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This paper proposes a lossy image representation where a reference image is approximated by an evolved
image, constituted of variable number of triangular brushstrokes. The parameters of each triangle brush
are evolved using differential evolution, which self-adapts the triangles to the reference image, and also
self-adapts some of the control parameters of the optimization algorithm, including the number of trian-
gles. Experimental results show the viability of the proposed encoding and optimization results on a few
sample reference images. The results of the self-adapting control parameters for crossover and mutation in
differential evolution are also compared to results with keeping these parameters constant, like in a basic
differential evolution algorithm. Statistical tests are furthermore included to confirm the improved perfor-
mance with the self-adaptation of the control parameters over the fixed control parameters.

Povzetek: V članku je predlagana izgubna predstavitev slike, kjer je referenčna slika aproksimirana z
evoluirano sliko, ki je sestavljena iz spremenljivega števila potez trikotniškega čopiča. Parametre vsake
poteze čopiča optimiramo s pomočjo diferencialne evolucije, ki samoprilagaja trikotniške poteze na ref-
erenčno sliko in prav tako samoprilagaja nekatere krmilne parametre samega optimizacijskega algoritma,
vključno s številom trikotnikov. Rezultati poizkusov kažejo primernost predlagane metode in rezultati op-
timizacije so prikazani za več izbranih referenčnih slik. Rezultati samoprilagodljivih krmilnih parametrov
za diferecialno evolucijo so primerjani tudi z rezultati, kjer so ti parametri nespremenljivi, kot je to primer
pri osnovnem algoritmu diferencialne evolucije. Dodatno so podani še statistični testi, ki nadalje potrju-
jejo izboljšanje kakovosti pristopa ob samoprilagajanju krmilnih parametrov v primerjavi s pristopom z
nespremenljivimi krmilnimi parametri.

1 Introduction

In this paper, evolvable lossy image representation utiliz-
ing an image compared to its evolved generated counterpart
image, is proposed. The image is represented using a vari-
able number of triangular brushstrokes [7], each consist-
ing of triangle vertices coordinates and color parameters.
These parameters for each triangle brush are evolved using
differential evolution [13, 4], which self-adapts the control
parameters, including the proposed self-adaptation for the
number of triangles to be used. Experimental results show
the viability of the proposed encoding and evolution con-
vergence for lossy compression of sample images. Since
this paper is an extended version of [8], new additional re-
sults are included, where the experiments results with fixed
control parameters for differential evolution are included
to check and demonstrate the self-adaptation mechanism
influence on results. The results show clear superiority of
the proposed approach with the self-adaptive control pa-
rameters over the approach where its control parameters
are fixed.

The approach presented is built upon and compared

with [7], by addressing and also extending the original
challenge. Namely, the challenge introduced in [7] uses
triangles in trying to build an approximate model of an im-
age [7]. The triangle is an efficient brush shape for this
challenge, since it covers more pixels than a single point,
and also allows overlaying and blending of colors over sev-
eral regional surface pixels, which lines can not. Also, an
arbitrary triangle shape is less constrained than any further
point-approximated shape, and also other shapes can be
built by combining several triangles. Instead of genetic pro-
gramming in [7], in this paper differential evolution is used
with a fixed size tree-like chromosome vector, which is cut-
off self-adaptively to form codon and anti-codon parts of
the chromosome. Also, our approach uses a modified chal-
lenge, where we can reconstruct the model for the reference
image solely using the evolved model without using the ref-
erence image, whereas the [7] needs the reference image
when drawing pixels to the canvas in deciding which pix-
els match the reference image for accepting them into the
evolved canvas. Also, in this paper the triangle brushstroke
encoding differs and is proposed especially designed for an
efficient DE encoding.
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In the following section, related work is presented, then
the proposed approach is defined. In Section 4, the experi-
mental results are reported. Section 5 concludes the paper
with propositions for future work.

