Strategic Deployment in Graphs

Elmar Langetepe and Andreas Lenerz
University of Bonn, Department of Computer Science I, Germany
Bernd Brüggemann
FKIE, Fraunhofer-Institute, Germany

Keywords: deployment, networks, optimization, algorithms

Received: June 20, 2014

Conquerors of old (like, e.g., Alexander the Great or Caesar) had to solve the following deployment problem. Sufficiently strong units had to be stationed at locations of strategic importance, and the moving forces had to be strong enough to advance to the next location. To the best of our knowledge we are the first to consider the (off-line) graph version of this problem. While being NP-hard for general graphs, for trees the minimum number of agents and an optimal deployment can be computed in optimal polynomial time. Moreover, the optimal solution for the minimum spanning tree of an arbitrary graph \(G \) results in a 2-approximation of the optimal solution for \(G \).

1 Introduction

Let \(G = (V, E) \) be a graph with non-negative edge end vertex weights \(w_e \) and \(w_v \), respectively. We want to minimize the number of agents needed to traverse the graph subject to the following conditions. If vertex \(v \) is visited for the first time, \(w_v \) agents must be left at \(v \) to cover it. An edge \(e \) can only be traversed by a force of at least \(w_e \) agents. Finally, all vertices should be covered. All agents start in a predefined start vertex \(v_s \in V \). In general they can move in different groups. The problem is denoted as a strategic deployment problem of \(G = (V, E) \).

The above rules can also easily be interpreted for modern non-military applications. For a given network we would like to rescue or repair the sites (vertices) by a predefined number of agents, whereas traversing along the routes (edges) requires some escorting service. The results presented here can also be applied to a problem of positioning mobile robots for guarding a given terrain; see also [3].

We deal with two variants regarding a notification at the end of the task. The variants are comparable to routes (round-trips) and tours (open paths) in traveling-salesman scenarios.

(Return) Finally some agents have to return to the start vertex and report the success of the whole operation.

(No-return) It suffices to fill the vertices as required, no agents have to return to the start vertex.

Reporting the success in the return variant means, that finally a set, \(M \), of agents return to \(v_s \) and the union of all vertices visited by the members of \(M \) equals \(V \).

We give an example for the no-return variant for the graph of Figure 1. It is important that the first visit of a vertex immediately binds some units of the agents for the control of the vertex. For start vertex \(v_s = v_1 \) at least 23 agents are required. We let the agents run in a single group. In the beginning one of the agents has to be placed immediately in \(v_1 \). Then we traverse edge \(e_1 \) of weight 1 with 22 agents from \(v_1 \) to \(v_2 \). Again, we have to place one agent immediately at \(v_2 \). We move from \(v_2 \) to \(v_3 \) along \(e_2 \) of weight 20 with 21 agents. After leaving one agent at \(v_3 \) we can still move back along edge \(e_2 \) (weight 20) from \(v_3 \) to \(v_2 \) with 20 agents. The vertex \(v_2 \) was already covered before. With 20 agents we now visit \(v_4 \) (by traversing \(e_3 \) (weight 1) and \(e_4 \) (weight 1), the vertex \(v_1 \) was already covered and can be passed without loss). We have to place one agent at \(v_4 \) and proceed with 19 agents along \(e_3 \) (weight 1), \(e_1 \) (weight 1) and \(e_4 \) (weight 7) to \(v_5 \) where we finally have to place 15 agents. 4 agents are not settled.

It can be shown that no other traversal requires less than...
by known (multi-agent) routing, network-flow or agent-traversal problems.

For example, in the classical transportation network problem there are source and sink nodes whose weights represent a supply or a demand, respectively. The weight of an edge represents the transportation cost along the edge. One would like to find a transshipment schedule of minimum cost that fulfills the demand of all sink nodes from the source nodes; see for example the monograph of [4] and the textbooks [10, 11]. The solutions of such problems are often based on linear programming methods for minimizing (linear) cost functions.

In a packet routing scenario for a given weighted network, \(m \) packet sets each consisting of \(s_i \) packets for \(i = 1, 2, \ldots, m \) are located at \(m \) given source nodes. For each packet set a specified sink node is given. Here the edge weights represent an upper bound on the number of single packets that can be transported along the edge in one time step. One is for example interested in minimizing the so-called makespan, i.e., the time when the last packet arrives at its destination; see for example [13]. For a general overview see also the survey [9].

Similarly, in [11] the multi-robot routing problem considers a set of agents that has to be moved from their start locations to the target locations. For the movement between two locations a cost function is given and the goal is to minimize the path costs. Such multi-robot routing problems can be considered under many different constraints [16]. For the purpose of patrolling see the survey [14].

Additionally, online multi-agent traversal problems in discrete environments have attracted some attention. The problem of exploring an unknown graph by a set of \(k \) agents was considered for example in [5, 6]. Exploration means that at the end all vertices of the graph have been visited. In this motion planning setting either the goal is to optimize the number of overall steps of the agents or to minimize the makespan, which is to minimize the time when the last vertex is visited.

Some other work has been done for \(k \) cooperative cleaners that move around in a grid-graph environment and have to clean each vertex in a contaminated environment; see [2, 17]. In this model the task is different from a simple exploration since after a while contaminated cells can reinfect cleaned cells. One is searching for strategies for a set of \(k \) agents that guarantee successful cleanings.

Our result shows that finding the minimum number of agents required for the strategic deployment problem is NP-hard for general graphs even if all vertex weights are equal to one. In Section 2 this is shown by a reduction from 3-Exact-Cover (3XC). The optimal number of agents for the minimum spanning tree (MST) of the graph \(G \) gives a 2-approximation for the graph itself; see Section 3. For weighted trees we can show that the optimal number of agents and a corresponding strategy for \(T \) can be computed in \(\Theta(n \log n) \) time. Altogether, a 2-approximation for \(G \) can be computed efficiently. Additionally, some structural properties of the problem are given.

The problem definition gives rise to many further interesting extensions. For example, here we first consider an offline version with global communication, but also online versions with limited communication might be of some interest. Recently, we started to discuss the makespan or traversal time for a given optimal number of agents. See for example the masterthesis [12] supervised by the second author.

