
 Informatica 29 (2005) 379–390 379

An Overview of Current Trends in European AOSE Research

Carole Bernon
IRIT – University Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
E-mail: bernon@irit.fr, http://www.irit.fr/SMAC

Massimo Cossentino
ICAR-CNR, National Research Council, Viale delle Scienze, ed. 11, 90128 Palermo, Italy
E-mail: cossentino@pa.icar.cnr.it, http://www.pa.icar.cnr.it/~cossentino

Juan Pavón
Fac. Informática, Universidad Complutense Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
E-mail: jpavon@sip.ucm.es, http://grasia.fdi.ucm.es/jpavon

Keywords: Agent Oriented Software Engineering (AOSE), Agent oriented methodologies, Multi-Agent Systems

Received: June 31, 2005

The agent oriented approach is doing great steps towards its (not yet reached) maturity; from a software
engineering point of view, it is today positively used for the analysis and design of complex systems. In
this paper, which is related to the activity of the AgentLink AOSE TFG (Agent Oriented Software
Engineering Technical Forum Group), we provide a perspective of current research trends in this area
with a specific attention for results coming from European groups. We start with a discussion of what
are agents, specially from the perspective of the software engineer. We present recent trends in
modelling agents and multi-agent systems, and then we review the different activities in the agent
development process: from analysis and design to implementation, verification and finally testing.

Povzetek: Podan je povzetek evropskega raziskovanja AOSE.

1 Introduction
With the increasing amount of successful applications
and techniques based on the agent paradigm, which have
validated the feasibility of the approach, there is a big
concern on its applicability in an industrial context. This
implies the definition of repeatable, reusable, measurable
and robust software process and techniques for the
development of multi-agent systems (MAS). For this
reason, a lot of effort in the agent field has been devoted
to the definition of methods and tools for supporting
agent oriented software engineering (AOSE). This
involves the definition of modelling languages for the
specification of MAS, techniques for requirements
elicitation and analysis, architectures and methods for
designing agents and their organizations, platforms for
implementation and deployment of MAS, and validation
and verification methods. Taking into account the
diversity of influences in the agent paradigm (from
distributed objects to knowledge base systems, but also
from other fields such as Psychology, Biology and Social
sciences) there are many methodological approaches,
which should get unified and integrated in a common
body of knowledge and practices. This is one of the aims
of current actions at EU level, such as the AgentLink
(www.agentlink.org) effort, or the collaboration in
standardization organizations such as FIPA
(www.fipa.org).

In this paper we try to provide a perspective of
current research trends in this area, specially in EU
groups. This can be useful as a starting reference point to
look for specific matters (in this sense there is an

extensive bibliography), and is complemented in relevant
topics with other papers in this special issue.

The paper starts with a discussion of what are
agents, specially from the perspective of the software
engineer (section 2). This is followed by a presentation
of trends in modelling this kind of systems (section 3).
Then, different activities in the development process for
MAS are reviewed: analysis and design (section 4),
implementation (section 5), verification and testing
(section 6). Finally, the conclusions (section 7) provide a
view, from the authors of this paper, on what lines of
work and trends should follow research in this area.

2 From Objects to Agents and Multi-

Agent Systems
When dealing with the agent notion and how to engineer
agent-based applications, one question often arises: may
agents be considered as an extension of objects and then
classical object-oriented software engineering be used as
well to build agent-based applications? Several papers
have tried to answer this question [76][106], others have
compared agents with programs [46] or with components
[7]. Many authors agree on the fact that distinguishing
agents and objects is difficult because they share some
aspects, but they also differ, mainly on notions such as
autonomy and interaction. Both agents and objects
encapsulate their state, which in objects is determined by
the values of a set of variables whilst in agents this can
be defined in terms of goals, beliefs, facts, etc., what
determines a mental state. Objects may have control over
their state by using private attributes or methods but any

380 Informatica 29 (2005) 379–390 C. Bernon et al.

public method of an object can be invoked by another
object forcing the former one to perform the action
described by the method. An object, contrary to an agent,
has then a limited control over its behaviour because the
decision on which method to execute is taken by an
external actor (the caller). An agent can determine which
behaviour to follow (depending on its goals, its internal
state and its knowledge from the environment) and not
because someone else forces it to do something.
Therefore, the notion of autonomy is stronger in agents.

