott
(1996): Towards a Science of Consciousness: Tucson I.
Cambridge (MA): MIT Press.
[58] Hameroff, S.R. & R. Penrose (1995): Orchestrated
reduction of quantum coherence in brain microtubules: A
model for consciousness. In: J. King, K. Pribram (Eds./-
Scale in Conscious Experience: Is the Brain Too
Important To Be Left to Specialists to Study? Mahwah
(NJ): Lawrence Eribaum Assoc, pp. 243-275.

[59] Hameroff, S.R. & R. Penrose (1996): Conscious
events as orchestrated space-time selections. J.
Consciousness Studies 3, 36-53.
[60] Hariharan, P. (1996): Optical Holography.
Cambridge: Cambridge Univ. Press.
[61] Harpur, G.F. & R.W. Prager (1996): Development
of low entropy coding in a recurrent network. Network:
Computation in Neural Systems 7, 277-284.
[62] Hyvarinen, A. & E. Oja (1997): A fast fixed-point
algorithm for independent comp. anal. Neural
Computation9, 1483-1492.
[63] Ingber, L. (1998): Statistical mechanics of
neocortical interactions: Training and testing canonical
momenta indicators of EEG. Mathematical & Comput.
Modelling 27 (no. 3), 33-64.
[64] Jibu, M., K.H. Pribram & K. Yasue (1996): From
conscious experience to memory storage and retrieval:
The role of quantum brain dynamics and boson
condensation of evanescent photons. Internat. J. Modern
Physics 10, 1735-1754.
[65] Jibu, M. & K. Yasue (1995): Quantum Brain
Dynamics and Consciousness. Amsterdam /
Philadelphia: John Benjamins.
[66] Jibu, M. & K. Yasue (1997): Quantum field theory
of evanescent photons in brain as quantum theory of
consciousness. Informatica 21, 471-490.
[67] Jones, J.A., V. Vedral, A. Ekert & G. Castagnoli
(2000): Geometric quantum computation using nuclear
magnetic resonance. Nature Lelters 403, 869-871.
[68] Kainen, P.C. (1992): Orthogonal dimension and
tolerance. Tech. report lM-061592 (Industrial Math.,
Washington, DC).
[69] Kainen, P.C. & V. Kurkova (1993): Quasi-
orthogonal dimension of Euclidean spaces. Applied
Mathematics Letters 6 (no. 3), 7-10.
[70] Kandel, E.R., J.H. Schwartz & T.M. Jessel (1991):
Principles of Neural Science. London (UK): Prentice
Hali Internat., 3"" ed.
[71] Koch, C. (1997): Computation and the single
neuron. Nature 385, 207-210.
[72] Koch, C. & 1. Segev (2000): The role of single
neurons in Information processing. Nature Neurosci.
(Suppl.)3, 1171-1177.
[73] Kosslyn, S.M. (1988): Aspects of a cognitive
neuroscience of mental imagery. Science 240, 1621-
1626.
[74] Kosslyn, S.M. & R.A. Andersen (Eds.) (1992):
Frontiers in Cognitive Neuroscience. Cambridge (MA):
MIT Press.
[75] Korner, E., M.-O. Gewaltig, U. Korner, A. Richter
& T. Rodemann (1999): A model of computation in
neocortical architecture. Neural Networks 12, 989-1005.
[76] Kurkova, V. & P.C. Kainen (1996): A geometric
method to obtain error-correcting classification by neural
networks with fewer hidden units. In: Proceedings ofint.
Conf on Neural Networks '96. Washington (DC): IEEE,
pp. 127-132.
[77] Lee, S.-H. & R. Blake (1999a): Visual form created
soiely from temporal structure. Science 284, 1165-1168.

590 Informatica 25 (2001) 575-592 M. Peruš

[78] Lee, S.-H. & R. Blake (1999b): Detection of
temporal structure depends on spatial structure. Vision
Research 39, 3033-3048.
[79] Lee, T.S. (1996): Image representation using 2-dim.
Gabor wavelets. IEEE Transactions on Pattern Analysis
andMachine Intelligence 18 {no. 10), 1-13.
[80] Lewicki, M.S. & B.A. Olshausen (1999); A
probabilistic framework for the adaptation and
comparison of image codes. J. Optical Society of
America A: Optics, Image Science, and Vision 16, 1587-
1601.
[81] Livingstone, M. & D. Hubel (1988): Segregation of
form, color, movement, and depth: Anatomy, physiology,
and perception. Science 240, 740-749.
[82] Lockvvood, M. (1989): Mind, Brain and the
Quantum. Oxford: Blackwell.
[83] Logothetis, N.K. (1999): Vision: A window on
consciousness. Scientific American, Novem. 1999, 45-51.
[84] Luccio, R. (1993): Gestalt problems in cognitive
psychology: Field theory, invariance, and auto-
organisation. In: V. Roberto (Ed.): Advances in
Computational Perception. Heidelberg: Springer.
[85] Luria, A.R. (1983): Fundamentals of
Neuropsychology. Beograd: Nolit (Serb. transi.).
[86] MacLennan, B.J. (1999): Field computation in
natural and artificial intelligence. Information Sciences
119,73-89.
[87] Majewski, A. (1999): Separable and entangled states
of composite quantum systems - rigorous description.
Open Systems and Information Dynamics 6, 79-86.
[88] Mannion, C.L.T. & J.G. Taylor (1992): Information
processing by oscillating neurons. In: J.G. Taylor &
C.L.T. Mannion (Eds.): Coiipled Oscillating Neurons.
London: Springer, pp. 98-111.
[89] Marcel, A.J. & E. Bisiach (Eds.) (1988):
Consciousness in Contemporary Science. Oxford:
Clarendon Press.
[90] Marcer, P. & W. Schempp (1997): A model of
neuron vvorking by quantum holography. Informatica 21,
517-532.
[91] Marcer, P. & W. Schempp (1998): The brain as a
conscious system. Internat. J. General Systems 27, 231-
248.

^92] Mclntosh, A.R., M.N. Rajah & N.J. Lobaugh
(1999): Interactions of prefrontal cortex in relation to
avvareness in sensory learning. Science 284, 1531-1533.
[93] Mezard, M., G. Parisi & M.A. Virasoro (1987): Spin
Glass Theory andBeyond. Singapore: World Scientific.
[94] Mishkin, M., L.G. Ungerleider & K.A. Mačko
(1983): Object vision and spatial vision: Two cortical
pathways. Trends in Neurosciences 6, 414-417.
[95] Miyashita, Y. & H.S. Chang (1988): Neurona!
correlate of pictorial short-term memory in the primate
temporal cortex. Nature 331, 68-70.
[96] Montero, V.M. (2000): Attentional activation of the
visual thalamic reticular nucleus depends on 'top-dovvn'
inputs from the primary visual cortex via
corticogeniculate pathways. Brain Research 864, 95-104.
[97] Moran, J. & R. Desimone (1985): Selective attention
gates visual processing in the extrastriate cortex. Science
229, 782-784.