2 General graphs

We consider an edge- and vertex-weighted graph \(G = (V, E) \). Let \(v_s \in V \) denote the start vertex for the traversal of the agents. W.l.o.g. we can assume that \(G \) is connected and does not have multi-edges.

We allow that a traversal strategy subdivides the agents into groups that move separately for a while. A traversal strategy is a schedule for the agents. At any time step any agent decides to move along an outgoing edge of its current vertex towards another vertex or the agent stays in its current vertex. We assume that any edge can be traversed in one time step. Long connections can be easily modelled by placing intermediate vertices of weight 0 along the edge. Altogether, agent groups can arrive at some vertex \(v \) at the same time from different edges.

The schedule is called valid if the following condition hold. For the movements during a time step the number of agents that use a single edge has to exceed the edge weight \(w_e \). After the movement for any vertex \(v \) that already has been visited by some agents, the number of agents that are located at \(v \) has to exceed the vertex weight \(w_v \). From now on an optimal deployment strategy is a valid schedule that uses the minimum number of agents required.

Let \(N := \sum_{v \in V} w_v \) denote the number of agents required for the vertices in total. Obviously, the maximum overall edge weight \(w_{\max} := \max\{w_e | e \in E\} \) of the graph gives a simple upper bound for the additional agents (beyond \(N \)) used for edge traversals. This means that at most \(w_{\max} + N \) agents will be required. With \(w_{\max} + N \) agents one can for example use a DFS walk along the graph and let the agents run in a single group.

2.1 NP-hardness for general graphs

For showing that computing the optimal number of agents is NP-hard in general we make use of a reduction of the 3-Exact-Cover (3XC) problem. We give the proof for the no-return variant, first.

The problem 3-Exact-Cover (3XC) is given as follows. Given a finite ground set \(X \) of \(3n \) items and a set \(F \) of sub-
For $X = \{a_1, a_2, \ldots, a_{12}\}$ and the subsets $F = \{F_1, F_2, \ldots, F_6\}$ with $F_1 = \{a_1, a_2, a_3\}$, $F_2 = \{a_1, a_2, a_4\}$, $F_3 = \{a_3, a_5, a_7\}$, $F_4 = \{a_2, a_6, a_{10}\}$, $F_5 = \{a_6, a_{11}, a_{12}\}$ and $F_6 = \{a_9, a_{11}, a_{12}\}$ there is an exact 3-cover with F_2, F_3, F_5 and F_6. For the start vertex v_s, an optimal traversal strategy moves in a single group. We start with $3n + m + 1 = 19$ agents, first visit the vertices of F_2, F_3, F_5 and F_6 and cover all elements from there, visiting an element vertex last. After that $3n + n = 4n = 16$ agents have been placed and $m - n + 1 = 3$ still have to be placed including the dummy node. With this number of agents we can move back along the corresponding edge of weight $m - n + 1 = 3$ and place the remaining 3 agents.

Let us first assume that an exact 3-cover exists. In this case we start with $N = 3n + m + 1$ agents at v_s and let the agents run in a single group. First we successively visit the set vertices that build the cover and fill all $3n$ element vertices using $3n + n$ agents in total. More precisely, for the set vertices that build the cover we successively enter such a vertex from v_s, place one agent there and fill all three element vertices by moving back and forth along the corresponding edges. Then we move back to v_s and so on. At any such operation the set of agents is reduced by 4. Finally, when the last set vertex of the cover was visited, we end in the overall last element vertex. After fulfilling the demand there, we still have $N - 4n = 3n + m + 1 - 4n = m - n + 1$ agents for traveling back to v_s along the corresponding edges. Now we fill the remaining set vertices by successively moving forth and back from v_s along the edges of weight 0. Finally, with the last agent, we can visit and fill the dummy node.

Conversely, let us assume that there is no exact 3-cover for (X, F) and we would like to solve the strategic deployment problem with $N = 3n + m + 1$ agents. At some point an optimal solution for the strategic deployment problem has to visit the last element vertex $v(X)_j$, starting from a set vertex $v(F)_i$. Let us assume that we are in $v(F)_i$, and would like to move to $v(X)_j$ now and $v(X)_j$ was not visited before. Since there was no exact 3-cover we have already visited strictly more than n set vertices at this point and exactly $3n - 1$ element vertices have been visited. This means at least $3n - 1 + n + 1 = 4n$ agents have been used.

Now we consider two cases. If the dummy node was already visited, starting with N agents we only have at most $3n + m + 1 - 4n - 1 = m - n$ agents for travelling toward
the last element vertex, this means that we require an additional agent beyond N for traversing the edge of weight $m - n + 1$. If the dummy node was not visited before and we now decide to move to the last element vertex, we have to place one agent there. This means for travelling back from the last element vertex along some edge (at least the dummy must still be visited), we still require $m - n + 1$ agents. Starting with N at the beginning at this stage only $3n + m + 1 - 4n - 1 = m - n$ are given. At least one additional agent beyond N is necessary for travelling back to the dummy node for filling this node.

Altogether, we can answer the 3-Exact-Cover decision problem by a polynomial reduction into a strategic deployment problem. The proof also works for the return variant, problem by a polynomial reduction into a strategic deployment problem of a general graph G.

Theorem 1. Computing the optimal number of agents for the strategic deployment problem of a general graph G is NP-hard.

2.2 2-approximation by the MST

For a general graph $G = (V, E)$ we consider its minimum spanning tree (MST) and consider an optimal deployment strategy on the MST.

Lemma 1. An optimal deployment strategy for the minimum spanning tree (MST) of a weighted graph $G = (V, E)$ gives a 2-approximation of the optimal deployment strategy of G itself.

Proof: Let e be an edge of the MST of G with maximal weight w_e among all edges of the MST. It is simply the nature of the MST, that any traversal of the graph that visits all vertices, has to use an edge of weight at least w_e. The optimal deployment strategy has to traverse an edge of weight at least w_e and requires at least $k_{\text{opt}} \geq \max \{N, w_e\}$ agents. The optimal strategy for the MST approach requires at most $k_{\text{MST}} \leq 2k_{\text{opt}}$.

2.3 Moving in a single group

In our model it is allowed that the agents run in different groups. For the computation of the optimal number of agents required, this is not necessary. Note that group-splitting strategies are necessary for minimizing the completion time. Recently, we also started to discuss such optimization criteria; see the masterthesis [12] supervised by the first author.