This autonomy in agents implies that usually they
have their own thread of control, whilst, most of the time,
objects are passive entities, becoming active just when
one of their methods is invoked by another object. This
difference may be alleviated by the notion of active
objects in which an object has its own thread of control.
However, agents have some features which make them
something more than active objects. According to Van
Parunak and Odell [76], agents exhibit a dynamic
autonomy (their behaviour can be reactive as they react
to changes in their environment, proactive as they are
able to take initiatives to proceed into goal-directed
actions, and social as they communicate with other
agents in organizations) as well as an unpredictable
autonomy (their behaviour depends on their state, their
individual goals, and their interactions with others).
Active objects would become agents if they are able to
take “initiatives”. However, this distinction is not always
well established. For this reason some works in the agent
domain, for instance, on formalization of coordination
issues, usually are more related to classical concurrency
theory and do not consider intentional aspects of agents.

What makes really the difference, according to many
authors is the social dimension of agents (for instance,
the Huhns-Singh test [58] states that a system containing
one or more reputed agents should change substantively
if another of the reputed agents is added to the system).
Agents cannot be considered in isolation and are social
entities, which communicate and interact with other
entities that share a common environment.
Communication between objects is defined in terms of
messages that activate methods, but in the agent domain,
this communication is richer both in the diversity of
mechanisms and in the language, which is defined at a
more abstract level, in terms of ontologies and speech
acts, for instance. This social perspective is reflected also
in the definition of organizations with social rules and
relationships among agents [42].

Therefore, the use of object-oriented software
engineering techniques can be applied for the
development of MAS, but some extensions are required
to deal with social issues (organization, interaction,
coordination, negotiation, cooperation), more complex
behaviour (autonomy, mental state, goals, tasks), and a
greater degree of concurrency and distribution.

2.1 Definition of Agents

In [91], an agent is defined as anything that can be
viewed as perceiving its environment through sensors
and acting upon that environment through effectors. For
Ferber, agents are still plunged into an environment but
he endows agents with additional characteristics [41]. An

agent becomes then able to communicate directly or not
with other agents, it is driven by a set of tendencies,
possesses resources of its own, has a limited
representation of its environment, possesses skills and
can offer services, and may be able to reproduce itself.
Its behaviour tends towards satisfying its goals, taking
into account the resources and skills available to it in
accordance with its perception, its representation and the
communication it receives. Depending on the nature of
applications in which agents are used, different labels
exist for agents [46][77]: agents are qualified as being
autonomous, intelligent or mobile, for instance. This
plethora of labels makes the term “agent” almost
meaningless because it can be used too frequently to
characterise anything, so [69] recommends to formally
define the notion of agency. In this paper agents are
characterized through their essential properties: an agent
is able to act, is autonomous, proactive, communicates
with others, and perceives its environment1.

2.2 Definition of Multi-Agent Systems
(MAS)

Most of the authors agree on viewing a MAS as a system
composed of agents that communicate and collaborate to
achieve specific personal or collective tasks. This is
related to what was said before, an agent is not an
isolated entity but it is only understandable when located
in an environment where other agents exist, with which it
can interact.

MAS are appropriate to deal with complex and open
problems. The organization facilitates managing
complexity by determining structures, norms and
dependencies. In some cases, the organization is
explicitly a subject of analysis and design (e.g., [42]
[111]). But in certain approaches, the organization
emerges at run time (e.g., [10][36][93]). This allows the
analysis of emergent behaviours in systems in which is
not easy to know their structure in advance. From the
point of view of AOSE, this means that both top-down
and bottom-up approaches are feasible when building a
MAS, depending on the problem under study.

2.3 MAS Meta-models

Meta-modelling is a means to define concepts used in a
system. This can facilitate analysis and design by
identifying activities for instantiating the meta-model
entities with respect to the target application (i.e., the
meta-model identifies which elements should the
developer look for, and what relationships and
constraints exist for those elements). For instance,
Aalaadin defines one of the first meta-models for MAS
in terms of three main concepts: Agents, Groups and
Roles [42]. With this meta-model, the developer has an
organizational-driven approach to build a MAS. An
organization is a structural relationship between a
collection of agents and is described by a set of
interaction modes. Agents are defined by their function
in the organisation (Role) and belong to one or more
Groups, possibly for gaining some capabilities.