[98] Nanopoulos, D.V. (1995): Tech rep. ACT-08/95 -
http://xxx.lanl.gov/abs/hep-ph/9505374
[99] Newman, J. (1997): Toward a general theory of the
neural correlates of consciousness. J. Consciousness
Studies 4, 47-66 (part I), 100-121 (part 11).
[100] Nobili, R. (1985): Schrodinger wave holography
and brain cortex. Physical Review A 32, 3618-3626.
[101] Oakley, D.A. (Ed.) (1985): Brain and Mind.
London / New York: Methuen.
[102] Olshausen, B.A. & D.J. Field (1996a): Natural
image statistics and efficient coding. Network:
Computation in Neural Systems 7, 333-339.
[103] Olshausen, B. & D. Field (1996b): Emergence of
simple-cell receptive field properties by learning a sparse
code for natural images. Nature Letters 381, 607-609.
[104] Olshausen, B.A. & D.J. Field (1997): Sparse
coding with an overcomplete basis set: A strategy
employed by VI? Vision Research 37, 3311-3325.
[105] Perret, D.l. & M.W. Oram (1998): Visual
recognition based on temporal cortex cells: Vievver-
centered processing of pattern configuration. Zeitschr.
fiir Naturforschung 53c, 518-541.
[106] Peruš, M. (1995b): Synergetic approach to
cognition-modeling with neural networks. In: K. Sachs-
Hombach (Ed.): Bilder im Geiste. Amsterdam/Atlanta:
Rodopi, pp. 183-194.
[107] Peruš, M. (1996): Neuro-quantum parallelism in
mind-brain and computers. Informatica 20, 173-183.
[108] Peruš, M. (1997a): Mind: neural computing plus
quantum consciousness. In: M. Gams, M. Paprzycki &
X. Wu (Eds.): Mind Versus Computer. Amsterdam: lOS
Press & Ohmsha, pp. 156-170.
[109] Peruš, M. (1997b): System-processual backgrounds
of consciousness. Informatica 21 (1997) 491-506.
[110] Peruš, M. (1998a): Common mathematical
foundations of neural and quantum informatics. Zeitschr.
fiir angewandte Mathematik & Mechanik 78, SI, 23-26.
[111] Peruš, M. (2000a): Tracing quantum background
processing in visual cortex. In: A.V. Bataev (Ed.):
Proceedings 2"'' All-Russian Sci. Conf. "Neuro-
informatika 2000", Part 1, Moscow: MlFl, pp. 208-226
(also in Russian).
[112] Peruš, M. (2000b): Neural correlates of vision and
attention (pp. 17-20) & Neuropsychology of vision (pp.
25-28). Proceedings 3^ Int. Multi-Conf. "Information
Society 2000" — volume "Cognitive Science / New
Science of Cosncioiisness" (Ed.: I. Kononenko).
Ljubljana: Institut Jožef Štefan, pp. 17-20 & 25-28.
[113] Peruš, M. (2000c): Neural networks as a basis for
quantum associative netvvorks. Neural Network World 10
(no. 6), 1001-1013.
[114] Peruš, M. (2000d): Vse v odnom, odno vo vsem
(Matemaličeskie modeli associativnjih neironnjih setei).
St. Petersburg: KARO (originally Slovene book as
translated to Russian by A. Ippa).
[115] Peruš, M. (2001): A synthesis of the Pribram
holonomic theory of vision with quantum associative
nets after pre-processing using ICA and other
computational models. Int. J. Computing Anticipatory
Systems\Q, 352-361.

http://xxx.lanl.gov/abs/hep-ph/9505374

CONSCIOUS IMAGE PROCESSING. Informatica 25 (2001) 575-492 591

[116] Peruš, M. & S.K. Dey (2000): Quantum systems
can realize content-addressable associative memory.
AppliedMathemalics Leiters 13 (no. 8), 31-36.
[117] Peruš, M. & P. Ečimovič (1998): Memory and
pattern recognition in associative neural networks.
Internat. J. Applied Science & Computations 4, 283-310.
[118] Pessa, E. & G. Vitiello (1999): Quantuin
dissipation and neural net dynamics. Bioelectrochemislry
& Bioenergetics 48, 339-342.
[119] Poggio, T., V. Torre, C. Koch (1985):
Computational vision and regularization theory. Natiire
317,314-319.
[120] Porrill, J., J.P. Frisby, W.J. Adams & D. Buckley
(1999): Robust and optimal use of Information in stereo
vision. Nalure Letters 397 (1999) 63-66.
[121] Potzsch, M., N. Kruger & C. von der Malsburg
(1996): Improving object recognition by transforming
Gabor filter responses. Network: Computation in Neural
Systems 1,2^1-3^1.
[122] Pribram, K.H. (1971): Languages of the Brain
(Experiinental Paradoxes and Principles in
Neuropsychology). Orig.: Englevvood Cliffs (NJ):
Prentice-Hall; s"" publ.: Nevv York: Brandon House.
[123] Pribram, K.H., M.C. Lassonde & IVI. Ptito (1981):
Classification of receptive field properties in cat visual
cortex. Experimental Brain Research 43, 119-130.
[124] Pribram, K.H. & E.H. Carlton (1986): Holonomic
brain theory in imaging and object perception. Acta
Psychologica 63, 175-210.
[125] Pribram, K.H. (1991): Brain and Perception
(Holonomy and Structure in Figural Processing).
Hillsdale (NJ): Lawrence Erlbaum Associates.
[126] Pribram, K.H. (Ed.) (1993): Rethinking Neural
Networks: Quantum Fields and Biological Data.
Hillsdale (NJ): Lavvrence Erlbaum Associates.
[127] Pribram, K.H. (1995): Brain and perception: From
Kohler's fields to Gabor's quanta of information.
Proceedings ofthe 39'^ Congress of German Society for
Psychology, pp. 53-69.
[128] Pribram, K.H. (1997a): What is mind that the brain
may order it? Proceedings of Symposia in Applied
Mathematics 52, 301-329 (Vol. 2: Proceed. of the
Norbert Wiener Centenary Congress, 1994, eds. V.
Mandrekar & P.R. Masani; Providence: Am. Math. Soc.).
[129] Pribram, K.H. (1997b): The deep and surface
structure of memory and conscious learning: Toward a
2 r ' century model. In: R.L. Solso (Ed.): Mind and Brain
Sciences in the 21" Century. Cambridge (MA): iVllT
Press, pp. 127-156.
[130] Pribram, K.H. (1998a): Brain and the composition
of conscious experience. J. Consciousness Studies 6, no.
5, 19-42.
[131] Pribram, K.H. (1998b): Status report: Quantum
hoIography and the brain. In: Proceedings of the ECHO
conference, Helsinki. (Or see: Quantum holography: Is it
relevant to brain function? Information Sciences 115
(1999)97-102.)
[132] Psaltis, D., D. Brady., X.-G. Gu & S. Lin (1990):
Holography in artificial neural networks. Natiire 343,
325-330.

[133] Pylkkanen, P. & Pyllk6 P. (Eds.) (1995): New
Directions in Cognitive Science. Helsinki: Finnish Al
Soc. (especially articies by Chrisley, Globus, Gould,
Hiley, Peruš, Revonsuo).
[134] Rabitz, H., R. de Vivie-Riedle, M. Motzkus & K.
Kompa (2000): Whither the future of controlling
quantum phenomena? Science 288, 824-828.
[135] Rainer, G. & E.K. Miller (2000): Effects of visual
experience on the representation of objects in the
prefrontal cortex. Neuron 27, 179-189.
[136] Rakič, Lj., G. Kostopoulos, D. Rakovič & Dj.
Koruga (Eds.) (1997): Brain and Consciousness —
Proceedings ofthe First ECPD Int. Symposium (vol. I) &
IVorkshop (vol. II) on Scientific Bases of Consciousness
'97. Belgrade: ECPD.
[137] Riesenhuber, M. & T. Poggio (2000): Models of
object recognition. Nature Neurosci. (Suppl.) 3, 1199-
1204.
[138] Roelfsema, P.R. (1998): Solutions for the binding
problem. Zeilschr. fiir Naturforschung 53c, 691-715.
[139] Schempp, W. (1993): Bohr's indeterminacy
principle in quantum holography, self-adaptive neural
netvvork architectures, cortical self-organization,
molecular computers, magnetic resonance imaging and
solitonic nanotechnology. Nanobiolog}'!, 109-164.
[140] Schempp, W. (1994): Analog VLSI netvvork
models, cortical linking neural netvvork models, and
quantum holographic neural technology. In: J.S. Bymes
et al. (Eds.): Wavelets and Their Applications.
Amsterdam: Kluvver, pp. 213-260.
[141] Schempp, W. (1995): Phase coherent vvavelets,
Fourier transform resonance imaging, and synchronized
time-domain neural netvvorks. Procedings ofthe Steklov
Institute of Mathematics 3, 323-351.
[142] Schiller, P.H. & N.K. Logothetis (1990): The
color-opponent and broad-band channels of the primate
visual system. Trends in Nenrosciences 13, 392-398.
[143] Snider, G., et al. (1999): Quantum-dot cellular
automata: Revievv and recent experiments. J. Applied
Physics 85, 4283-4285.
[144] Sompolinsky, H. & M. Tsodyks (1994):
Segmentation by a netvvork of oscillators with stored
memories. Neural Computation 6, 642-657.
[145] Spencer, R.G. (2001): Bipolar spectral associative
memories. IEEE Transactions on Neural Networks, to
appear in May no.
[146] Stapp, H.P. (1993): Mind, Brain and Quantum
Mechanics. Berlin: Springer.
[147] Stillings, N., S. Weisler, C. Chase, M. Feinstein, J.
Garfield & E. Rissland (1995): Cognitive Science.
Cambridge (MA): MIT Press. Ch. 12: Vision.
[148] Sutherland, J.G. (1990): A holographic model of
memory, learning and expression. Internat. J. Neural
Systems 1, 259-267.
[149] Tootell, R.B., N.K. Hadjikhani, J.D. Mendola, S.
Marrett & A.M. Dale (1998): From retinotopy to
recognition: fTvlRI in human visual cortex. Trends in
Cognitive Sciences 2, 174-183.
[150] van Hateren, J.H. (1992): Real and optimal images
in early vision. Nature 360, 68-70.