During the execution of the traversal there is a set of settled agents that already had to be placed at the visited vertices and a set of non-settled agents that still move around. We can show that the non-settled agents can always move in a single group. For simplicity we give a proof for trees.

Theorem 2. For a given weighted tree T and the given minimal number of agents required, there is always a deployment strategy that lets all non-settled agents move in a single group.

Proof: We can reorganize any optimal strategy accordingly, so that the same number of agents is sufficient.

Let us assume that at a vertex v a set of agents X is separated into two groups X_1 and X_2 and they separately explore disjoint parts T_1 and T_2 of the tree. Let w_T be the maximum edge weight of the edges traversed by the agents X_1 in T_1, respectively. Clearly $|X_1| \geq w_T$ holds. Let $|X_1| \geq |X_2|$ hold and let X_2' be the set of non-settled agents of X_2 after the exploration of T_2. We can explore T_2 by $X = X_1 \cup X_2'$ agents first, and we do not need the set X_2 there, $|X_1| \geq w_T$ means that we can move back with $X_1 \cup X_2'$ agents to v and start the exploration for T_1.

The argument can be applied successively for any split of a group. This also means that we can always collect all non-settled vertices in a single moving group.

Note that the above Theorem also holds for general graphs G. The general proof requires some technical details because a single vertex might collect agents from different sources at the first visit. We omit the rather technical proof here.

Proposition 1. For a given weighted graph G and the given minimal number of agents required, there is always a deployment strategy that lets all non-settled agents move in a single group.

2.4 Counting the number of agents

From now on we only consider strategies where the non-settled agents always move in a single group. Before we proceed, we briefly explain how the number of agents can be computed for a strategy given by a sequence S of vertices and edges that are visited and crossed successively. A pseudocode is given in Algorithm 1. The simple counting procedure will be adapted for Algorithm 2 in Section 3.3 for counting the optimal number of agents efficiently.

For a sequence S of vertices and edges that are visited and crossed by a single group of agents the required number of agents can be computed as follows. We count the number of additional agents beyond N (where N is the overall sum of the vertex weights) in a variable add. In another variable $curr$ we count the number of agents currently available. In the beginning $add := 0$ and $curr := N$ holds. A strategy successively crosses edges and visits vertices of the tree, this is given in the sequence S. We always choose the next element x (edge or vertex) out of the sequence. If we would like to cross an edge e, we check whether $curr \geq w_e$ holds. If not we set $add := add + (w_e - curr)$ and $curr := w_e$ and can cross the edge now. If we visit a vertex v we similarly check whether $curr \geq w_v$ holds. If this is true, we set $curr := curr - w_v$. If this is not true, we set $add := add + (w_v - curr)$ and $curr := 0$. In any case we set
Algorithm 1: Number of agents, for $G = (V, E)$ and given sequence S of vertices and edges.

\[
N := \sum_{v \in V} w_v; \quad \text{curr} := N; \quad \text{add} := 0; \quad x := \text{first}(S);
\]

\textbf{while} $x \neq \text{NIL}$ \textbf{do}

\textbf{if} x is an edge e \textbf{then}

\textbf{if} $\text{curr} < w_e$ \textbf{then}

$\text{add} := \text{add} + (w_e - \text{curr}); \quad \text{curr} := w_e;$

\textbf{end if}

\textbf{else if} x is a vertex v \textbf{then}

\textbf{if} $\text{curr} < w_v$ \textbf{then}

$\text{add} := w_v - \text{curr}; \quad \text{curr} := 0;$

\textbf{else}

$\text{curr} := \text{curr} - w_v;$

\textbf{end if}

$w_v := 0;$

\textbf{end if}

$x := \text{next}(S);$

\textbf{end while}

\return $N + \text{add}$

\[w_v := 0,\] the vertex is filled after the first visit. Obviously this simple algorithm counts the number of agents required in the number of traversal steps of the single group.

3 Optimal solutions for trees

Lemma 1 suggests that for a 2-approximation for a graph G, we can consider its MST. Thus, it makes sense to solve the problem efficiently for trees. Additionally, by Theorem 1 it suffices to consider strategies of single groups.

![Figure 3: An optimal strategy that starts and ends in v_s has to visit the leafs with respect to the decreasing order of the edge weights. The minimal number of agents is $n + 1$. Any other order will lead to at least one extra agent.](image)

3.1 Computational lower bound

Let us first consider the tree in Figure 3 and the return variant. Obviously it is possible to use $n + 1$ agents and visit the edges in the decreasing order of the edge weights $n, n - 1, \ldots, 1$. Any other order will increase the number of agents. If for example in the first step an edge of weight $k \neq n$ is visited, we have to leave one agent at the corresponding vertex. Since the edge of weight n still has to be visited and we have to return to the start, $n + 1$ agents in total will not be sufficient. So first the edge of weight n has to be visited. This argument can be applied successively.

Altogether, by the above example there seems to be a computational lower bound for trees with respect to sorting the edges by their weights. Since integer values can be sorted by bucket sort in linear time, such a lower bound can only be given for real edge and vertex weights. This seems to be a natural extension of our problem. We consider the transportation of sufficient material along an edge (condition 1). Additionally, the demand of a vertex has to be fully satisfied before transportation can go on (condition 2). How many material is required?

For a computational lower bound for trees we consider the Uniform-Gap problem. Let us assume that n unsorted real numbers x_1, x_2, \ldots, x_n and an $\epsilon > 0$ are given. Is there a permutation $\pi : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ so that $x_{\pi(i-1)} = x_{\pi(i)} + \epsilon$ for $i = 2, \ldots, n$ holds? In the algebraic decision tree model this problem has computational time bound $\Omega(n \log n)$; see for example [15].

In Figure 3 we simply replace the vertex weights of 1 by ϵ and the n edge weights by x_1, x_2, \ldots, x_n. With the same arguments as before we conclude: If and only if the Uniform-Gap property holds, a unique optimal strategy has to visit the edges in a single group in the order of decreasing edge weights $x_{\pi(1)} > x_{\pi(2)} > \cdots > x_{\pi(n)}$ and requires an amount of $x_{\pi(1)} + \epsilon$ in total. Any other order will lead to at least one extra ϵ.