1 Properties defined during the second meeting of the
AgentLink3 AOSE TFG (Ljubljana, February 2005).

AN OVERVIEW OF CURRENT TRENDS IN... Informatica 29 (2005) 379–390 381

Meta-models are also useful to integrate concepts.
This is the approach of the MESSAGE project [21],
whose aim was to define a methodology for the
development of telecom applications using agent
technology. MESSAGE adopted concepts and notations
from different methodologies in a common framework.
Its definition was made using meta-models. Furthermore,
these meta-models were used to build graphical editors
[51]. In order to cope with complexity of MAS,
MESSAGE structured the specification of meta-models
in five viewpoints: organization, agent, goals/tasks,
domain, and interactions.

In the object world, the notion of object is clearly
defined by a set of criteria and almost all developers
agree on what makes a system object oriented. Meta-
modelling is then possible relying on standard notations
such as UML [90]. On the contrary, no universally
accepted structural representation of the elements (agent,
role, behaviour, ontology, etc.) that compose an actual
MAS, with their relationships, exists yet. This has led
several existing agent-oriented methodologies to propose
their own concepts and system structure illustrated by a
particular MAS meta-model. This lack of unification at
the MAS meta-model level, and then at the agents
concepts level, therefore prevents developers from
reusing fragments of existing agent-oriented
methodologies to build their own methodology especially
dedicated to their needs (this is the methodology
composition process suggested by the method
engineering approach [17][54]; this proposes to create a
new methodology starting from existing methodology
parts, called method fragments, that a method engineer
defines and stores in a method base).

A further step in this direction would be the
standardisation of the process that is necessary to follow
in order to build a new methodology. This would be
desirable to make agent-oriented engineering used in the
industrial world. From this perspective, some initial
attempts have been made to find a unified meta-model
based on several methodologies [11], or by trying to
reach an agreement in the agent community with the
work of the FIPA Modelling TC or the AgentLink III
AOSE TFG.

3 Modelling Agents
Modelling agents and MAS needs adapted modelling
languages, notations and tools. Agents, as said above, are
not far from objects and most of the modelling methods
are based on tools coming from the object-oriented
domain. The most generally accepted modelling
language used for object-oriented software engineering is
UML. UML is a de facto standard, and most modelling
tools are already based on it, which facilitates the
development of tools. However, UML does not provide
all the notation elements to model all the specific features
of agents.

UML extension abilities (i.e., stereotypes, tagged
values, constraints) have been used to support agent-
oriented modelling. For instance, Agent-UML (AUML)
[3] extends UML sequence diagrams to specify Agent
Interaction Protocols by providing mechanisms to define
agent roles, agent lifelines (interaction threads, which can

split into two or more lifelines and merge at some
subsequent points using connectors like AND, OR or
XOR), nested and interleaved protocols (patterns of
interaction that can be reused with guards and
constraints), and extended semantics for UML messages
(for instance, to indicate the associated communicative
act, and whether messages are synchronous or not).

Also in the context of AUML there are proposals for
extending class diagrams into agent class diagrams [2].
Here an agent class consists of several elements:

• An agent name used to differentiate objects from
agents in a diagram and providing an agent with
three information: instance, role and class.

• A state description that looks similar to the attribute
compartment in class diagrams but expresses well-
formed formulae for logical descriptions of the state,
it may be used to model beliefs, desires and
intentions of agents, for instance.

• Actions that can be reactive or proactive.

• Methods implementing services, as in UML classes.

• Capabilities describing what an agent can do.

• Organisation belonging, which specifies the different
groups in which an agent evolves, the roles it plays
and under which constraints it evolves in these
groups.

• Agent head automata, which define the behaviour of
an agent.
AUML is under study in the FIPA Modelling TC,

and being modified in order to take into account new
features in UML 2.0 [57]. For example, communication
between agents are now captured by enhanced sequence
diagrams, which become interaction diagrams, in which
agents can change their role, add or delete roles during
interactions, and notions of loop or break are added to the
AND, OR and XOR connectors that were available.
AUML is being smoothly introduced as an add-on into
different agent-oriented toolkits, such as OpenTool for
ADELFE [10] and the INGENIAS Development Kit
[82].

Another proposal for agent-oriented modelling as an
UML profile is AORML (Agent-Object-Relationship
Modelling Language) [104]. Here, agents are considered
from two perspectives: external and internal. The
external AOR model describes the perspective of an
external observer who is watching the agents and their
interactions. Agent Diagrams are used to depict the agent
types and objects of the domain and their relationships,
while interactions are modelled using Interaction Frame
Diagrams (possible interactions between two agent
types), Interaction Sequence Diagrams (instances of
interaction processes) and Interaction Pattern Diagrams
(general interaction patterns). An internal model adopts
the view of a particular agent to be modelled and depicts,
using three kinds of diagrams (Reaction Frame
Diagrams, Reaction Sequence Diagrams, Reaction
Pattern Diagrams), the world represented by the mental
state of this agent.