592 Informatica 25 (2001) 575-592 M. Peruš

[151] van Hateren, J.H. & D.L. Ruderman (1998):
Independent component analysis of natural image
sequences yields spatiotemporal filters similar to simple
cells in primary visual cortex. Proceedings of the Royal
Society of London B (Biol. Sci.) 265, no. 1412, 2315-
2320.
[152] van Hateren, J.H. & A. van der Schaaf (1998):
Independent component filters of natural images
compared with simple cells in primary visual cortex.
Proceedings of the Royal Society of London B 265, 359-
366.
[153] Vidyasagar, T.R. (1999): A neuronal model of
attentional spotlight: parietal guiding the temporai. Brain
Research Review 30, 66-76.
[154] Wainwright, M. J. (1999): Visual adaptation as
optimal information transmission. Vision Research 39,
3960-3974.
[155] Wallis, G. & H. Bulthoff (1999): Learning to
recognize objects. Trends in Cognitive Sciences 3, 22-31.
[156] Wang, D.L. (1999): Object selection based on
oscillatory correlation. Neural Networks 12, 579-592.
[157] Wang, P.P., et al. (Eds.) (1998): Proceedings ofthe
4' Joint Conference on Information Sciences '98.
Research Triangle Park (NC, USA): Assoc. Intellig.
Machinery. Vohime II: Proceedings of the 3 '̂' Internat.
Conf on Computatational Intelligence & Neuroscience
(Ed. G. Georgiou); sections on neuro-quantum
information processing: pp. 167-224.
[158] Weinacht, T.C., J. Ahn & P.H. Bucksbaum (1999):
Controlling the shape of a quantum vvavefunction.
Nature Letters 397, 233-235. (See also pp. 207-208 of
the same vol.: Quantum control: Sculpting a vvavepacket;
by W. Schleich).
[159] Weliky, M., L.C. Katz (1999): Correlational
structure of spontaneous neuronal activity in the
developing lateral geniculate nucleus in vivo. Science
285, 599-604.
[160] Wheeler, J.A. & W.H. Zurek (Eds.) (1983):
Quantum Theory and Measurement. Princeton (NJ):
Princeton Univ. Press.
[161] Wurtz, R.H., M.E. Goldberg & D.L. Robinson
(1980): Behavioral modulation of visual responses in the
monkey: Stimulus selection for attention and movement.
Progress in Psychobiology and Physiological
Piĵ c/zo/ogK 9, 43-83.
[162] Zak, M. & C.P. Williams (1998): Quantum neural
nets. Internat. J. Theoretical Physics 37, 651-684.
[163] Zornetzer, S.F., J.L. Daviš & C. Lau (1990): An
Introduction to Neural and Electronic Networks. San
Diego: Academic Press.

Informatica 25 (2001) 593-594 593

Call for Papers

ADBIS'2002
Sixth East-European Conference on Advances in Databases

and Information Systenis
September 8-11, 2002, Bratislava, Slovakia

http://www.dcs.elf.stuba.sk/adbis2002

In co-operation with the Moscovv ACM SIGMOD Chapter, Slovak Society for Computer Science,
Faculty of Electrical Engineering and Information Technology STU Bratislava.

Co-operation with ACM SIGMOD is also envisaged.

';!'!''''' 1. "'i'i'IMS ANiijiSGOPE _ : jf,|P ,
The mam objective of the ADBIS seiies of confeiences is to piovide a forum for the dissemination of research
accomplishments and promote interaction and collaboration between the Database and Information Systems research
communities from Central and East European countries and the rest of the vvorld. The ADBIS conferences provide an
International platform for the presentation of research on database theory, development of advanced DBMS
technologies, and their advanced applications.

The Conference continues the ADBIS conferences held in St. Petersburg (1997), Poznan (1998), Maribor (1999),
Prague (2000), and Vilnius (2001). The Conference vvill consist of regular sessions with technical contributions
revievved and selected by an international program committee, as vvell as of invited talks and tutorials given by leading
scientists. The official language of the Conference vvill be English.

: •• T O P i c s . ; ; , : « . ,„:••::>••; ,
Original papers dealing with both theory and/or applications of database technology and information systems are
solicited. The areas of interest include, but are not limited to, the following:

• database theory, • database and knowledge-base management systems and
• data modeling and database design, technology,
• physical database design and performance evaluation, • text management,
• database systems architectures, • data mining, data warehousing, and knovvledge discovery,
• activity modelling, advanced transaction, and workflow • data quality,

management, • XML and databases,
• advanced databases (object-oriented DB, web-based DB, • e-business and e-commerce,

multimedia DB, temporal and spatial DB, deductive and • \veb-based and distributed information systems,
active DB, etc), • enterprise information systems,

• advanced information systems (GIS, intelligent IS, • mobile computing and agents,
component-based IS, etc), • information systems and softvvare systems engineering,

• advanced database applications, B information system security.
• heterogeneousdatabases interoperability and mediation,

We solicit contributions of the follovving form

- fuU research papers describing research accomplishment (approximately 5000 words),
short research papers that report interesting results and do not justify a full paper (2000 - 3000 words),

- Communications, i.e. experience reports, surveys, project overvievvs, etc. which do not fully adhere to the standards of a firs
rate scientific publication, but are nevertheless of interest and value for the participants of the conference,

- proposals for tutorials and panels.

Research papers should be original contributions, not accepted or submitted elsewhere. Research papers will be published in thi
LNCS series of Springer Verlag. Communications will be included in additional local proceedings.

There is an intention to publish a selection of outstanding papers in an internationally recognised journal (a subject of additiona
review process).

We can only accept electronic submissions in Postscript, PDF, or RTF format. Already at the submission stage, authors an
encouraged to consider the final paper format requirements, as specified at http:// www.dcs.elfstuba.sk /adbis2002/format/.

Additionally, for each paper send the first page in ASCII (text-format) containing title, authors, affiliation, contact information
abstract and keywords.

Papers shall be submitted to: adbis(^dcs.elfstuba.sk

http://www.dcs.elf.stuba.sk/adbis2002
file:///veb-based
http://
http://www.dcs.elfstuba.sk
http://elfstuba.sk

594 lnformatica25 (2001) 593-594

AWARDS
The best paper authored solely by students will be avvarded. Please indicate in your submission, whether it is a študent paper.

TIMETABLE
Submission of abstracts:
Paper submission:
IMotification of acceptance:
Camera-ready papers:
Conference:

February 25, 2002
March 4, 2002
April 30, 2002
May 28, 2002
September 8-11, 2002

CONFERENCE ORGANISATION
General Chair:
Ludovit Molnar, Rector of the Slovak University of Technology in Bratislava, Slovakia
Program Committee Co-Chairs:
Vannis Manolopoulos, Department of Informatics, Aristotle University of Thessaloniki, Greece, manolopo@delab.csd.auth.gr
Pavol Navrat, Slovak University of Technology in Bratislava, Slovakia, navrat@elfstuba.sk
Program Committee :
Leopoldo Bertossi
Omran A. Bukhres
Albertas Caplinskas
Wojciech Cellary
Bogdan Czejdo
Johann Eder
Heinz Frank
Remigijus Gustas
Tomas Hruška
Leonid Kalinichenko
Wolfgang Klas

Matthias Klusch
Mikhail Kogalovsky
Karol Matiasko
Mihhail Matskin
Tomaž Mohoric
Tadeusz Morzy
Nikolay Nikitchenko
Boris Novikov
Maria Orlowska
Euthimios Panagos

GuentherPernul
Jaroslav Pokorny
Henrikas Pranevichius
Colette Rolland
George Samaras
Klaus-Dieter Schevve
Joachim W. Schmidt
Timothy K. Shih
Myra Spiliopoulou
Julius Stuller
Bernhard Thalheim

Aphrodite Tsalgatidou
Vladimir Vojtek
Gottfried Vossen
Benkt Wangler
Tatjana Welzer
Viacheslav Wolfengagen
Vladimir Zadorozhny
Alexander Zamulin