2 Related Work
In this section, related work on evolutionary computer vi-
sion, evolutionary art, image representation, and evolution-
ary optimization using differential evolution, are presented.
These topics are used in the proposed method, defined in
the next section.

2.1 Image-Based Modeling, Evolutionary
Computer Vision, and Evolutionary Art

Image-based approaches to modeling include processing of
images, e.g., two-dimensional, from which after segmenta-
tion certain features are extracted and used to represent a
geometrical model [10]. For art drawings modeling, au-
tomatic evolutionary rendering has been applied [2, 12].
Heijer and Eiben evolved pop art two-dimensional scal-
able vector graphics (SVG) images [6] and defined genetic
operators on SVG to evolve representational images using
SVG, and also to evolve new images, different from source
images, leading to new and surprising images for pop-art.
Bergen and Ross [3] interactively evolved vector graph-
ics images using genetic algorithm, where solid-coloured
opaque or translucent geometric objects or mosaic tile ef-
fects with bitmap textures were utilized; they considered
the art aspect of the evolved image and multiple possible
outcomes due to evolution stochastics and concluded to in-
vestigate vector animation of the vectorized image.

In [14] animated artwork is evolved using an evolu-
tionary algorithm. Then, Izadi et al. [7] evolved trian-
gular brushstrokes challenge using genetic programming
for two-dimensional images, using unguided and guided
searches on a three or four branch genetic program, where
roughly 5% similarity with reference images was obtained
on average per pixel. In this paper, we build upon and com-
pare our new approach with [7], by addressing and also ex-
tending this challenge. After extending the challenge, we
optimize it using DE, which is described in the next sec-
tion.

2.2 Evolutionary Optimization Using
Differential Evolution

Differential evolution (DE) [13] is a floating-point encod-
ing evolutionary algorithm for continuous global optimiza-
tion. It has been modified and extended several times with
various versions being proposed [5]. DE has also been ap-
plied to remote sensing image subpixel mapping [18], im-
age thresholding [11], and for image-based modeling using
evolutionary computer vision to reconstruct a spatial pro-
cedural tree model from a limited set of two dimensional

images [16, 15]. DE mechanisms were also compared to
other algorithms in several studies [17]. Neri and Tirronen
in their survey on DE [9] concluded that, compared to the
other algorithms, a DE extension called jDE [4], is supe-
rior to the compared algorithms in terms of robustness and
versatility over a diverse benchmark set used in the survey.
Therefore, we choose to apply jDE in this approach.

The original DE has a main evolutionary loop where
a population of vectors is computed within each genera-
tion. For one generation, counted as g, each vector xi,
∀i ∈ {1, . . . ,NP} in the current population of size NP ,
undergoes DE evolutionary operators, namely the muta-
tion, crossover, and selection. Using these operators, a trial
vector (offspring) is produced and the vector with the best
fitness value is selected for the next generation. For each
corresponding population vector, mutation creates a mutant
vector vi,g+1 (‘rand/1’ [13]):

vi,g+1 = xr1,g + F (xr2,g − xr3,g), (1)

where the indexes r1, r2, and r3 are random and mutu-
ally different integers generated in from set {1, . . . ,NP},
which are also different from i. F is an amplification fac-
tor of the difference vector, mostly within the interval [0, 1].
The term xr2,g−xr3,g denotes a difference vector, which is
named the amplified difference vector after multiplication
with F . The mutant vector vi,g+1 is then used for recom-
bination, where with the target vector xi,g a trial vector
ui,j,g+1 is created, e.g., using binary crossover:

ui,j,g+1 =


vi,j,g+1, if rand(0, 1) ≤ CR

or j = jrand,

xi,j,g otherwise,
(2)

where CR denotes the crossover rate, ∀j ∈ {1, . . . , D}
is a j-th search parameter of D-dimensional search space,
rand(0, 1) ∈ [0, 1] is a uniformly distributed random num-
ber, and jrand is a uniform randomly chosen index of the
search parameter, which is always exchanged to prevent
cloning of target vectors. The original DE [13] keeps the
control parameters fixed, such as F = 0.5 and CR = 0.9
throughout optimization.