A more recent extension of UML for MAS is AML,
which is described in another paper of this special issue
[25]. Two UML profiles for AML are given and enable
implementing AML in CASE tools based on UML 1.* or
UML 2.0. Furthermore, using these AML profiles, a

382 Informatica 29 (2005) 379–390 C. Bernon et al.

designer is free to customise AML through the definition
of extensions to this language.

There are also approaches based on OPM (Object
Process Methodology) [37]. OPM considers processes
and objects as equally important classes of things, which
together describe the function, structure and behaviour of
systems. A single diagramming tool, Object-Process
Diagrams (OPDs), is enough for modelling the system.
This has been extended in OPM/MAS [99] by taking
MAS building blocks from Gaia methodology. For
instance, organization, society, platform, rule, role, user,
protocol, belief, desire, fact, goal, intention, and service
are modelled as OPM objects. And the behavioural
concepts such as agent, task, and messaging are modelled
using the process concept. Another approach [74], taking
inspiration from OPM, allows zooming through different
abstraction layers and apply this feature to SODA [79], a
methodology that addresses the coordination aspects of
agent societies. The analysis of complexity is also
considered from the perspective of interactions in [83].

In section 4.3 we discuss how the management of
complexity can be also addressed by considering
complementary aspects of a MAS.

4 Analysing and Designing Agents
According to Sommerville [97], all the different kinds of
software development processes share some fundamental
activities. These include specification (consisting in the
definition of software functionalities and constraints, i.e.,
requirements analysis), design and implementation
(consisting in the production of the software), validation
(where the produced software should be validated against
customer requirements) and evolution (the software
evolves according to customer new needs). In this section
we discuss the first two items of this list: specification
analysis and design.

During the specification phase, the designer collects
and analyzes the software requirements, which are
usually considered from two perspectives: User and
System. The latter being the detailed and more technical
expression of what the customer specifies in the User
Requirements. System Requirements consist of
functional (services the software should provide), non–
functional (constraints on the services) and domain
requirements (coming from the application domain).

Design consists in converting system specifications
into an executable system. This is usually achieved by
structuring the software into modules, defining the data
to be managed and the interfaces between components.
Sometimes a specific attention is given to the algorithms
that are necessary to solve the problem.

A fundamental contribution in defining the impact of
agents in these phases has been argued by Jennings [63]
in the sense that agents can be a successful solution for
two major problems of contemporary approaches:
rigidity of components interactions and limitedness of
available system’s organizational structures.

In the next sub-sections we present existing
contributions in this area (with a specific attention for
European ones) according to their key features.
Specifically, we consider formal and non formal

approaches, multi-views paradigms, agent design life
cycles and some other remaining issues.

4.1 Formal approaches

Many authors looked at the problem of analysis and
design of agent-oriented systems with a formal approach.
This usually includes the adoption of a mathematical
formalism to obtain a correct specification of the system
to be; the output of a formal method is a formal
specification that can be used for implementing the
system, verifying its correspondence with user
requirements or evaluating the final result [85].

Several of these works adopt a kind of logic (usually
a modal logic [96]) to represent the system. As an
example, LORA (Logic of Rational Agents) [107] which
is founded on a first-order logic, includes a BDI (Belief-
Desire-Intention) [87] component (used for the agent
architecture), a temporal component (used for specifying
the system dynamics), and an action component (used to
represent agents’ actions). LORA is adopted by MABLE
(a language for the design of MAS) that allows an
automatic verification of the agent system [108].

Situation Calculus [71] is another expression of this
field of research; it is a first-order logic (with some
extensions to second-order logic) capable of representing
dynamic domains. IndiGolog [34] is a recent
implementation of situation calculus, supporting the
high-level programming of robotic intelligent agents that
can perform online planning and plan execution in
partially unknown environments. In IndiGolog (that is
part of the GOLOG [67] family), environment dynamics
is modelled using situation calculus while the agent
behaviour is designed in a procedural way.