Oscar Pastor
PC is expected to be extended with addilional members

Organising Committee Chair:
Maria Bielikova, Slovak University of Technology (Slovakia), bielikova@dcs.elfstuba.sk
ADBIS Steering Committee Chair:
Leonid Kalinichenko, Russian Academy of Science (Russia), leonidk@synth.ipi.ac.ru
ADBIS Steering Committee:
Andras Benczur (Hungary) Mirjana Ivanovic (Vugoslavia)
Radu Bercaru (Romania) Mikhail Kogalovsky (Russia)
Albertas Caplinskas (Lithuania) Vannis Manolopoulos (Greece)
Johann Eder (Austria) Rainer Manthey (Germany)
Janis Eiduks (Latvia) Tadeusz Morzy (Poland)
Hele-Mai Haav (Estonia) Pavol Navrat (Slovakia)

Boris Novikov (Russia)
Jaroslav Pokorny (Czech Republic)
Boris Rachev (Bulgaria)
Anatoly Stogny (Ukraine)
Tatjana Welzer (Slovenia)
Viacheslav Wolfengagen (Russia)

CONFERENCE VENUE
The Conference will be held in Bratislava, Slovakia, at the congress centre Družba located about 3 km west from the historica
centre of Bratislava and reachable by regular tram and bus connection in about 10 minutes from the city centre.
Bratislava, the capital and the largest city in Slovakia, is an old central European city that has always gained attention through it
location on the river Danube, its nearness to Vienna and Budapest, and the hospitality of its inhabitants. Throughout the history
Bratislava has grown not only to the administrative, industrial, cultural and scientific centre of Slovakia but first of ali to the lovel;
city worth of staying in. Today's visitors, sitting in restful cafes or vvalking through the streets and squares in immediate vicinity t(
the St. Martin gothic cathedral, the Town Hali, Primate's Palače, or other historical buildings, can fully enjoy and admire thi
ancient architecture of Bratislava's old city. The picturesque region around Bratislava, known for large vineyards and vvinemakinj
districts and for original ceramic manufacturing, impresses a visitor with hundreds of years of handicrafts, culture and traditions ii
this neighbourhood.

Pavol Navrat
Department of Computer Science and Engineering
Slovak University of Technology
Ilkovicova 3, 812 19 Bratislava
Slovakia

CONTACT ADDRESS
E-mail: adbis@dcs.elfstuba.sk

Phone:

Fax:

navrat@elfstuba.sk
(+421 2)654 29 502
(+421 2)602 91 548
(+421 2)654 20 587

mailto:manolopo@delab.csd.auth.gr
mailto:navrat@elfstuba.sk
mailto:bielikova@dcs.elfstuba.sk
mailto:leonidk@synth.ipi.ac.ru
mailto:adbis@dcs.elfstuba.sk
mailto:navrat@elfstuba.sk

JOŽEF ŠTEFAN INSTITUTE

Informatica 25 (2001) 595

Jožef Štefan (1835-1893) was one ofthe most prominent
physicists ofthe 19th century. Bom to Slovene parents,
he obtained kis Ph.D. at Vienna University, where he was
later Director ofthe Physics Institute, Vice-President ofthe
Vienna Acadeniy of Sciences and a member of several sci-
entific institutions in Europe. Štefan explored many areas
in hydrodynamics, optics, acoustics, electncity, magnetism
and the kinetic theory of gases. Among other things, he
originated the law that the total radiation from a black
body is proportional to the 4th power of its absolute tem
perature, known as the Stefan-Boltzniann law.

The Jožef Štefan Institute (JSI) is the leading indepen-
dent scientific research institution in Slovenia, covering a
broad spectrum of fundamental and applied research in the
fields of physics, chemistry and biochemistry, eiectronics
and information science, nuclear science technoIogy, en-
ergy research and environmental science.

The Jožef Štefan Institute (JSI) is a research organisation
for pure and applied research in the natural sciences and
technology. Both are closely interconnected in research de-
partments composed of different task teams. Emphasis in
basic research is given to the development and education of
young scientists, while applied research and development
serve for the transfer of advanced knowledge, contributing
to the development of the national economy and society in
general.

At present the Institute, with a total of about 700 staff,
has 500 researchers, about 250 of whom are postgraduates,
over 200 of whom have doctorates (Ph.D.), and around
150 of whom have permanent professorships or temporary
teaching assignments at the Universities.

In view of its activities and status, the JSI plays the role
of a national institute, complementing the role of the uni
versities and bridging the gap between basic science and
applications.

Research at the JSI includes the follovving major fields:
physics; chemistry; eiectronics, informatics and computer
sciences; biochemistry; ecology; reactor technology; ap
plied mathematics. Most of the activities are more or
less closely connected to information sciences, in particu-
lar computer sciences, artificial intelligence, language and
speech technologies, computer-aided design, computer ar-
chitectures, biocybernetics and robotics, computer automa-
tion and control, professional eiectronics, digital Communi
cations and networks, and applied mathematics.

ranean Europe, offering excellent productive capabilities
and solid business opportunities, with strong international
connections. Ljubljana is connected to important centers
such as Prague, Budapest, Vienna, Zagreb, Milan, Rome,
Monaco, Niče, Bern and Munich, ali within a radius of 600
km.

In the last year on the site of the Jožef Štefan Institute,
the Technology park "Ljubljana" has been proposed as part
of the national strategy for technological development to
foster synergies between research and industry, to promote
joint ventures betvveen university bodies, research institutes
and innovative industry, to act as an incubator for high-tech
initiatives and to accelerate the development cycle of inno
vative products.

At the present tirne, part of the Institute is being reor-
ganized into several high-tech units supported by and con
nected within the Technology park at the Jožef Štefan In
stitute, established as the beginning of a regional Technol-
ogy park "Ljubljana". The project is being developed at
a particularly historical moment, characterized by the pro-
cess of State reorganisation, privatisation and private ini-
tiative. The national Technology Park will take the form
of a shareholding company and will host an independent
venture-capital institution.

The promoters and operational entities ofthe project are
the Republic of Slovenia, Ministry of Science and Tech-
nology and the Jožef Štefan Institute. The framevvork of
the operation also includes the University of Ljubljana, the
National Institute of Chemistry, the Institute for Electron
ics and Vacuum Technology and the Institute for Materials
and Construction Research among others. In addition, the
project is supported by the Ministry of Economic Relations
and Development, the National Chamber of Economy and
the City of Ljubljana.

Jožef Štefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Tel.:+386 I 4773 900, Fax.:+386 1 219 385
Tlx.:31296JOSTINSI
WWW: http://www.ijs.si
E-mail: matjaz.gams@ijs.si
Contact person for the Park: Iztok Lesjak, M.Se.
Public relations: Natalija Polenec

The Institute is located in Ljubljana, the capital ofthe in
dependent State of Slovenia (or S^nia). The capital today
is considered a crossroad between East, West and Mediter-

http://www.ijs.si
mailto:matjaz.gams@ijs.si

Informatica 25 (2001)

CONTENTS OF Informatica Volume 25 (2001) pp. 1-595

Papers 2001. Towards a rigorous and effective functional contract for
components. Informatica 25:527-532.

ATKINSON, C. & T. KUHNE. 2001. Stratified framcvvorks.
Informatica 25:393^02.

BALANTIČ, Z. & M. BERNIK. 2001. iVIultimedia sup-
ported study of achieving high worker's efficicncy in reiation to
his work. Informatica 25:371-374.

The ABCs of spe-BARNETT, M . & W. SCHULTE. 2001.
cification: asml, behavior, and components. Informatica
25:517-526.

BAVEC, C. 2001. Modelling of management decision making
. . . . Informatica 25:375-380.

BEŽEK, A. & M. GAMS. 2001. An agent that under-
stands job description. Informatica 25:99-105.

BlNZ, E. & W. SciiEMPP. 2001. Information technology:
The Lie groups definig the filter banks of the compact disc.
Informatica 25:279-291.

BOSIU-VUKSIC, V, & V. HLUPIC. 2001. Petri nets and
IDEF diagrams: Applicability and efficasy for business process
modelling. Informatica 25:123-133.

BRETT, A . C , T. MiVAMOTO & J.F. KESS. 2001. A
nested combinatorial-states model of sentence processing.
Informatica 25:107-122.

ARANDO, P. 2001. The need for speed: A practitioner's
view of rapid application development in e-business. Informatica
25:555-564.

ČIZMAN, A. 2001. Computerized logistics inlbrmation
system—a key to competitiveness. Informatica 25:89-98.