The same arguments can be applied to the return variant by simple modifications. Only the vertex weight of the smallest x_j, say $x_{\pi(n)}$, is set to $x_{\pi(n)}$.

Lemma 2. Computing an optimal deployment strategy for a tree of size n with positive real edge and vertex weights takes $\Omega(n \log n)$ computational time in the algebraic decision tree model.

3.2 Collected subtrees

The proof of Lemma 2 suggests to visit the edges of the tree in the order of decreasing weights. For generalization we introduce the following notations for a tree T with root vertex v_s.

For every leaf b_l along the unique shortest path, $\Pi_{v_s}^{b_l}$, from the root v_s to b_l there is an edge $e(b_l)$ with weight $w_{e(b_l)}$, so that $w_{e(b_l)}$ is greater than or equal to any other edge weight along $\Pi_{v_s}^{b_l}$. Furthermore, we choose $e(b_l)$ so that it has the shortest edge-distance to the root among all edges with the same weight. Let $v(b_l)$ denote the vertex of $e(b_l)$ that is closer to the leaf b_l. Thus, every leaf b_l defines a unique path, T_{b_l}, from $v(b_l)$ to the leaf b_l with incoming edge $e(b_l)$ with edge weight $w_{e(b_l)}$. The edge $e(b_l)$ dominates the leaf b_l and also the path $T(b_l)$.

For example in Figure 4 we have $e(b_2) = e_5$ and $e(b_2) = e_3$, the path $T(b_2)$ from e_3 over e_5 to b_2 is dominated by the edge e_5 of weight 10.

If some paths $T_{b_1}, T_{b_2}, \ldots, T_{b_m}$ are dominated by the same edge e, we collect all those paths in a collected subtree denoted by $T(b_1, b_2, \ldots, b_m)$. The tree has unique root $v(b_{i_1})$ and is dominated by unique edge $e(b_{i_1})$.
For example, in Figure 4 for b_0 and b_7 we have $v(b_0) = v(br) = e_4$ and $e(b_0) = e(br) = e_7$ and $T(b_0, br)$ is given by the tree T_{e_4} that is dominated by edge e_7. Altogether, for any tree T there is a unique set of disjoint collected subtrees (a path is a subtree as well) as uniquely defined above and we can sort them by the weight of its dominating edge. For the tree in Figure 4 we have disjoint subtrees $T(b_0, br), T(b_2, b_3, b_4), T(b_1), T(b_5)$ and $T(b_6)$ in this order.

![Figure 4: The optimal strategy with start and end vertex v_s visits, fully explores and leaves the collected subtrees $T(b_0, br), T(b_2, b_3, b_4), T(b_1), T(b_5)$ and $T(b_6)$ in the order of the weights $w_e = 12, w_e = 10, w_e = 9, w_e = 7$ and $w_e = 4$ of the dominating edges.](image)

3.3 Return variant for trees

We show that the collected subtrees can be visited in the order of the dominating edges.

Theorem 3. An optimal deployment strategy that has to start and end at the same root vertex v_s of a tree T can visit the disjoint subtrees $T(b_1, b_2, \ldots, b_m)$ in the decreasing order of the dominating edges.

Any tree $T(b_1, b_2, \ldots, b_m)$ can be visited, fully explored in some order (for example by DFS) and left then.

An optimal visiting order of the leafs and the optimal number of agents required can be computed in $\Theta(n \log n)$ time for real edge and vertex weights and in optimal $\Theta(n)$ time for integer weights.

For the proof of the above Theorem we first show that we can reorganize any optimal strategy so that at first the tree $T(b_1, b_2, \ldots, b_m)$ with maximal dominating edge weight can be visited, fully explored and left, if the strategy does not end in this subtree (which is always true for the return variant). The number of agents required cannot increase.

This argument can be applied successively. Therefore we formulate the statement in a more general fashion.

Lemma 3. Let $T(b_1, b_2, \ldots, b_m)$ be a subtree that is dominated by an edge e which has the greatest weight among all edges that dominate a subtree.

Let S be an optimal deployment strategy that visits some vertex v_l last and let v_l be not a vertex inside the tree $T(b_1, b_2, \ldots, T_{b_m})$. The strategy S can be reorganized so that first the tree $T(b_1, b_2, \ldots, b_m)$ can be visited, fully explored in any order and finally left then.

Proof: The tree $T(b_1, b_2, \ldots, T_{b_m})$ rooted at v_l and with maximal dominating edge weight $w_{e(b_1)}$ does not contain another subtree $T(b_1, b_2, \ldots, T_{b_m})$. This means that $T(b_1, b_2, \ldots, T_{b_m})$ is the full subtree $T_{e(b_1)}$ of T rooted at v_l. Let $\text{path}(v_l)$ denote the number of agents that has to be settled along the unique path from v_s to the predecessor, v_d, of v_l. Let us assume that an optimal strategy is given by a sequence S_i and let $S_i(v_l)$ denote the strategy that ends after the i-th visit of some vertex v_l in the sequence S_i. Let $|S_i(v_l)|$ denote the number of settled agents and let $\text{cut}(S_i(v_l))$ denote the number of non-settled agents after the i-th visit of v_l. We would like to replace S_i by a sequence S_iS''. If vertex v_l is finally visited, say for the k-th time, in the sequence S_i, we require $\text{cut}(S_i(v_l)) \geq w_{e(b_1)}$ and $|S_i(v_l)| \geq |T(b_1, b_2, \ldots, T_{b_m})| + \text{path}(v_l)$ since the strategy ends at $v_l \notin T(b_1, b_2, \ldots, T_{b_m})$. In the next step S_i will move back to v_d along $e(b_1)$ and in S'' the root v_l of the tree $T(b_1, b_2, \ldots, T_{b_m})$ and the edge $e(b_1)$ will never be visited again. If we consider a strategy S'' that first visits v_l, fully explores $T(b_1, b_2, \ldots, T_{b_m})$ by DFS and moves back to the start v_s by passing $e(b_1)$, the minimal number of agents required for this movement is exactly $|T(b_1, b_2, \ldots, T_{b_m})| + \text{path}(v_l) + w_{e(b_1)} - w_{e(b_1)}$ non-settled agents. With $|S_i(v_l)| - |T(b_1, b_2, \ldots, T_{b_m})| - \text{path}(v_l)$ agents we now start the whole sequence S_i again.