However, the jDE algorithm, which is a modification of
the original DE, self-adapts the F and CR control parame-
ters to generate the vectors vi,g+1 and ui,g+1, correspond-
ing values Fi and CRi, ∀i ∈ {1, . . . ,NP} are updated
prior to their use in the mutation and crossover mecha-
nisms:

Fi,g+1 =

{
Fl + rand1 × Fu if rand2 < τ1,

Fi,g otherwise,
(3)

CRi,g+1 =

{
rand3 if rand4 < τ2,

CRi,g otherwise,
(4)

where {rand1, . . . , rand4} ∈ [0, 1] are uniform random
floating-point numbers and τ1 = τ2 = 0.1. Finally, the se-
lection operator evaluates and compares the trial to current
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vector and propagates the fittest:

xi,g+1 =

{
ui,g+1 if f(ui,g+1) < f(xi,g),

xi,g otherwise.
(5)

3 Differential Evolution for
Self-Adaptive Triangular
Brushstrokes

In this section, the encoding aspect, genotype-phenotpye
rendering, and evaluation mechanisms of the proposed ap-
proach are defined.

3.1 Encoding Aspect
We encode an individual compressed image
into a DE vector as follows. A DE vector
x = (x1, x2, . . . , x8Tmax , Fi,CRi, T

L
i , T

U
i ) is com-

posed of floating-point scalar values packed sequentially
as {xj : ∀j ∈ {1, . . . , D + 4}}, starting with a triangles-
coding part of length D = 8Tmax, and the rest are the
self-adaptive control parameters of the vector to be used
during the DE. The self-adaptive control parameters part
of the x vector encodes and uses the scaling factor F and
crossover rate CR as in the jDE [4]; then the TL

i , TU
i

∈ {1, . . . , Tmax} control parameters follow.
The self-adaptive TL

i and TU
i control parameters deter-

mine index-wise triangles encoded in the vector x to be
used for rendering the evolved image, i.e., the portion of x
to render an image is {xj : ∀j ∈ {TL

i , . . . , T
U
i }}.

In this paper, we propose to have the whole vector rep-
resent a triangle set, organized similar to serializing a tree
as a linear vector in visiting nodes by depth-first search.
However, the leaf nodes are mostly exposed to being cut-
off, whereas the root node is encoded in the middle of the
vector and the near-root nodes are therefore more protected
in being retained, since they are more anchored due to cut-
offs mostly around the codon edges. After being included
into a new trial vector, all nodes have an equal probability
of having their triangle data changed.

In this way, the TL
i and TU

i allow us to render only a
sub-portion of the triangles set, similarly to taking an in-
separable portion of a GP tree traversal as in [7]. This gives
us an arbitrary length render set, and keeps the crossover of
anti-codon to help us find the number of triangles Ti ∈
{1, . . . , Tmax}, which is more suitable for image approxi-
mation:

Ti =

{
TU
i − TL

i + 1 if TL
i < TU

i

(Tmax − TL
i ) + TU

i otherwise.
(6)

The TL
i and TU

i are updated similarly to the Fi control pa-
rameter:

TL
i,g+1 =

{
brandL

1 × Tmaxc if randL
2 < τL,

TL
i,g otherwise,

(7)

Figure 1: The triangle brush definition and the circum-
scribed circle.

TU
i,g+1 =

{
brandU

1 × Tmaxc if randU
2 < τU,

TU
i,g otherwise,

(8)

where τL = τU = τ1 = 0.1 of the jDE.

3.2 Genotype-Phenotype Rendering

A DE vector xi,∀i ∈ {1, . . . ,NP} encoded using floating-
point numbers xi,j ,∀j ∈ {1, . . . , D + 4} constituting a
genotype is rendered into a phenotype image zi = {zi,x,y}
of Rx width and Ry height in pixels, to be compared
against a reference image z∗ as follows.