COY, W. & U. PlRR. 2001. Change in learning and teaching.
Informatica 25:149-153.
DESNOS, J.-F. 2001. A data warehouse for French universities.
Informatica 25:177-181.

DiETRiCH, S.W., S.D. URBAN, A. SUNDERMIER, Y. NA, Y.
JiN & S. KAMBHAMPATI. 2001. A language and framework
for supporting an active approach to component-based software
integration. Informatica 25:443-454.

FEUSTEL, B. , A . KARPATI, T. RACK & T.C. SCHMIDT.
2001. An environment for processing compound media streams.
Informatica 25:201-209.

GALAN M.J . , F. GARCIA, L. ALVAREZ, A. OCČN & E.
RUBIO. 2001. 'Beovvulf cluster' for high-performance com-
puting tasks at the university: A very profitable investment.
Informatica 25:189-193.

GALAN MORILLO, F.J., V. DiAZ & J.M. GANETE VALDEČN.

GAMS, M. & M. BOHANEC. 2001.
applications. Informatica 25:387-392.

Intelligent systems

GREENBERG, J. 2001. A hybrid system for delivering
web based distance learning and teaching material. Informatica
25:155-158.

GUIZANI, M . & M. ANAN. 2001. Fault-tolerant ATM
svvitching architectures based on MINs: A survey. Informatica
25:69-81.

HAATAJA, A., J. SUHONEN & E. SUTINEN. 2001. How
tO learn introductory programming over the web? Informatica
25:165-171.

HUTCHINSON, D. & M.J. WARREN. 2001. Security
authentication for on-line Internet banking. Informatica 25:349-
356.

HVBERTSON, D . 2001. A uniform component modeling
space. Informatica 25:475^82.

INDIHAR STEMBERGER, M. & J. GRAD. 2001.
ject model of splines. Informatica 25:135-142.

The ob-

Ji, K. & S. CHEN. 2001. DEPA (Design Pattem Application)—a
component-based model for applying design patterns in software
development. Informatica 25:455-463.

KANTARDZIC, M . M . , P. FAGUV, A . GOLDBERG & T.E.
H0WE. 2001. Artificial neural network approach and parameter
estimation in experimental spectroscopy. Informatica 25:19-26.

KiM, H.-K. & R.V. LEE. 2001. Management process for
supporting the component development. Informatica 25:565-
573.

KLENAK, S. & S. BAUK. 2001. Modeling shipping com-
pany Information systems. Informatica 25:431-438.

KUITTINEN, M. , E. SUTlNEN, H. TOPI & M. TURPEINEN
2001. Learning by experience: Netvvorks in learning organiza-
tions. Informatica 25:159-164.

KUMAR M.V.N., A., A.K. SINGII & R. BABU S. 2001.
A security assurance framework for component based softvvare
development. Informatica 25:509-515.

LEE, C.-l. & C.-J. TSAI. 2001. An efficient approach to
extracting and ranking the top K interesting target ranks from
Web search e. Informatica 25:329-339.

LEIGH, W., M . PAZ, N . PAZ & R. PuRVis. 2001. A
pattern recognition approach to the prediction of priče increases
in the New York Stock Exchange Composite Index. Informatica
25:261-269.

Informatica 25 (2001)

LiNDEN, M., J. KANNER & M. KIVILOMPOLO. 2001.
FEIDHE—integrating PKl in Finish highcr education. Informat
ica 25:211-216.

LiNKEViCH, A.D. 2001. Neural fields: An approacii to
infinite-dimensional systems for Information processing. Infor
matica 25:235-246.

LOKE, S .W. 2001. An overview of mobile agents in dis-
tributed applications: Possibilities for future enterprise systems.
Informatica 25:247-260.

practical problems-
25:11-17.

-methodological considerations. Informatica

PARALIČ, J. , M. PARALIČ & M. MACH. 2001. Support
of knoNvledge managcment in distributed environment. Informat
ica 25:319-328.

PARHAMI, B . 2001. Approach to component based syn-
thesis of fault tolerant software. Informatica 25:533-543.

PERUŠ, M. 2001. Image processing and becoming con-
scious of its results. Informatica 25575:-592.

MAGOULAS, G . D . , K . A . PAPANIKOLAOU & M. GRIGO-
RIADOU. 2001. Neuro-Fuzzy synergism forpianning the content
in a web-based course. Informatica 25:39-48.

MAHNIČ, V. & I. ROŽANC. 2001. Dataquality: A prerequisite
for succesful data warehouse implementation. Informatica
25:183-188.

MAIER, K.D., V. GLAUCHE, R. BLICKHAN & C. BECK
STEIN. 2001. Control ofaone-leggedthrce-dimcnsional hopping
movement system with multi-layer-perceptron neural networks.
Informatica 25:27-38.

MAIER, K.D., C. BECKSTEIN, R. BLICKHAN, D . FEY &
W. ERHARD. 2001. A digital multi-layer-pcrception hardvvarc
architecture based on three-dimensional masivciy parallel opto-
electronic circuits. Informatica 25:271-278.

MiKL, U. 2001. Electronic formation of a contract.
matica 25:381-386.

Infor-

MizuNO, K., S. NISHIHARA, H. KANOH & I. KiSHi.
2001. Population migration: A meta-heuristics for stochastic
approaches to constraint satislaction problems. Informatica
25:421-^30.

MLADENIČ, D., W.F. EDDY & S. ZIOLKO. 2001. Data
mining of baskets collected at different locations over one year.
Informatica 25:365-372.

MOISAN, S., A . RESSOUCHE & J.-P. RIGAULT. 2001.
Blocks, a component framework with checking facilities for
knowledge-based systems. Informatica 25:501-507.

MOVLE, S. & A. SRINIVASAN. 2001. Classificatory
challenge-data mining: A recipe. Informatica 25:343-348.

NAEGELE-JACKSON, S., U . HILGERS & P. HOLLECZEK.
2001. Evaluation of codec behavior in IP and ATM networks.
Informatica 25:195-200.

NOVAK, B. 2001. Soft computing on small data sets.
formatica 25:83-88.

In-

RESLER, R . D . & J.M. BOVLE. 2001. Register alloca-
tion: A program-algebraic approach. Informatica 25:223-233.

RVJAČEK, Z., J. RiCHLfK & P. JiROUŠEK. 2001. Infor
mation systcm supporting CATS. Informatica 25:173-176.

SATOH, I. 2001. MobiDoc: A mobile agent-based frame-
work for compound documents. Informatica 25:493-500.

SiKiCi, A. & N.Y. TOPALOGLU. 2001. Tovvards software
design automation with pattems. Informatica 25:349-356.

ŠKRJANC, M. , M. GROBELNIK & D. ZuPANič. 2001.
Insights offered by data-mining when analyzing media space
data. Informatica 25:357-364.

SOLOJENTSEV, E . D . & V.V. KARASEV. 2001. Risk logi-
cal and probabilistic models in business and Identification of risk
models. Informatica 25:49-55.

SOUNDARAJAN, N . & S. FRIDELLA. 2001. Understand
ing 0 0 framcNvorks and applications: An increment approach.
Informatica 25:297-308.

STRACHAN, A., T. SHAW & D. ADAMS. 2001. Informa
tion system delivery in a tiered security environment. Informatica
25:217-222.

TADEUSIEWICZ, R. & P. LULA. 2001. Neural netvvork
analysis of time series data. Informatica 25:3-10.

URBANČIČ, T. 2001. Leaming and understanding human
skill. Informatica 25:-.
ZHANG, S. & C. ZHANG. 2001. A model for compressing
prababilitics in belief netvvorks. Informatica 25:409-420.

VITELA, J.E., U.R. HANEBUTTE & J.L. GORDILLO.
2001. Performance analysis of a parallel neural netvv'ork training
code for control of dynamic systems. Informatica 25:57-67.

WEINREICH, R. & R. PLOSCH. 2001. An agent-based
component platform for dynamically adaptable distributed
environments. Informatica 25:483^91.

OHLSSON, M.C. 2001. Evolution of fault-prone compo-
nents in legacy systems: A čase study. Informatica 25:545-553.

PAPRZVCKI, M. , A . COSTEINES, W. DOUGLAS, P. GATLING,
R. NlESS & L. SCARDINO. 2001. Applying neural networks to

XIE, X. & S.M. SIIATZ. 2001. An approach for model-
ing components with customization for distributed softvvare.
Informatica 25:465^74.