In the concatenation of S_i and S, say S_iS, the vertex v_l is visited $k' = k + 2$ times for $|T(b_1, b_2, \ldots, T_{b_m})| \geq 2$ and $k' = k + 1$ times for $n = 1$ and v_l. S_iS was executed for the remaining movement of $S_iS'_{e(b_1)}(k')$ the portion $w_{e(b_1)}$ of $\text{cut}(S_iS'_{e(b_1)}(k')) - |T(b_1, b_2, \ldots, T_{b_m})| - \text{path}(v_l)$ allows us to cross all edges in $S_iS'_{e(b_1)}(k')$ for free, because $w_{e(b_1)}$ is the maximal weight in the tree. Thus obviously $\text{cut}(S_iS'_{e(b_1)}(k')) = \text{cut}(S_iS'_{e(b_1)}(k'))$ holds and S_iS' and S require the same number of agents. In $S''S'$ all visits of $T(b_1, b_2, \ldots, T_{b_m})$ made by S' were useless because the tree was already completely filled by S''. Skipping all these visits in S', we obtain a sequence $S''S'$ has the desired structure. □

Proof (Theorem 3) The strategy of the single group has to return back to the start vertex v_s at the end. Therefore no
subtree $T(b_1, b_2, \ldots, b_m)$ contains the vertex v_s visited last. Let us assume that N_1 is the optimal number of agents required for T.

After the first application of Lemma 3 to the subtree $T(b_1, b_2, \ldots, b_m)$ with greatest incoming edge weight $w_{e(b_1)}$ we can move with at least $w_{e(b_1)}$ agents back to the root v_s without loss by the strategy S'. Let us assume that N'_1 agents return to the start.

We simple set all node weights along the path from v_s to $v(b_1)$ to zero, cut off the fully explored subtree $T(b_1, b_2, \ldots, b_m)$ and obtain a tree T'. Note that the collected subtrees were disjoint and apart from $T(b_1, b_2, \ldots, b_m)$ the remaining collected subtrees will be the same in T' and T. By induction on the number of the subtrees in the remaining problem T' we can visit the collected subtrees in the order of the dominating edge weights.

Note that the number of agents required for T' might be less than N'_1 because the weight $w_{e(b_1)}$ was responsible for N'_1. This makes no difference in the argumentation.

We consider the running time. By a simple DFS walk of T, we compute the disjoint trees $T(b_1, b_2, \ldots, b_m)$ implicitly by pointers to the root vertices $v(b_1)$. For any vertex v, there is a pointer to its unique subtree $T(b_1, b_2, \ldots, b_m)$ and we compute the sum of the vertex weights for any subtree. This can be done in overall linear time. Finally, we can sort the trees by the order of the weights of the incoming edges in $O(n \log n)$ time for real weights and in $O(n)$ time for integer weights.

For computing the number of agents required, we make use of the following efficient procedure, similar to the algorithm indicated at the beginning of this Section. Any visited vertex will be marked. In the beginning let $add := 0$ and $curr := N$. Let $T(b_1, b_2, \ldots, b_m)$ denote the sum of the vertex weights of the corresponding tree. We successively jump to the vertices $v(b_k)$ of the tree $T(b_1, b_2, \ldots, b_m)$ by making use of the pointers. We mark $v(b_1)$ and starting with the predecessor of $v(b_1)$ we move backwards along the path from $v(b_1)$ to the root v_s, until the first marked vertex is found. Unmarked vertices along this path are labeled as marked and the sum of the corresponding vertex weights is counted in a variable path. Additionally, for any such vertex v that belongs to some other subtree $T(\ldots)$ we subtract the vertex weight w_v from $T(\ldots)$, this part of $T(\ldots)$ is already visited.

Now we set $curr := curr - (|T(b_1, b_2, \ldots, b_m)| + \text{Path})$. If $curr < w_s$ holds, we set $add := add + (w_s - curr)$ and $curr := w_s$ as before. Then we turn over to the next tree. Obviously with this procedure we compute the optimal number of agents in linear time, any vertex is marked only once. A pseudocode is presented in Algorithm 2.

We present an example of the execution of Algorithm 2. For example in Figure 4 we have $N := 41$ and first jump to the root v_3 of $T(b_0, b_5)$, we have $|T(b_0, b_5)| = 8$. Then we count the 6 agents along the path from v_3 back to v_s and mark the vertices v_2 and v_3 as visited. This gives $curr := 41 - (8 + 6) = 27$, which is greater than $w_e = 12$.

Additionally, for v_2 we subtract 2 from $|T(b_3)|$ which gives $|T(b_3)| = 9$. Now we jump to the root v_5 of $T(b_2, b_3, b_4)$ with $|T(b_2, b_3, b_4)| = 8$. Moving from v_3 back to v_s to the first unmarked vertex just gives no step. No agents are counted along this path. Therefore $curr := 27 - (8 + 0) = 19$ and $curr > w_e = 10$. Next we jump to the root b_1 of $T(b_1)$ of size $|T(b_1)| = 3$. Moving back to the root we count the weight 5 of the unvisited vertex v_1 (which will be marked now). Note that v_1 does not belong to a subtree $T(\ldots)$. We have $curr := 19 - (3 + 5) = 11$. Now we jump to the root v_2 of $T(b_0)$ of current size $|T(b_0)| = 9$. Therefore $curr := 11 - (9 + 0) = 2$ which is now smaller than $w_e = 7$. This gives add := add + (7 - curr) = 0 + (7 - 2) = 5 and $curr := w_e = 7$. Finally we jump to $b_0 = T(b_0)$ and have $curr := 7 - (2 - 0) = 5$ which is greater than w_{v_2}. Altogether 5 additional agent can move back to v_s and $N + add = 46$ agents are required in total.