The triangle brushstrokes (Figure 1) are represented as
(cx, cy, r, α1, α2, b

Y, bCb, bCr), where cx ∈ [0, . . . , Rx),
cy ∈ [0, . . . , Ry), and r ∈ [0, Rx/

√
Tmax] define the cir-

cumscribed circle center and radius for the triangle to be
rendered; α1 ∈ [1◦, 360◦) and α2 ∈ [1◦, 180◦) define the
vertices of this triangle on its circumscribed circle; and
bY ∈ [16, 236), bCb ∈ [16, 241), and bCr ∈ [16, 241) are the
color components of the brush for the triangle contained
pixels.

The triangles’ vertices coordinates encoded by i-th
DE vector construct Ti triangles, each triangle Tk =
(cx,k, cy,k, rk, α1,k, α2,k),∀k ∈ {1, . . . , Ti} (Tk being
packed as xi = {xi,j}, j = 8k + m, m ∈ {1, . . . , 8}),
defining the vertices of a triangle P1,k, P2,k, and P3,k:

P1,k = b (cx,k + rk cosα1,k,

cy,k + rk sinα1,k) c ,
(9)

P2,k = b (cx,k + rk cos(α1,k + π),

cy,k + rk sin(α1,k + π)) c ,
(10)

P3,k = b (cx,k + rk cosα2,k,

cy,k + rk sinα2,k) c .
(11)

The brush color bYCbCr
k = (bY

k , b
Cb
k , b

Cr
k ) is first trans-

formed into RGB color model as bRGB
k = (bR

k , b
G
k , b

B
k)

(bR
k , b

G
k , b

B
k ∈ [0, 255]), where:

bR
k =

⌊
1.164(bY

k − 16) + 1.596(bCr
k − 128)

⌋
(12)
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bG
k = b1.164(bY

k − 16)− 0.813(bCr
k − 128)

− 0.391(bCb
k − 128) c

(13)

bB
k =

⌊
1.164(bY

k − 16) + 2.018(bCb
k − 128)

⌋
(14)

For each triangle Tk, a solid color is rendered without
antialiasing over the triangle brush area rasterizing [1] with
a transparency factor of 1/Ti:

bk =

⌊
255

Ti
bRGB
k

⌋
. (15)

This is analogous to blending the triangle as a part-
transparent layer within the evolved image Zi =

∑
k zk,x,y

and computes R, G, and B color layers for the pixels of the
i-th individual:

zk,x,y =
∑

Tk over (x,y)

bk,x,y

=
∑

Tk over (x,y)

⌊
255

Ti
bRGB
k,x,y

⌋
,

(16)

where Tk over (x, y) denotes each triangle being rendered
over the pixel (x, y) such that bk,x,y contains the rendered
pixels of a brushstroke. Triangles defined possibly over the
edges of image canvas are drawn by clipping away pixels
outside of the canvas area.

The initialization of a genotype is such that the
cx, cy, α1, α2, b

Y, bCb, bCr, TL
i , and TU

i are initialized uni-
form randomly to integer values within their respective def-
inition intervals, while r is kept as a floating-point. All pa-
rameters are however evolved as floating-point scalar val-
ues in DE.

3.3 Evaluation
Evaluation of the phenotype image Zi to be compared
against a reference image Z∗ is as follows. A reference
image Z∗ is represented as RGB-encoded colored pixels
integer values in layers Z∗ = {(zRx,y, zGx,y, zBx,y)}.

To obtain a difference assessment value, the following
comparison metric is used for comparing an evolved image
Z = Zi to Z∗:

f(Z) = 100×


Ry−1∑
y=0

Rx−1∑
x=0

| z∗Rx,y − zRx,y |

255×RxRy
+

Ry−1∑
y=0

Rx−1∑
x=0

| z∗Gx,y − zGx,y |

255×RxRy
+

Ry−1∑
y=0

Rx−1∑
x=0

| z∗Bx,y − zBx,y |

255×RxRy

 .