Another formal approach is due to M. Luck and M.
D’Inverno [69] and it is an application of the Z language
[98] to the specification of agents. Z is based on first
order predicate calculus with the original introduction of
the concept of schema. A schema is composed of a
declarative part (declaration of variables and their types)
and another part where variables are related and their
constraints expressed. Agents in Z are defined within a
four-layer hierarchy that includes: entities (inanimate
objects with attributes), objects (entities with
capabilities), agents (objects with goals), autonomous
agents (agents with motivations). In this work the authors
take profit of the great number of existing experiences in
Z for inheriting a great number of tools that include code
production and model checking capabilities. Another
approach that uses the Z formalism (and statecharts) can
be found in [56].

4.2 Non-formal Approaches

Non-formal approaches to the specification and design of
agent systems are mostly based on the use of structured
natural language and graphical notations. Among these,
for system requirements specification, UML-related
diagrams like use-case and sequence diagrams are very
common use. These approaches are mainly requirement-
oriented and they often aim at capturing system
functionalities through a set of heuristics and views.

Several agent-oriented design methodologies
perform the specification in this way; they generally

AN OVERVIEW OF CURRENT TRENDS IN... Informatica 29 (2005) 379–390 383

include a complete design process, not only system
specification aspects. We can fundamentally identify
three categories of non-formal specifications: functional-
oriented [62] (often adopting use-case diagrams), goal-
oriented approaches [103] (that aim at identifying the
goals of the system and eventually dividing them among
agents), and, finally, role-oriented approaches [65] (they
adopt the role as the key abstraction for specifying a
MAS, they are often also concerned about designing
roles/agents coordination). While the functional and
goal-oriented specifications are well-known and widely
adopted in the object-oriented context, role-guided
specifications are more specific of the agent community.

Functional specifications (mostly looking at
European works) are adopted in the PASSI methodology
[29] and the ROADMAP [64], an extension of Gaia
[109], both of them adopting use-case diagrams.

PASSI starts analysis with use-cases and arrives to
code production and testing in an iterative process. It
includes an extensive patterns reuse practice and it is
conceived to be supported by a specific design tool
(PTK), since several of its activities are partially
automated.

Identification and modelling of system goals is part
of the MESSAGE methodology [21], which is based on a
set of meta-models supporting five different views of the
MAS: organization, agent, tasks/goals, interactions, and
environment. INGENIAS [82] refines and extends these
meta-models, and uses them to build support tools for all
stages of the development cycle. Furthermore, for
requirements elicitation, INGENIAS proposes to base on
Activity Theory to analyse intentional and social issues
of the system, by providing a set of contradiction patterns
that guide the developer in the identification of conflicts
in the specification about the agent and the organization
goals [47].

Tropos [16] starts from the i* framework [110],
which has been developed mainly thinking on
information systems, actors, beliefs, commitments and
goals are used to model system organization. Tropos uses
this requirements analysis approach and incorporates it in
a complete process that moves from the specification to
detailed design.

One of the key features of agency consists in
interaction; we can even note that this is also the
fundamental aspect of some standardization attempts
coming from FIPA (Abstract Architecture Specification
[43]) or OMG MAF (Mobile Agent Facility [78]). As a
consequence, many authors devoted their attention to
capturing interaction aspects often by modelling agents’
roles [65][18].

European methodologies that give a prominent
importance to role modelling are Gaia [109], SODA [79]
and RICA [94] (but also the cited MESSAGE,
INGENIAS, and PASSI).

Gaia has been, probably, the most influent
methodology concerning the analysis of the system as a
society/organization consisting on a set of roles that are
later assigned to agents. Gaia’s roles are related with one
another, and participate in pre-defined patterns of
interactions with other roles. Implementation issues are
not dealt in this methodology since considered depending
on the chosen deployment agent platform. Although

initially Gaia suffered from the limitation of being
conceived for closed systems and ignoring the possibility
of self-interesting agents, a new release of it [111]
included concepts like organizational rules as the way to
manage more complex open systems.

SODA (Societies in Open and Distributed Agent
Spaces) [79] aims at modelling the behaviour of agent
societies (considered as not deducible from the behaviour
of single agents) and their environments (that can be
open, distributed, dynamic and unpredictable). It has a
specific attention for agent interactions (starting from a
role model) but does not face the design of the agent’s
inner structure.

Another methodology that puts in a prominent
position roles is RICA (Role/Interaction/Communicative
Action) [94]. It integrates relevant aspects of Agent
Communication Languages (ACL) and Organisational
Models and it is itself based on the concepts of
Communicative Roles and Interactions.

Other authors concentrated their efforts to
coordination among agents [27][80]. A coordination-
based approach should consider system openness, the
presence of self-interested agents and MAS social laws
that rule the overall behaviour of the agents thus
encompassing single-role modelling issues.