Algorithm 2: Return variant. Number of agents for $T = (V, E)$. Roots $v(b_1)$ of trees $T(b_1, b_2, \ldots, b_m)$ are given by pointers in a list L in the order of dominating edge weights. NIL is the predecessor of root ν_s.

\[
N := \sum_{v \in V} w_v; \text{curr} := N; \text{add} := 0;
\]

while $L \neq \emptyset$ do

$v(b_k) := \text{first}(L); \text{deleteFirst}(L);$
Mark $v(b_k);$
Path := 0; path := $\text{pred}(v(b_k));$

while path not marked and path \neq NIL do

Path := Path + $\text{path};$

if path belongs to $T(\ldots)$ then

$|T(\ldots)| := |T(\ldots)| - \text{path}$

end if

Mark path; path := $\text{pred}(\text{path});$

end while

curr := curr - $|T(b_1, b_2, \ldots, b_m)| + \text{path}.$

if curr < w_s then
add := add + ($w_s - \text{curr}$); curr := w_s;

end if

end while

RETURN $N + \text{add}$

3.4 Lower bound for traversal steps

It is easy to see that although the number of agents required and the visiting order of the leaves can be computed sub-quadratic optimal time, the number of traversal steps for a tree could be in $\Omega(n^2)$; see the example in Figure 5. In this example the strategy with the minimal number of agents is unique and the agents have to run in a single group.

3.5 No-return variant

Finally, we discuss the more difficult task of the no return variant. In this case for an optimal solution not all collected
subtrees will be visited in the order of the decreasing dominating edge weights.

For example a strategy for the no-return in Figure 4 that visits the collected subtrees \(T(b_0, b_2) \), \(T(b_2, b_3, b_4) \), \(T(b_1) \), \(T(b_3) \) and \(T(b_0) \) in the order of the weights \(w_{e_1} = 12 \), \(w_{e_2} = 10 \), \(w_{e_3} = 9 \), \(w_{e_4} = 7 \) and \(w_{e_5} = 4 \) of the dominating edges requires 46 agents even if we do not finally move back to the start vertex. As shown at the end of Section 3.3 we required 5 additional agents for leaving \(T(b_0) \), entering and leaving \(T(b_0) \) afterwards requires no more additional agents.

In the no return variant, we can assume that any strategy ends in a leaf, because the last vertex that will be served has to be a leaf. This also means that it is reasonable to enter a collected subtree, which will not be left any more. In the example above we simply change the order of the last two subtrees. If we enter the collected subtrees in the order \(T(b_0, b_2) \), \(T(b_2, b_3, b_4) \), \(T(b_1) \), \(T(b_3) \) and \(T(b_0) \) and \(T(b_3) \) is not left at the end, we end the strategy in \(b_5 \) (no-return) and require exactly \(N = 41 \) agents, which is optimal.

Theorem 4. For a weighted tree \(T \) with given root \(v_s \) and non-fixed end vertex we can compute an optimal visiting order of the leaves and the number of agents required in amortized time \(O(n \log n) \).

For the proof of the above statement we first characterize the structure of an optimal strategy. Obviously we can assume that a strategy that need not return to the start will end in a leaf. Let us first assume that the final leaf, \(b_t \), is already known or given. As indicated for the example above, the final collected subtree will break the order of the collected subtrees in an optimal solution. This behaviour holds recursively.

Lemma 4. An optimal traversal strategy that has to visit the leaf \(b_t \) last can be computed as follows: Let \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) be the collected subtree of \(T \) that contains \(b_t \).

1. First, all collected subtrees \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) of the tree \(T \) with dominating edge weight greater than \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) are successively visited and fully explored (each by DFS) and left in the decreasing order of the weights of the dominating edges.

2. Then, the remaining collected subtrees that do not contain \(b_t \) are visited in an arbitrary order (for example by DFS).

3. Finally, the collected subtree \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) that contains \(b_t \) is visited. Here we recursively apply the same strategy to the subtree \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \). That is, we build a list of collected subtrees for the tree \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) and recursively visit the collected subtrees by steps 1. and 2. so that the collected subtree that contains \(b_t \) is recursively visited last in step 3. again.

Proof: The precondition of the Theorem says that there is an optimal strategy given by a sequence \(S \) of visited vertices and edges so that the strategy ends in the leaf \(b_t \). Let \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) be the collected subtree of \(T \) that contains \(b_t \) and let \(w_{e_{l_1}} \) be the corresponding dominating edge weight. So \(b_t \in \{ b_{l_1}, b_{l_2}, \ldots, b_{l_m} \} \) and \(v(b_t) \) is the root of \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \). Similarly as in the proof of Lemma 3 we would like to reorganize \(S \) as required in the Lemma.

For the trees \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) with dominating edge weight greater than \(w_{e_{l_1}} \) we can successively apply Lemma 3. So we reorganize \(S \) in this way by a sequence \(S' \) that finally moves the agents back to the start vertex \(v_s \). Then we apply the sequence \(S' \) again but skip the visits of all collected subtrees already fully visited by \(S' \) before. This show step 1. of the Theorem.

This gives an overall sequence \(S'S'' \) with the same number of agents and \(S'' \) does only visit collected subtrees of \(T \) with dominating edges weight smaller than or equal to \(w_{e_{l_1}} \). Furthermore, \(S'' \) also ends in \(b_t \).

The collected subtree \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) with weight \(w_{e_{l_1}} \) does not contain any collected subtree with weight smaller than or equal to \(w_{e_{l_1}} \). At some point in \(S'' \) the vertex \(v(b_t) \) is visited for the last time, say for the \(k \)-th time, by a movement from the predecessor \(\text{pred}(v(b_t)) \) of \(v(b_t) \) by passing the edge of weight \(w_{e_{l_1}} \). At least \(w_{e_{l_1}} \) agents are still required for this step. At this moment all subtrees different from \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) and edge weight smaller than or equal to \(w_{e_{l_1}} \) hobe been visited since the strategy ends in \(b_t \in \{ b_{l_1}, b_{l_2}, \ldots, b_{l_m} \} \).