Informatica 25 (2001)

Editorials

ANDERSON, P.G., G. KLEIN, E . OJA, N . C . STEEL, G. ANTO-
NIOU, v. MLADENOV & M. PAPRZVCKI. 2001. Introduction:
Ncural networks and their applications. Informatica 25:1.
JURič, M.B., I. ROZMAN & D. DEUGO. 2001. Component
based softvvare development. Informatica 25:441^)42.

KNOP, J. & V. MAHNIČ. 2001. . Informatica 25:147-
148.

INTRODUCTION. 2001. Informatica 25:295-296.

INTRODUCTION. 2001. Informatica 25:341-342.

Calls for Papers

Call for a forum discussing informational consciousness on the
Internet. 2001. Informatica 25:143.

Informational society 2001. Infos, Cankarjev dom, Ljubl
jana, Slovenia. 22-26 October 2001. Informatica 25:144,293.

ADBIS 2002. Sixth East-Europcan Confcrence on Advances
in Databases and Information Systems. 2001. . Informatica
25:593-594.

Professional Societies

Jožef Štefan Institute. Ljubljana, Slovenia. 2001. Informatica
25:145,294,439,595.

Informatica 25

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing
Please submit three copies of the manuscript vvitJT good copics ol'
the figures and photographs to one of the editors from the Edito-
rial Board or to the Contact Person. At least two referees oulside
the author's country will examine it, and they are invitcd to make
as many remarks as possible directly on the manuscript, from typ-
ing errors to globa! philosophical disagreements. The choscn ed-
itor will send the author copies wilh remarks. If the paper is ac-
cepted, the editor will also scnd copies to the Contact Person. The
Executive Board will inform the author that the paper has been
accepted, in vvhich čase it will bc published within one year of
receipt of e-mails with the tcxt in Informatica KTgK format and
figures in . eps format. The original figures can also be sent on
separate sheets. Style and examples of papers can be obtained by
e-mail from the Contact Person or from FTP or WWW (see the
last page of Informatica).

Opinions, news, calls for confercnces, calls for papers, ctc. should
be sent directly to the Contact Person.

QUESTIONNAIRE
I \ Send Informatica free of charge

I I Ves, we subscribe

Please, complete the order form and send it to Dr. Rudi Murn,
Informatica, Institut Jožef Štefan, Jamova 39, 1111 Ljubljana,
Slovenia.

Since 1977, Informatica has been a major Slovenian scientific
Journal of computing and informatics, including telecommunica-
lions, automation and othcr rclated areas. In its I6th year (more
than five years ago) it became truly internafional, although it stili
remains connected to Central Europe. The basic aim of Infor
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as wcll as technical, commercial and industrial. Its basic
aim is to cnhance Communications betvveen different European
slructures on the basis of equal rights and International referee
ing. It publishes scientific papers accepted by at least two ref
erees outside the author's country, In addition, it contains In
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
menls and innovations in the computer and informafion industry
are presented through commercial publications as well as through
independent evaluations.

Edifing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing two new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author's country. If new referees are appointed,
their namcs vvill appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
governmental institutions. Others should subscribe (see the last
page of Informatica).

ORDER FORM - INFORMATICA

Name:

Title and Profession (optional):

Home Address and Telephone (optional):

Office Address and Telephone (optional):

E-mail Address (optional):

Signature and Date:

Informatica WWW:

http://ai.ijs.si/inforniatica/
http://orca.st.usm.edu/informatica/

Referees:

Witold Abramowicz, David Abramson, Adel Adi, Kenneth Aizavva, Suad Alagič, Mohamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgcn Appelrath, Ivan Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Bartoszevvicz, Catriel Beeri, Daniel Beecii, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadvvaj, Ralph Bisland, Jacek Biazevvicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, Jeff Bone, Ivan Bratko, Pavel Brazdil, Boštjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Buli, Leslie Burkholder, Frada Burstein, Wojciech Buszkovvski,
Rajkumar Bvyya, Netiva Caftori, Particia Carando, Robert Cattral, Jason Ceddia, Ryszard Choras, Wojciech
Cellary, Wojciech Chybowski, Andrzej Ciepielewski, Vic Ciesielski, Mel O Cinneide, David Cliff, Maria Cobb,
Jean-Pierre Corriveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz Czachorski, Milan Češka, Honghua
Dai, Deborah Dent, Andrej Dobnikar, Sait Dogru, Peter Dolog, Georg Dorfner, Ludoslaw Drelichowski, Matija
Drobnič, Maciej Drozdowski, Marek Druzdzel, Jožo Dujmovic, Pavol Duriš, Amnon Eden, Johann Eder, Hesham
El-Rewini, Darrell Ferguson, Warren Fergusson, David Flater, Pierre Flener, Wojcicch Fliegner, Vladimir A.
Fomichov, Terrence Forgarty, Hans Fraaije, Hugo de Garis, Eugeniusz Gatnar, Grant Gayed, James Geller,
Michael Georgiopolus, Jan Golinski, Janusz Gorski, Georg Gotdob, David Green, Herbert Groiss, Jozsef Gyorkos,
Marten Haglind, Abdelvvahab Hamou-Lhadj, Inman Harvey, Marjan Hericko, Elke Hochmueller, Jack Hodges,
Doug Hovve, Rod Howell, Tomaš Hruška, Don Huch, Alexey Ippa, Hannu Jaakkoia, Ryszard Jakubovvski, Piotr
JedrzejoNvicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko Juvancic, Sabhash Kak,
Li-Shan Kang, Ivan Kapust0k, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan Kniat, Stavros Kokkotos,
Fabio Kon, Kevin Korb, Giiad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese, Zbyszko Krolikovvski,
Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Ivan Lah, Phil Laplante, Bud Lavvson, Ulrike
Leopold-VVildburger, Timothy C. Lethbridge, Joseph Y-T. Leung, Barry Levine, Xuefeng Li, Alexander Linkevich,
Raymond Lister, Doug Locke, Peter Lockeman, Matija Lokar, Jason Lovvder, Kim Teng Lua, Ann Macintosh,
Bernardo Magnini, Andrzej Malachovvski, Peter Marcer, Andrzej Marciniak, Witold Marciszevvski, Vladimir
Marik, Jacek Martinek, Tomasz Maruszewski, Florian Matthes, Daniel Memmi, Timothy Menzies, Dieter MerkI,
Zbigniew Michalevvicz, Gautam Mitra, Roland Mittermeir, Madhav Moganti, Reinhard Moller, Tadeusz Morzy,
Daniel Mosse, John Mueller, Hari Narayanan, Jerzy Navvrocki, Ranče Necaise, Elzbieta Nicdzielska, Marian
Niedq'zwiedzinski, Jaroslav Nieplocha, Oscar Nicrstrasz, Roumen Nikolov, Mark Nissen, Jerzy Nogieč, Stefano
Nolfi, Franc Novak, Antoni Novvakovvski, Adam Novvicki, Tadeusz Novvicki, Hubert Osterle, Wojciech
Olejniczak, Jerzy 01szewski, CheiTy Owen, Mieczyslaw Ovvoc, Tadeusz Pankovvski, Jens Penberg, William C.
Perkins, Warren Persons, Mitja Peruš, Stephen Pike, Niki Pissinou, Aleksander Pivk, Ullin Plače, Gabika
Polčicova, Gustav Pomberger, James Pomykalski, Dimithu Prasanna, Gary Preckshot, Dejan Rakovič, Cveta
Razdevšek Pucko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Vojislav D. Radonjic, Luc de Raedt, Ewaryst
Rafajlovvicz, Sita Ramakrishnan, Wolf Rauch, Peter Rechenberg, Felix Rcdmill, James Edvvard Ries, David
Robertson, Marko Robnik, Colelte Rolland, VVilhclm Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo Salmenjoki,
Bo Sanden, P. G. Sarang, Vivek Sarin, Iztok Savnik, Ichiro Satoh, Walter Schempp, Wolfgang Schreiner, Guenter
Schmidt, Heinz Schmidt, Dennis Sewer, Zhongzhi Shi, Maria Smolarova, Carine Souveyet, VVilliam Spears,
Hartmut Stadtler, Olivero Stock, Janusz Stoklosa, Przemyslaw Stpiczyriski, Andrej Stritar, Maciej Stroinski,
Tomasz Szmuc, Zdzislavv Szyjewski, Jure Šile, Metod Škarja, Jih Šlechta, Chevv Lim Tan, Zahir Tari, Jurij Tasič,
Gheorge Tecuci, Piotr Teczynski, Stephanie Teufcl, Ken Tindell, A Min Tjoa, Vladimir Tosic, Wieslaw Traczyk,
Roman Trobec, Marek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski, Marko Uršič, Tadeusz Usovvicz,
Romana Vajde Horvat, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P. Vazhenin, Zygmunt Vetulani,
Olivier de Vel, Valentino Vranic, Eugene VVallingford, John NVeckert, Michael Wciss, Tatjana Welzer, Lee White,
Gerhard Widmer, Štefan Wrobel, Stanislavv Wrycza, Janusz Zalevvski, Damir Zazula, Vanchun Zhang, Aleš
Zivkovic, Zonling Zhou, Robert Zore, Anton P. Železnikar