Coordination is sometimes pursued by adopting a
programmable coordination media (like the MARS
system presented in [19]), but other authors specifically
conceived their design methodologies for dealing with
coordination.

Another interesting methodology specifically
conceived for coordination of robotic agents is
Cassiopeia [38]. Cassiopeia design process is based on
the concept of role, agent, dependency, and group; an
agent is seen as a set of roles (there can be individual
roles, relational roles and organizational roles). The
methodology enumerates several different layers, among
them the organizational roles layer describes the
dynamics of the groups by defining the roles that the
agents have to play to let the group appear. Dependencies
among roles can be of three types: functional, resource-
based or goal-based and in this sense the methodology
partially recalls the already cited i* framework.

Cassiopeia assumes that agents are cooperative and
this is the same hypothesis that is behind the ADELFE
methodology, which focuses on adaptive MAS [9].
Adaptive software can be profitably used in situations in
which the environment is unpredictable or the system is
open. Contrary to Cassiopeia, in ADELFE agents are not
characterised by roles but by the cooperation rules they
follow. These rules are described in a proscriptive way,
they express what are non cooperative situations, and
make an agent locally decide why and when changing its
interactions with others. Cooperation is thus viewed as
the engine of adaptation according to the AMAS
(Adaptive Multi-Agent System) theory [22].

Other contributions about non-formal agent design
come from MaCMAS/UML [84], which is a fragment of
methodology devoted to deal with large/complex MAS,
and the works on modelling electronic institutions and
their norms in Islander [95].

384 Informatica 29 (2005) 379–390 C. Bernon et al.

4.3 Multi-view Approaches

Multi-views, multi-perspectives, multi-level approaches
base their philosophy on three well-known methods for
tackling complexity, already mentioned by Booch [12]:
Abstraction, Decomposition, Hierarchy. After all, as it
can be deduced from the discussion in sections 2 and 3,
agent-oriented systems can be more complex than object-
oriented ones and therefore a well structured way to
manage this complexity is necessary.

The structuring of a MAS in several viewpoints
appears in many methodologies. One of the first to
propose this was Vowels Engineering, which has been
the basis for the MAGMA approach [35]. It considers the
five Latin vowels (initially only the first four): Agent,
Environment, Interactions, Organization, and User.
Different techniques can be applied to analyse and design
each aspect. Agents can be conceived as simple automata
or complex knowledge-based systems. Interactions can
be studied as physical models, e.g., wavelength
propagation, or as speech acts. Organizations can be
inspired in biological models or ruled by sociological
models. The purpose of this methodology is to consider
component libraries that provide solutions for each
aspect, so that the designer can instantiate an agent
model, an organization model, and so on. The
methodology proposes to consider vowels (aspects) in a
certain order, depending on the kind of system being
developed. For instance, if social relationships are
important, the development process should start with the
organization. If the process starts with agents, then the
system will have an organization that probably emerges
as a result of the interactions of individual agents. These
viewpoints have been applied similarly in the MESSAGE
[21] and INGENIAS methodologies [81], which redefine
viewpoints as organization, agent, domain/environment,
goals/tasks, and interactions.

The concept of level in agency is also another way of
considering several views. It has been initially introduced
by Newell [75] and Jennings [63] recalled the knowledge
level and complemented it with a new social level. The
knowledge level is concerned with the agent seen as an
asocial problem solver while the social level looks at the
agent organization as its main focus.

Other works in this direction presented different
perspectives [28][32], which are more directed to the
representation of the system from a different point of
view (architectural, social, knowledge, computer,
resource, autonomy) rather than a different level of
abstraction.

Other examples of methodologies that emphasize the
modelling of the MAS from different viewpoints are
MAS-CommonKADS [60] (organization, tasks,
experience, agents, communications, coordination, and
design), ODAC [50], which uses the five ODP
viewpoints (enterprise, information, computational,
technology and engineering) [61], and MASSIVE [68]
(that includes seven views: environment, task, role,
interaction, society, architectural, system).

4.4 Agent Design Life Cycle Models

The whole set of activities and phases needed to develop
and maintain a software system is usually addressed as a

Software (Engineering or Development) Process.
Fuggetta in [48] defines it as “the coherent set of
policies, organizational structures, technologies,
procedures, and artifacts that are needed to conceive,
develop, deploy, and maintain (evolve) a software
product”, sometimes this is also known as a Software
Life Cycle Process [59]. Usually the sequence of phases
(here we mean high level activities or set of activities)
that compose a Software Process is ruled by a software
life cycle model. Examples of software life cycle models
are the waterfall model, the prototyping model, the
evolutionary development, the incremental/iterative
delivery, the spiral model, and so on.