Since \(w_{e_{l_1}} \) agents are required for the final movement along \(e(b_t) \) there will be no loss of agents, if we postpone all movements into \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) in \(S'' \) first and then finally solve the problem in \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) optimally. For the subtrees different from \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) and edge weight smaller than or equal to \(w_{e_{l_1}} \) we only require the agents that have to be placed there, since at least \(w_{e_{l_1}} \) non-settled agents will be always present. Therefore we can also decide to visit the subtrees different from \(T(b_{l_1}, b_{l_2}, \ldots, b_{l_m}) \) and edge weight smaller than or equal to \(w_{e_{l_1}} \) in an arbitrary order (for example by DFS). This gives step 2. of the Theorem.
Finally, we arrive at \(v(b_t) \) and \(T(b_1, b_2, \ldots, b_m) \) and would like to end in the leaf \(b_t \). By induction on the height of the trees the tree \(T(b_1, b_2, \ldots, b_m) \) can be handled in the same way. That is, we build a list of collected subtrees for the tree \(T(b_1, b_2, \ldots, b_m) \) itself and recursively visit the collected subtrees by steps 1. and 2. so that the collected subtree that contains \(b_t \) is recursively visited last in step 3. again.

The remaining task is to efficiently find the best leaf \(b_t \) where the overall optimal strategy ends. The above Lemma states that we should be able to start the algorithm recursively at the root of a collected subtree \(T(b_1, b_2, \ldots, b_m) \) that contains \(b_t \). For \(v \) a list, \(L \), of the collected subtrees for \(T \) is given and for finding an optimal strategy we have to compute the corresponding lists of collected subtrees for all trees \(T(b_1, b_2, \ldots, b_m) \) in \(L \) recursively.

Figure 6 shows an example. In this setting let us for example consider the case that we would like to compute an optimal visiting order so that the strategy has to end in the leaf \(b_2 \). Since \(b_2 \) is in \(T(b_2, b_3, b_4) \) in the list of \(v \) in Figure 6 by the above Lemma in step 1. we first visit the tree \(T(b_2, b_4) \) of dominating edge weight greater than the dominating edge weight of \(T(b_2, b_3, b_4) \). Then we visit \(T(b_2) \), \(T(b_3) \) and \(T(b_4) \) in step 2. After that in step 3. we recursively start the algorithm in \(T(b_2, b_3, b_4) \). Here at \(v_3 \) the list of collected subtrees contains \(T(b_2) \) and \(T(b_2, b_3) \) and by the above recursive algorithm in step 1. we first visit \(T(b_2) \). There is no tree for step 2. and we recursively enter \(T(b_2, b_3) \) at \(v_3 \) in step 3. Here for step 1. there is no subtree and we enter the tree \(T(b_3) \) in step 2. until finally we recursively end in \(T(b_2) \) in step 3. Here the algorithm ends. Note that in this example \(b_2 \) is not the overall optimal final leaf.

If we simply apply the given algorithm for any leaf and compare the given results (number of agents required) we require \(O(n^2 \log n) \) computational time. For efficiency, we compute the required information in a single step and check the value for the different leaves successively. It can be shown that in such a way the best leaf \(b_t \) and the overall optimal strategy can be computed in amortized \(O(n \log n) \) time.

Finally, we give a proof for Theorem 4 by the following discussion. We would like to compute the lists of the collected subtrees \(T(b_1, b_2, \ldots, b_m) \) recursively. More precisely, for the root \(v_x \) of a full tree \(T \) with leaves \(\{b_1, b_2, \ldots, b_n\} \) we obtain a list, denoted by \(T(b_1, b_2, \ldots, b_n) \), of the collected subtrees of \(T \) with respect to the decreasing order of the dominating edge weights as introduced in Section 3.2.

The elements of the list are pointers to the roots of the collected subtrees \(T(b_1, b_2, \ldots, b_m) \). For any such root \(T(b_1, b_2, \ldots, b_m) \) of a subtree in the list \(T(b_1, b_2, \ldots, b_n) \) we recursively would like to compute the corresponding list of collected subtrees recursively; see Figure 6 for an example.

Additionally, for any considered collected subtree \(T(b_1, b_2, \ldots, b_k) \) that belongs to the pointer list of \(T(b_1, b_2, \ldots, b_m) \) we store a pair of integers \(x, y \) at the corresponding root of \(T(b_1, b_2, \ldots, b_k) \); see Figure 6. Here \(x \) denotes the weight of the dominating edge. The value \(y \) denotes the size of \(|T(b_1, b_2, \ldots, b_k)| \) if we recursively start the optimal tree algorithm in the root \(T(b_1, b_2, \ldots, b_m) \); see Algorithm 2. This means that \(y \) denotes the size of the collected subtree and the sum of the weights along the path back from \(T(b_1, b_2, \ldots, b_k) \) to the root \(T(b_1, b_2, \ldots, b_m) \) if \(T(b_1, b_2, \ldots, b_k) \) is the first entry of the list \(T(b_1, b_2, \ldots, b_m) \) and therefore has maximal weight.

The list of subtrees at the root \(v_x \) of \(T \) is denoted by \(T(b_1, b_2, \ldots, b_m) \) and obtains the values \(x := 0 \) (no incoming edge) and \(y := N \) (the sum of the overall vertex weights). We can show that all information can be computed efficiently from bottom to top and finally also allows us to compute an overall optimal strategy.

For the overall construction of all pointer lists \(T(b_1, b_2, \ldots, b_m) \) we internally make use of Fibonacci heaps [7]. The corresponding heap for a vertex \(v \) always contains all collected subtrees of the leaves of \(T_v \). The collected subtree list for the vertex \(v \) itself might be empty; see for example that vertex \(v_4 \) does not root a set of collected subtree. In the following the list of pointers to collected subtrees is denoted by \(\ldots \) and the internal heaps are denoted by \(\ldots \).

The subtrees in the heap are also given by pointers. But the heap is sorted by increasing dominating edge weights. Note, that we have two different structures. Occasionally a final subtree for a vertex with a list of pointers for the collected subtrees (in decreasing order) and the internal heaps with a collection of all collected subtrees (in increasing or-
With the help of the heaps we successively compute and store the final collected subtree lists for the vertices. We start the computations on the leafs of the tree. For a single leaf b_l the heap $(T(b_l))^{2.9}$ and the subtree $T(b_l)^{2.9}$ represent exactly the same. The value x of $T(b_l)^{2.9}$ is given by the edge weight of the leaf. The value y of $T(b_l)^{2.9}$ will be computed recursively, it is initialized by the vertex weight of the leaf. For example, in Figure 6 for b_7 and b_8 we first have $T(b_6)^{1.2}$ and $T(b_7)^{3.1}$, representing both the heaps and the subtrees.