http://ai.ijs.si/inforniatica/
http://orca.st.usm.edu/informatica/

Informatica 25

INFORMATICA
AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS

INVITATION, COOPERATION

Submissions and Refereeing

Please submit three copies of tine manuscript witiT good copies of
the figures and photographs to one of the editors from the Edito-
riaj Board or to the Contact Person. At Icast two referees outside
the author's country vvill examine it, and they are invited to make
as many remarks as possible directiy on the manuscript, from typ-
ing errors to global philosophical disagrcements. The chosen ed-
itor will send the author copies with remarks. If the papcr is at-
cepted, the editor vvill also send copies to the Contact Person. The
Executive Board vvill inform the author that the paper has becn
accepted, in vvhich čase it vvill be published vvithin one year of
receipt of e-mails vvith the text in Informatica l5TgX format and
figures in . eps format. The original figures can also be sent on
separate sheets. Style and examples of papers can be obtained by
e-mail from the Contact Person or from FTP or WWW (see the
last page of Informatica).

Opinions, news, calls for conferences, calls for papers, etc. should
be sent directly to the Contact Person.

QUESTIONNAIRE
Send Informatica free of charge

I I Ves, vve subscribe

Please, complete the order form and send it to Dr. Rudi Murn,
Informatica, Institut Jožef Štefan, Jamova 39, 1111 Ljubljana,
Slovenia.

Since 1977, Informatica has been a major Slovenian scientific
Journal of computing and informatics, including telecommunica-
tions, automation and other related areas. In its 16th year (more
than five years ago) it became truly International, although it stili
remains connccted to Central Europe. The basic aim of Infor
matica is to impose intellectual values (science, engineering) in a
distributed organisation.

Informatica is a journal primarily covering the European com-
puter science and informatics community - scientific and educa-
tional as vvell as technical, commercial and industrial. Its basic
aim is to cnhance Communications betvveen different European
structures on the basis of equal rights and International referee
ing. It publishcs scientific papers accepted by at least tvvo ref
erees outside the author's country. In addition, it contains In
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and Information industry
are prescnted through commercial publications as vvell as through
independent evaluations.

Editing and refereeing are distributed. Each editor can conduct
the refereeing process by appointing tvvo new referees or referees
from the Board of Referees or Editorial Board. Referees should
not be from the author's country. If nevv referees are appointed,
their names vvill appear in the Refereeing Board.

Informatica is free of charge for major scientific, educational and
govemmental institutions. Others should subscribe (see the last
page of Informatica).

ORDER FORM - INFORMATICA

Name: Office Address and Telcphone (optional):

Title and Profession (optional):

E-mail Address (optional):

Home Address and Telephone (optional):

Signaturc and Date:

Informatica WWW:

http://ai.ijs.si/informatica/
http://orca.st.usm.edu/informatica/

Referees:

Witold Abramovvicz, David Abramson, Adel Adi, Kenneth Aizawa, Suad Alagič, Moiiamad Alam, Dia Ali, Alan
Aliu, Richard Amoroso, John Anderson, Hans-Jurgen Appelrath, Ivan Araujo, Vladimir Bajič, Michel Barbeau,
Grzegorz Barloszewicz, Catriel Beeri, Daniel Beech, Fevzi Belli, Simon Beloglavec, Sondes Bennasri, Francesco
Bergadano, Istvan Berkeley, Azer Bestavros, Andraž Bežek, Balaji Bharadvvaj, Ralph Bisland, Jacek Blazewicz,
Laszlo Boeszoermenyi, Damjan Bojadžijev, JolTBone, Ivan Bratko, Pavel Brazdil, Boštjan Brumen, Jerzy
Brzezinski, Marian Bubak, Davide Bugali, Troy Buli, Leslie Burkholder, Frada Burstein, VVojciech Buszkowski,
Rajkumar Bvyya, Netiva Caftori, Particia Carando, Robert Cattral, Jason Ceddia, Ryszard Choras, Wojciech
Cellary, VVojciech Chybowski, Andrzej Ciepielevvski, Vic Ciesielski, Mel 6 Cinneide, David Cliff, Maria Cobb,
Jean-Pierre Comveau, Travis Craig, Noel Craske, Matthew Crocker, Tadeusz Czachorski, Milan Češka, Honghua
Dai, Deborali Dent, Andrej Dobnikar, Sait Dogru, Peter Dolog, Georg Dorfner, LudosIaw Drelichowski, Matija
Drobnič, Maciej Drozdovvski, Marck Druzdzel, Jožo Dujmovic, Pavol Duriš, Amnon Eden, Johann Eder, Hesham
El-Rewini, Darrell Ferguson, Warren Fergusson, David Flater, Pierre Flener, Wojciech Fliegner, Vladimir A.
Fomichov, Terrence Forgarty, Hans Fraaije, Hugo de Garis, Eugeniusz Gatnar, Grant Gayed, James Geller,
Michael Georgiopolus, Jan Goliriski, Janusz Gorski, Georg Gottlob, David Green, Herbert Groiss, Jozsef Gyorkos,
Marten Haglind, Abdelvvahab Hamou-Lhadj, Inman Harvey, Marjan Hericko, Elke Hochmueller, Jack Hodges,
Doug Howe, Rod Hovvell, Tomaš Hruška, Don Huch, Alexey Ippa, Hannu Jaakkola, Ryszard Jakubowski, Piotr
Jedrzejovvicz, A. Milton Jenkins, Eric Johnson, Polina Jordanova, Djani Juričič, Marko Juvancic, Sabhash Kak,
Li-Shan Kang, Ivan Kapust0k, Orlando Karam, Roland Kaschek, Jacek Kierzenka, Jan Kniat, Stavros Kokkotos,
Fabio Kon, Kevin Korb, Gilad Koren, Andrej Krajnc, Henryk Krawczyk, Ben Kroese, Zbyszko Krolikowski,
Benjamin Kuipers, Matjaž Kukar, Aarre Laakso, Ivan Lah, Phil Laplante, Bud Lawson, Ulrike
Leopold-VVildburger, Timothy C. Lethbridge, Joseph Y-T. Leung, Barry Levine, Xuefeng Li, Alexander Linkevich,
Raymond Lister, Doug Locke, Peter Lockeman, Matija Lokar, Jason Lowder, Kim Teng Lua, Ann Macintosh,
Bernardo Magnini, Andrzej Malachowski, Peter Marcer, Andrzej Marciniak, VVitold Marciszewski, Vladimir
Marik, Jacek Martinek, Tomasz Maruszevvski, Florian Matthes, Daniel Memmi, Timothy Menzies, Dieter Merkl,
Zbigmew Michalewicz, Gautam Mitra, Roland Mittermeir, Madhav Moganti, Reinhard Moller, Tadeusz Morzy,
Daniel Mosse, John Mueller, Hari Narayanan, Jerzy Nawrocki, Ranče Necaise, EIzbieta Niedzielska, Marian
Niedq'zwiedziriski, Jaroslav Nieplocha, Oscar Nierslrasz, Roumen Nikolov, Mark Nissen, Jerzy Nogieč, Stefano
Nolfi, Franc Novak, Antoni Nowakowski, Adam Nowicki, Tadeusz Nowicki, Hubert Osterle, VVojciech
Olejniczak, Jerzy 01szewski, Cherry Owen, Micczyslaw Owoc, Tadeusz Pankovvski, Jens Penberg, VVilliam C.
Perkins, VVarren Persons, Mitja Peruš, Stcphen Pike, Niki Pissinou, Aleksander Pivk, Ullin Plače, Gabika
Polčicova, Gustav Pomberger, James Pomykalski, Dimithu Prasanna, Gary Preckshot, Dejan Rakovič, Cveta
Razdevšek Pucko, Ke Qiu, Michael Quinn, Gerald Quirchmayer, Vojislav D. Radonjic, Luc de Raedt, Ewaryst
Rafajlowicz, Sita Ramakrishnan, VVolf Rauch, Peter Rechenberg, Felix Redmill, James Edvvard Ries, David
Robcrtson, Marko Robnik, Colette RoUand, VVilhelm Rossak, Ingrid Russel, A.S.M. Sajeev, Kimmo Salmenjoki,
Bo Sanden, P. G. Sarang, Vivek Sarin, Iztok Savnik, Ichiro Satoh, VValter Schempp, VVolfgang Schreiner, Guenter
Schmidt, Heinz Schmidt, Dennis Scvver, Zhongzhi Shi, Maria Smolarova, Carine Souveyet, VVilliam Spears,
Hartmut Stadtler, Olivero Stock, Janusz Stoklosa, Przcmyslaw Stpiczyriski, Andrej Stritar, Maciej Stroinski,
Tomasz Szmuc, Zdzislaw Szyjewski, Jure Šile, Metod Škarja, Jifi Šlechta, Chew Lim Tan, ZahirTari, Jurij Tasič,
Gheorge Tecuci, Piotr Teczynski, Stephanie Teufel, Ken Tindell, A Min Tjoa, Vladimir Tosic, VVieslavv Traczyk,
Roman Trobec, Marek Tudruj, Andrej Ule, Amjad Umar, Andrzej Urbanski, Marko Uršič, Tadeusz Usovvicz,
Romana Vajde Horvat, Elisabeth Valentine, Kanonkluk Vanapipat, Alexander P. Vazhenin, Zygmunt Vetulani,
Olivier de Vel, Valentino Vranic, Eugene VVallingford, John VVcckert, Michael VVeiss, Tatjana VVelzer, Lee VVhite,
Gerhard VVidmer, Štefan VVrobel, Stanislavv Wrycza, Janusz Zalevvski, DamirZazula, Vanchun Zhang, Ales
Zivkovic, Zonling Zhou, Robert Zore, Anton P. Železnikar