A classification of many agent-oriented
methodologies according to the software life cycle model
they adopt, can be found in [24]. The paper remarks that
current research in the area of AOSE methodologies
underestimate the importance of the process model in the
development of MAS; according to the authors, this is
confirmed by the fact that in many cases, AOSE
methodologies do not make explicit reference to the
underlying process model. Anyway, most of them
propose iterative and incremental development process in
the same way as the Unified Process.

Some novelties about life cycle models for agents
come from the application of the Extreme Programming
[5] and Agile Manifesto [4] principles to agents.
Proposed design approaches [26][66] seem to show that
besides the respect for the main principles of this
research stream (attention for code rather than
documentation, central role of customer, and so on) a
fundamental importance in MAS agile design is played
by its ontological aspects (both of the cited approaches
give great importance to drawing some ontological
models of the problem domain).

4.5 Other Issues In Designing Agents

Despite of the number of works we have discussed, we
are still leaving apart some specific areas. These for
instance include the design of Internet specific
applications by means of agents (see [112]); the
importance of this field is growing up in conjunction
with the studies on web-services [72] (and their
extensions to agent-services [33]).

Another important aspect of design is evaluation. In
the last years several works have been proposed on this
topic. Some look at specific attributes of the
methodology to evaluate it (this is the case of [23][100])
while some others more generically try to identify the
elements that a methodology should include to deal with
specific aspects of agency like for instance managing
complexity [83].

Finally, we would like to report some studies on the
composition of new methodologies based on the reuse of
existing portions of them (usually called method
fragments). These works start with experiences from
classical software engineering [17][86] and have their
primary justification in the claim that one single design
methodology cannot be suited to face all problems and
developing contexts. According to this paradigm, each
class of problems should be faced by a specific
methodology that properly considers the skills of the

AN OVERVIEW OF CURRENT TRENDS IN... Informatica 29 (2005) 379–390 385

development group and other factors affecting the
software production (like for instance strategic choices
about implementing environment and technologies).

Actually, a wide repository of method fragments
coming from diffused agent methodologies (Gaia, MaSE,
PASSI, Prometheus, Tropos) is included in the Open
Process Framework [44]. A similar approach is pursued
by the FIPA Methodology Technical Committee, whose
results can also be found in works of some of its
members [31][45]. Although some experiences exist in
supporting tools for object-oriented approaches [102], the
lack of specific agent-oriented instruments and the
intrinsic complexity of the approach has still limited the
diffusion of this paradigm.

5 Implementing Agents
Agent systems can be implemented and deployed on a
variety of target platforms. There are agent-oriented
platforms that conform to some standards such as FIPA
or MAF [78], but it can be the case that a MAS is finally
realized on more conventional technology, for instance,
as Java distributed objects or components. Here we
describe both agent platforms (section 5.1) and proposals
for transformation from MAS design models to
implementation (section 5.2). Finally, in section 5.3 we
consider agent-oriented programming languages.

5.1 Agent Platforms

Agent platforms support developers by providing a set of
reusable components and services for the implementation
and deployment of agents. Most of them are compliant
with standards. In Europe, JADE can be considered as
the reference FIPA compliant platform. Other platforms
are more focused to support agent coordination, such as
TuCSoN and Islander.

JADE (Java Agent DEvelopment Framework) [6]
originates as a collaboration between the research labs of
Telecom Italia (TILAB) and Univ. Parma, and currently
is distributed as open source software under the terms of
the LGPL (Lesser General Public License Version 2).
JADE illustrates well the implementation of FIPA
management architecture components: the Agent
Communication Channel, the Agent Management
System, and the Directory Facilitator. Agent
communication is performed through message passing,
where FIPA ACL is the language to represent messages,
and with libraries that implement FIPA protocols, which
can be used as reusable components when building
agent-based applications. This facilitates the task of
developers who can rely on agent lifecycle management
by JADE and have some guarantee of interoperability
with other FIPA compliant agent systems. JADE
supports both reactive and deliberative agents by
defining a structure for agent behaviours, which can be
Java classes implementing state machines or rule
systems, by an integration of JESS (Java Expert System
Shell, available at http://herzberg.ca.sandia.gov/jess/) in
the platform. Furthermore, JADE provides some tools for
agent debugging (sniffer agents) and monitoring, and
other common services such as naming and yellow
pages. As a result of the EU IST project LEAP
(Lightweight Extensible Agent Platform), JADE

incorporated facilities for agent mobility and can be
deployed on mobile lightweight Java environments down
to J2ME-CLDC. Currently, LEAP libraries are
distributed as an add-on of JADE distribution from
version 3.0 onwards. A board has been constituted
recently with the purpose of driving its evolution and
consolidating JADE as a de-facto standard middleware
for agent-based applications.