(17)
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Figure 2: Fitness convergence, for best runs of each test
image.

4 Experiments
The following experiments assess the viability of the ap-
proach on different control parameters, each with several
independent runs. The parameter sets are as follows: the
DE population size NP = {25, 50, 100} and Tmax =
{10, 20, . . . , 150}, thereby for each run RNi={0, 1, . . . ,
51} this counts for total of 45 parameter sets, i.e., 2340
independent runs. The NP and Tmax are fixed during
one run. The maximum number of function evaluations
(MAXFES) used is same as with [7], MAXFES is 105. For
image rendering, basic GDI+ is used.

4.1 Obtained Results
The obtained fitness values at the MAXFES termination of
105, over different parameters of Tmax and NP , are seen
in Tables 1 and 2. The best values obtained overall for an
image are marked in bold underlined text font. The fitness
convergence graphs for these best runs are seen in Figure 2,
where after the initialization, the fitness is roughly below
40 (i.e., 40% similarity with reference), then drops below
15 for all test images and even further to slightly above 6
for two of them.

The convergent obtained results depend on the
MAXFES used being same as with [7], but also NP and
Tmax, as reported below. From Tables 1 and 2, we choose to
report further evolved images up to MAXFES of 106 with
all images. The best approximated images after MAXFES
of 106 are shown in the Figure 3 which shows the evo-
lution of the four images. In each line of Figure 3, the
best fitting vectors upto MAXFES of 106 in generations
g = {0, 100, 200, 400, 700, 1200, 2000}, and the final gen-
eration, are shown, then the rightmost the corresponding
reference image. Figure 4 shows for each test image, dy-
namics of the number of triangle brushes in current best
vector during generations, displaying varying convergent
best Ti values across images.

Our approach searches for a representative image model
and the values obtained such as 6.77, can roughly be com-
pared to the 4.83 of [7]. Such representation of the problem
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Figure 3: The evolved and the reference images (self-adaptive F and CR).

also makes our NP parameter have higher value, since we
have no guided search and the problem is therefore more
general. Also, our approach does not use a dynamically re-
allocatable morphable variable-size tree structure as in ge-
netic programming encoding, inspite it rather uses a fixed
size vector and limits its brushstrokes set by two simple
bounds, making the approach faster for execution.

For comparison purposes and since this paper is an ex-
tended version of [8], following additional comparison is
included. The algorithm is run again with fixed control pa-
rameters F = 0.5 and CR = 0.9 in DE, all other settings
are kept same as with the proposed above approach.

Further, the results in Tables 1 and 2 are statistically
tested using t-test with alpha = 0.001, against the null
hypothesis, that the results obtained with fixed control pa-
rameters F = 0.5 and CR = 0.9 in DE, do not statis-
tically differ. The symbol † with the values in bold text
font signifies that the self-adaptive F and CR parameters
approach results are significantly better and the symbol ‡

with values in italicized text font signifies that the fixed
parameters approach results are significantly better. Com-
paring the statistics on the varied NP and Tmax settings,
DE with changing F and CR is 164 times better, 13 times
worse, and 3 times with no significant performance differ-
ence, compared to the DE with F = 0.5, CR = 0.9.

The Figure 5, the best DE run with F = 0.5, CR = 0.9,
nonetheless still shows self-adaptation of the Ti parame-
ter – this is an additional indicator that the performance
difference lines in the changing of the F and CR control
parameters, which, compared to fixed values, improve the
approach performance if they are self-adaptive.