Let us assume that the heaps for the child nodes of an internal node v already have been computed and v is a branching vertex with incoming edge weight w_v. We have to add the node weight of v to the value y of one of the subtrees in the heap. We simply additionally store the subtree with greatest weight among the branches. Thus in constant time we add the node weight of the branching vertex to the value y of a subtree with greatest weight. Then we unify the heaps of the children. They are given in the increasing order of the dominating edges weights. This can be done in time proportional to the number of child nodes of v. For example, at v_4 in Figure 6 first we increase the y-element of the subtree $T(b_7)^{3.1}$ in the heap by the vertex weight 5 of v_4, which gives $T(b_7)^{3.6}$. Then we unify $(T(b_6)^{1.2} \text{ and } T(b_7)^{3.6})$ to a heap $T(b_6)^{1.2}, T(b_7)^{3.6})$. For convenience in the heap we attach the values x and y directly to the pointer of the subtree.

Now, for branching vertex v by using the new unified heap we find, delete and collect the subtrees with minimal incoming edge weight as long as the weights are smaller than or equal to the weight w_v. If there is no such tree, we do not have to build a new collected subtree at this vertex and also the heap remains unchanged. If there are some subtrees that have incoming edge weight smaller than or equal to w_v, the pointers to all these subtrees will build a new collected subtree $T(b_1, b_2, \ldots, b_m)$ with x-value w_v at the node v. Additionally, the pointers to the corresponding subtrees of $T(b_1, b_2, \ldots, b_m)$ can easily be ordered with increasing weights since we have deleted them out of the heap starting with the smallest weights. Additionally, we sum up the values y of the deleted subtrees. Finally, we have computed the collected subtree $T(b_1, b_2, \ldots, b_m)$ and its information x, y at node v. At the end a new subtree is also inserted into the fibonacci heap of the vertex v for future unions and computations.

For example in Figure 6 for the just computed heap $(T(b_6)^{1.2}, T(b_7)^{3.6})$ at vertex v_4 we delete and collect the subtrees $T(b_6)^{1.2}$ and $T(b_7)^{3.6}$ out of the heap because the weight $w_{v_4} = 12$ dominates both weights 1 and 3. This gives a new subtree $T(b_7, b_6)^{12.8} = [T(b_7), T(b_6)]$ at v_4 and also a heap $(T(b_7, b_6)^{12.8}$.

Note, that sometimes no new subtree is build if no tree is deleted out of the heap because the weight of the incoming edge is less than the current weights. Or it might happen that only a single tree of the heap is collected and gets a new dominating edge. In this case also no subtree is deleted out of the heap. We have a single subtree with the same leafs as before but with a different dominating edge. We do not build a a collected subtree for the vertex at this moment, the insertion of such subtrees at the corresponding vertex is postponed.

For example for the vertex v_2 with incoming edge weight 7 in Figure 6 we have already computed the heaps $(T(b_5)^{6.9})$ and $(T(b_6, b_7)^{12.8})$ of the subtrees. Now the vertex weight 2 of v_2 is added to the y-value of $T(b_6, b_7)^{12.8}$ which gives $T(b_6, b_7)^{12.10}$ for this subtree. Then we unify the heaps to $(T(b_5)^{6.9}, T(b_6, b_7)^{12.10})$. Now with respect to the incoming edges weight 7 only the first tree in the heap is collected to a subtree and this subtree gives the list for vertex v_2. The heap of the vertex v_2 now reads $(T(b_5)^{6.9}, T(b_7, b_6)^{12.10})$ and the collected subtree is $T(b_5)^{7.9} = [T(b_5)]$.

Finally, we arrive the root vertex v_s and all subtrees of the heap are inserted into the list of collected subtrees for the root.

The delete operation for the heaps requires amortized $O(\log m)$ time for a heap of size m and subsumes any other operation. Any delete operation leads to a collection of subtrees, therefore at most $O(n)$ delete operation will occur. Altogether all subtrees and its pointer lists and the values x and y can be computed in amortized $O(n \log n)$ time.

The remaining task is that we use the information of the subtrees for calculating the optimal visiting order of the leafs in overall $O(n \log n)$ time. Here Algorithm 2 will be used as a subroutine.

As already mentioned we only have to fix the leaf b_l visited last. We proceed as follows. An optimal strategy ends in a given collected subtree with some dominating edge weight w_e. The strategy visits and explores the remaining trees in the order of the dominating edges weights.

Let us assume that on the top level the collected subtrees are ordered by the weights $w_{e_1} \leq w_{e_2} \leq \ldots \leq w_{e_j}$. Therefore by the given information and with Algorithm 2 for any i we can successively compute the number of additional agents required for any successive order $w_{e_{i+1}} \leq w_{e_{i+2}} \leq \ldots \leq w_{e_j}$ and by the y-values we can also compute the number of agents required for the trees of the weights $w_{e_1} \leq w_{e_2} \leq \ldots \leq w_{e_{i+1}}$. The number of agents required for the final tree of weight w_e and the best final leaf stems from recursion. With this informations the number of agents can be computed. This can be done in overall linear time $O(j)$ for any i.

The overall number of collected subtrees in the construction is linear for the following reason. We start with n subtrees at the leafs. If this subtree appears again in some list (not in the heap), either it has been collected together with some others or it builds a subtree for its own (changing dominance of a single tree). If it was collected, it will never appear for its own again on the path to the root. If it is a single subtree of that node, no other subtree appears in the list at this node. Thus for the $O(n)$ nodes we have $O(n)$ collected subtrees in the lists total.
From i to $i + 1$ only a constant number of additional calculations have to be made. By induction this can recursively be done for the subtree dominated by w_i, as well. Therefore we can use the given information for computing the optimal strategy in overall linear time $O(n)$ if the collected subtrees are given recursively.

4 Conclusion

We introduce a novel traversal problem in weighted graphs that models security or occupation constraints and gives rise to many further extensions and modifications. The problem discussed here is NP-hard in general and can be solved efficiently for trees in $\Theta(n \log n)$ where some machinery is necessary. This also gives a 2-approximation for a general graph by the MST.

References