http://ai.ijs.si/informatica/
http://orca.st.usm.edu/informatica/

EDITORIAL BOARDS, PUBLISHING COUNCIL

Informatica is a joumal primarily covering the European com-
puter science and informatics community; scientific and educa-
tional as well as technical, commercial and industrial. Its basic
aim is to enhance Communications betvveen different European
structures on the basis of equal rights and intemadonal referee-
ing. It publishes scientific papers accepted by at least two ref
erees outside the author's country. In addition, it contains In
formation about conferences, opinions, critical examinations of
existing publications and news. Finally, major practical achieve-
ments and innovations in the computer and Information industry
are presented through commercial publications as well as through
independent evaluations.

Editing and refereeing are distributed. Each editor from the
Editorial Board can conduct the refereeing process by appointing
two new referees or referees from the Board of Referees or Edi
torial Board. Referees should not be from the author's country. If
new referees are appointed, their names will appear in the list of
referees. Each paper bears the name of the editor who appointed
the referees. Each editor can propose new members for the Edi
torial Board or referees. Editors and referees inactive for a longer
period can be automatically replaced. Changes in the Editorial
Board are confirmed by the Executive Editors.

The coordination necessary is made through the Executive Edi
tors who examine the reviews, sort the accepted articles and main-
tain appropriate intcraational distribution. The Executive Board
is appointed by the Society Informatika. Informatica is partially
supported by the Slovcnian Ministry of Science and Technology.

Each author is guaranteed to receive the revievvs of his article.
When accepted, publication in Informatica is guaranteed in less
than one year after the Executive Editors receive the corrected
version of the article.

Executive Editor - Editor in Chief
Anton R Železnikar
Volaričeva 8, Ljubljana, Slovenia
s 5 1 e m @ 1 e a . h a m r a d i o . s i
http://lea.hamradio.si/~s51em/

Executive Associate Editor (Contact Person)
Matjaž Gams, Jožef Štefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Phone: -t-386 1 4773 900, Fax: +386 1 219 385
m a t j a z . g a m s S i j s . s i
h t t p : / / w w w 2 . i j s . s i / ~ m e z i / m a t j a z . h t m l

Executive Associate Editor (Technical Editor)
Rudi Murri, Jožef Štefan Institute

Publishing Council:
Tomaž Banovec, Ciril Baškovič,
Andrej Jerman-Blažič, Jožko Čuk,
Vladislav Rajkovič

Editorial Board
Suad Alagič (Bosnia and Herzegovina)
Vladimir Bajič (Republic of South Africa)
Vladimir Batagelj (Slovenia)
Francesco Bergadano (Italy)
Leon Bimbaum (Romania)
Marco Botta (Italy)
Pavel Brazdil (Portugal)
Andrej Brodnik (Slovenia)
Ivan Bruha (Canada)
Se Woo Cheon (Korea)
Hubert L. Dreyfus (USA)
Jožo Dujmovič (USA)
Johann Eder (Austria)
Vladimir Fomichov (Russia)
Georg Gottlob (Austria)
Janez Grad (Slovenia)
Francis Heylighen (Belgium)
Hiroaki Kitano (Japan)
Igor Kononenko (Slovenia)
Miroslav Kubat (USA)
Ante Lauc (Croatia)
Jadran Lenarčič (Slovenia)
Huan Liu (Singapore)
Ramon L. de Mantaras (Spain)
Magoroh Maruyama (Japan)
Nikos Mastorakis (Greece)
Angelo Montanari (Italy)
Igor Mozetič (Austria)
Stephen Muggleton (UK)
Pavol Navrat (Slovakia)
Jerzy R. Nawrocki (Poland)
Roumen Nikolov (Bulgaria)
Marcin Paprzycki (USA)
Oliver Popov (Macedonia)
Kari H. Pribram (USA)
Luc De Raedt (Belgium)
Dejan Rakovič (Vugoslavia)
Jean Ramaekers (Belgium)
VVilhelm Rossak (USA)
Ivan Rozman (Slovenia)
Claude Sammut (Australia)
Sugata Sanyal (India)
Walter Schempp (Germany)
Johannes Schwinn (Germany)
Zhongzhi Shi (China)
Branko Souček (Italy)
Oliviero Stock (Italy)
Petra Stoerig (Germany)
Jih' Šlechta (UK)
Gheorghe Tecuci (USA)
Robert Trappl (Austria)
Terry Winograd (USA)
Štefan Wrobel (Germany)
Xindong Wu (Australia)

Board of Advisors:
Ivari Bratko, Marko Jagodic,
Tomaž Pisanski, Stanko Strmčnik

mailto:s51em@1ea.hamradio.si
http://lea.hamradio.si/~s51em/
http://www2.ijs.si/~mezi/matjaz.html

Volume 25 Number 4 November 2001 ISSN 0350-5596

Informatica
An International Journal of Computing and Informatics

Introduction
A Language and Framevvork for Supporting an
Active Approach to Component-Based Software
Integration

DEPA (Design Pattem Application) - A
Component-based Model for Applying Design
Pattems in Software Development
An Approach forModeling Components with
Customization for Distributed Softvvare
A Uniform Component Modeling Space
An Agent-Based Component Platform for
Dynamically Adaptable Distributed Environments
MobiDoc: A Mobile Agent-based Framework for
Compound Documents
Blocks, a Component Framevvork with Checking
Facilities for Knowledge-Based Systems

A Security Assurance Framevvork for Component
Based Software Development

The ABCs of Specification: AsmL, Behavior, and
Components
Towards a Rigorous and Effective Functional
Contract for Components

Approach to Component Based Synthesis of Fault
Tolerant Softvvare
Evolution of Fault-Prone Components in Legacy
Systems: A Čase Study
The Need for Speed: A Practitioner's View of Rapid
Application Development in eBusiness
Management Process for Supporting the Component
Development

Image processing and becoming conscious of its
result
Reportš and Announcements

..
S.W. Dietrich,
S.D. Urban,
A. Sundermier, Y. Na,
Y. Jin, S. Kambhampati
K. Ji, S. Chen

X. Xie, S.M. Shatz

D. Hybertson
R. Weinreich,
R. Plosch
I. Satoh

- - •
S. Moisan,
A. Ressouche,
J.-P. Rigault
A.M.V.N. Kumar,
A.K. Singh,
R.S.Babu
M. Bamett,
W. Schulte
RJ.G. Morillo,
V.Diaz,
J.M.C. Valdeon
B. Parhami

M.C. Ohlsson

P. Carando

H.-K. Kim, R.Y. Lee

M. Peruš

441
443

455

465

475
483

493

501

509

517

527

533

545

555

565

575

593