Visually, the performance difference is observed from
the rendered images in Figure 6, showing superiority of
the proposed approach with self-adaptive control parame-
ters over the approach using fixed control parameters. The
Figure 7 shows fitness convergence of the best evaluated
vector of the best DE run with F = 0.5, CR = 0.9, this
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Figure 4: Number of brushstrokes in best vector, for best
runs of each test image, self-adaptive F and CR parame-
ters.
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Figure 5: Number of brushstrokes in best vector, for best
runs of each test image, F = 0.5, CR = 0.9.
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Table 1: Obtained fitness over Tmax and NP : test instances Liberty and Palace

Liberty Palace
NP Tmax Best Worst Average STD Best Worst Average STD
25 10 8.29 11.99 9.93096† 0.8233 8.69 13.69 10.1362† 0.9655
25 20 8.03 13.14 10.0935† 1.0845 7.83 11.5 9.12173† 0.8092
25 30 8.41 13.74 10.0525† 1.1712 7.52 11.1 8.97942† 0.7992
25 40 8.13 12.81 10.4408† 1.1416 7.34 11.36 8.91788† 0.8922
25 50 8.49 13.37 10.6767† 1.1768 7.65 12.53 8.87442† 0.9788
25 60 7.95 14.65 10.9858† 1.4284 7.9 11.88 8.99673† 0.8761
25 70 8.28 14.21 11.4075† 1.3630 7.79 13.17 9.50327† 1.0482
25 80 8.72 15.89 11.7554† 1.6330 7.97 12.34 9.43558† 0.9765
25 90 8.84 16.24 12.1342† 1.6608 8.41 13.54 9.82† 1.2756
25 100 9.01 16.74 12.4798† 1.7521 8.62 12.96 9.83635† 0.8869
25 110 8.07 16.78 12.7412† 1.7849 9.01 14.42 10.4119† 1.2468
25 120 9.67 16.14 12.8467† 1.7359 8.93 15.13 10.3858† 1.3149
25 130 10.16 17.96 13.2692† 1.7193 9.02 14.2 10.2858† 1.0292
25 140 9.29 17.99 13.7029† 1.7886 8.29 13.51 10.7779† 1.0299
25 150 10.82 18.56 14.0373† 1.6573 9.89 14.91 11.1206† 1.0586
50 10 7.51 9.69 8.45077† 0.4198 7.43 11.84 8.68058† 0.8825
50 20 6.78 8.99 7.80173† 0.4987 7.1 11.39 8.79173† 0.9592
50 30 6.89 9.17 7.81788† 0.5119 7.53 12.58 9.75654† 1.1186
50 40 6.77 9.87 8.0375† 0.6578 8.27 12.24 10.0575† 0.9537
50 50 7.08 10.61 8.39923† 0.7056 7.97 13.14 10.3338† 1.1009
50 60 7.15 10.4 8.67115† 0.7472 8.59 12.49 10.7817† 1.0754
50 70 7.46 10.9 9.1025† 0.8666 7.58 12.8 10.7744† 1.1086
50 80 7.6 11.4 9.47981† 0.8689 9.15 13.11 11.3802† 1.0178
50 90 8.05 12.65 9.67346† 0.9115 9.97 13.41 11.5227† 0.9315
50 100 8.75 11.75 10.0152† 0.7824 8.55 13.62 11.4356† 0.9923
50 110 8.93 13.63 10.6356† 0.9682 9.32 13.77 12.0712† 0.9579
50 120 9.22 13.01 10.7502† 0.9840 9.77 14.21 12.429† 0.8972
50 130 9.42 12.59 11.0527† 0.7707 11.37 14.07 12.7387† 0.6134
50 140 9.99 13.39 11.5719† 0.7815 9.69 15.5 12.9317† 0.9708
50 150 10.2 14.56 12.2633† 1.0702 9.58 15.36 12.8092† 1.1717

100 10 7.1 9.12 7.98596† 0.4241 7.91 13.88 10.9573† 1.8019
100 20 6.85 9.77 7.83962† 0.5360 8.86 14.59 12.1117† 1.2862
100 30 7.15 11.8 8.49077† 1.1563 9.59 16.15 12.9098† 1.0589
100 40 7.22 13 8.86327† 1.1092 9.65 14.97 13.2477† 1.1543
100 50 7.41 12.75 9.34846† 1.3939 11.01 15.52 13.8606† 0.9750
100 60 8.06 12.97 9.77731† 1.1539 11.5 16.14 14.1856† 1.1234
100 70 8.67 13.28 10.1954† 1.3722 10.77 16.32 14.3629† 1.1713
100 80 8.73 14.48 11.0929† 1.4093 10.98 17.06 14.9348† 1.1679
100 90 9.04 14.92 11.3594† 1.3483 11.1 16.8 15.104† 1.2586
100 100 9.4 16.13 11.6604† 1.4952 10.8 17.62 15.36 1.2330
100 110 10.17 15.68 12.3365† 1.5685 13.01 17.86 16.0202‡ 0.9744
100 120 10.26 15.45 12.3358† 1.5076 11.07 17.99 15.6113‡ 1.6455
100 130 10.22 16.19 13.2212† 1.6108 12.33 18.37 16.4085‡ 1.3168
100 140 11.42 16.65 13.7808† 1.5502 11.64 18.35 16.1229‡ 1.4990
100 150 11.35 18.68 14.6113† 1.9726 10.11 18.34 16.2929‡ 2.0056
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Table 2: Obtained fitness over Tmax and NP : test instances Vegetables and Baboon

Vegetables Baboon
NP Tmax Best Worst Average STD Best Worst Average STD
25 10 14.13 17.21 15.7269† 0.7148 15.02 18.59 16.38‡ 0.7128
25 20 12.56 18.03 14.5658† 0.9850 13.44 17.12 15.3815† 0.8129
25 30 12.33 15.98 13.9215† 0.8475 12.99 19.03 15.0204† 1.1150
25 40 11.62 16.21 13.674† 1.0436 11.99 16.85 14.4342† 1.0135
25 50 12.16 17.08 13.88† 1.0726 11.39 17.62 14.4573† 1.2299
25 60 11.64 17.88 13.6438† 1.2155 11.74 17.51 14.8038† 1.2229
25 70 11.29 17.15 13.9056† 1.3790 11.88 17.9 14.6267† 1.3495
25 80 11.61 16.6 14.0871† 1.3881 12.11 17.13 14.3606† 1.2815
25 90 11.63 17.96 14.1062† 1.4428 11.93 19.41 14.6644† 1.5269
25 100 11.34 17 14.4533† 1.4694 11.7 18.77 14.7642† 1.7438
25 110 11.74 19.66 14.6085† 1.7664 12.02 19.11 15.0046† 1.7605
25 120 12.26 17.91 14.7737† 1.5726 12.2 18.5 15.6467† 1.6086
25 130 12.1 19.75 14.6338† 1.9283 13.01 19.5 15.4254† 1.5505
25 140 11.94 19.01 14.7635† 1.6282 12.64 19.37 15.8235† 1.8458
25 150 12.82 18.7 14.6487† 1.3015 13.13 20.17 15.7952† 1.6923
50 10 13.03 15 14.0723† 0.4674 13.86 16.52 14.9192‡ 0.5494
50 20 11.66 13.26 12.4644† 0.3184 11.8 14.54 13.271† 0.5569
50 30 11.12 13.59 12.2425† 0.6528 11.59 13.62 12.5506† 0.5732
50 40 10.94 14.1 12.1848† 0.6656 11.1 13.84 12.3137† 0.6090
50 50 11.04 13.92 12.2946† 0.7609 11.34 14.36 12.4075† 0.6304
50 60 11.29 15.86 12.5506† 0.9222 11.25 14.1 12.3662† 0.6161
50 70 11.18 15.21 12.6104† 0.8682 11.54 14.57 12.5437† 0.6510
50 80 11.32 15.26 12.8619† 0.7658 11.07 15.56 12.9473† 0.8087
50 90 11.84 15.28 13.0077† 0.8038 11.32 16.2 12.857† 1.0291
50 100 11.72 15.8 13.5058† 0.9565 11.85 15.72 13.2658† 0.7972
50 110 12.02 15.92 13.5204† 0.8750 11.98 15.56 13.4275† 0.7805
50 120 11.9 16.87 13.829† 1.1151 12.43 15.66 13.5106† 0.7265
50 130 12.51 15.97 14.094† 0.8855 12.64 16.32 14.085† 0.8259
50 140 12.16 17.07 14.8198† 1.2154 12.54 16.31 14.15† 0.8865
50 150 13.11 17.98 14.9838† 1.2072 13.08 18 14.8765† 1.0178

100 10 12.56 16.19 13.9815† 0.8083 13.49 16.19 14.5367‡ 0.5672
100 20 11.84 16.45 13.4704† 1.0483 12.02 15.87 13.8244‡ 0.8747
100 30 11.83 17.64 13.9133† 1.3335 12 15.76 13.7206‡ 0.9727
100 40 12.01 17.95 14.6354† 1.3660 11.63 17.01 13.6467‡ 1.3582
100 50 11.87 17.35 14.9156† 1.4272 11.99 17.48 14.1658‡ 1.5554
100 60 12.32 18 15.21† 1.5119 12.12 17.46 14.5021‡ 1.4517
100 70 12.13 18.05 15.6513† 1.2457 12.12 17.16 14.3881† 1.3782
100 80 12.9 18.86 16.2008† 1.4121 12.13 17.56 14.8656† 1.4214
100 90 12.32 20.04 16.3233† 1.7789 12.25 18.66 15.2558† 1.5144
100 100 12.98 20.55 16.7275† 1.7119 13.09 18.42 15.5398† 1.5064
100 110 13.76 20.18 17.2896† 1.5242 13 19.62 15.84† 1.6164
100 120 13.12 20.62 17.626† 1.5807 13.34 19.58 16.4725† 1.5223
100 130 13.52 20.12 17.9052 1.3516 13.84 19.6 16.9367† 1.7362
100 140 14.08 20.52 18.216† 1.6975 14.3 21 17.4387† 1.7372
100 150 14.97 21.19 19.1221 1.2128 14.75 21.13 17.9488† 1.6872
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Figure 6: The evolved and the reference images, F = 0.5, CR = 0.9.

time with NP = 100 and therefore maximum generation
number of 1000. The attained values tend to converge to-
wards Tmax, but results are worse since the different Tmax,
seen from Figures 4 and 5.

5 Conclusion

This paper presents an evolvable lossy image representa-
tion, approximating an image by comparing it to its evolved
generated counterpart image. The image is represented us-
ing a variable number of triangular brushstrokes, each con-
sisting of a triangle position and color parameters. These
parameters for each triangle brush are evolved using dif-
ferential evolution, which self-adapts the control parame-
ters for mutation and crossover. Also, the proposed DE
extension splits the DE vector in the codon and anticodon
parts, where the triangles material is used only from the
codon part, adjusting the genetic tree center and its bor-
ders, together with the number of triangle brushstrokes to
be rendered. Experimental results show the viability of the
proposed encoding and evolution convergence for the lossy
representation of reference images, where fitness is dis-
played dependent on the population size, maximal number
of function evaluations allowed, maximal number of trian-
gles used in image representation, and different input ref-
erence images. While analyzing the NP and Tmax, more-
over in this paper, we have shown that the self-adaptive jDE
control parameters handling mechanism is preferable to the
fixed control parameters mechanism from the original DE.

Future work can include increasing MAXFES, address-
ing different encoding aspects, evolutionary operators,
control-parameters update, Euclidean distance for colors
comparison, and more case studies on input images with
different properties.
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