Another approach for agent communication, instead
of message passing, is the use of a tuple spaces, a classic
mechanism for coordination. This is illustrated by
TuCSoN (Tuple Centres Spread over the Networks), by
the Univ. Bologna [88]. An interesting feature of this
kind of systems is the ability to define coordination laws
(something that is not common for tuple space
approaches in general). Islander+AMELI [40] also
provides a coordination middleware, by exploiting the
concept of electronic institutions to implement complex
negotiation processes.

5.2 Transformation from Design to
Implementation

As a modelling paradigm agents contribute to the use of
abstract concepts that are close to those used when
reasoning about human behaviours and organizations.
This can facilitate analysis and design activities but the
gap to implementation is greater than with other
paradigms, which are closer to current computational
frameworks. In this sense, although there are well-
established agent platforms, such as JADE, it is common
to see agent systems that are implemented on more
conventional platforms, usually depending on the
application environment and constraints (for instance, a
robotic system or a J2EE server). In order to solve this
kind of situations, some integrated development
environments (IDEs) provide tools for modelling with
agent concepts and a process for transforming agent
specifications into code for the target platforms.

Finally, when considering multiple target platforms,
the trend is to follow the OMG Model Driven
Architecture (MDA) approach [73]. Basically, the idea is
to specify the meta-model of a MAS modelling language,
which is platform independent, and those of the target
platforms. Mappings define rules or algorithms that
determine how instances of types in the MAS meta-
model result in the generation of instances of types in the
meta-model specifying a target platform. This approach
has been discussed in [1] and is used by the INGENIAS
Development Kit (IDK) to generate code on JADE,
Servlets, Robocode tanks, and other systems [51]. It is
also proposed by MetaDIMA [52] and Agent Factory
[30].

5.3 Agent-Oriented Programming
Languages

The use of agent-oriented programming languages
facilitates the understanding of agent features. There is
an extensive review of this in an accompanying paper of
this special issue [13], which considers imperative,
declarative and hybrid approaches. Basically, the
different proposals consider an agent model that makes

386 Informatica 29 (2005) 379–390 C. Bernon et al.

emphasis either on mobility issues, or on an intentional
behaviour model, or on a communication model. CLAIM
[39] is probably the most complete in considering all
these issues and being applied to real applications. Many
provide support for a BDI model, such as dMARS,
3APL, or Coo-BDI.

6 Verification and Testing
Verification and testing techniques for MAS usually
apply known results from concurrent and distributed
computing.

Verification is normally based on formal theories,
that allow the analysis of a system in order to determine
whether certain properties hold. These can be liveness
(whether the system will progress) or safety properties
(whether the system will do right things), thus answering
to the question is the system being built right? When the
property consists on whether the application fulfils the
requirements, we usually refer to it as validation.
Testing, on the other hand, is usually defined as the
activity of looking for errors in the final implementation.

What is interesting to note in the case of MAS when
discussing verification and testing is whether
organizational, cognitive, development, evolution, and
motivational concepts are considered, because the
consequences of having concurrent and distributed
processes are already a subject extensively covered in the
literature since the seventies. Winograd & Flores [105]
already criticised that many approaches try to work with
these properties through techniques that were conceived
for other purposes, without taking advantage of specific
agent characteristics. In this context, verification and
testing of MAS have not just imported techniques from
other paradigms, but they have also created new
approaches to solve this problem.

An example of the first formal approaches for
verification in the agent domain is DESIRE [15], a
design and specification framework that describes agents
and the MAS itself as networks of tasks organized in a
hierarchy. The interaction and coordination among
agents is specified as interchanges of pieces of
information and control dependencies. Properties to be
verified are represented with temporal logics: what is a
conflict among goals or how to choose among design
alternatives. Checking properties consists of
demonstrating that these are satisfied in a concrete
problem using the DESIRE representation of the system.
Although this allows proving complex properties of the
system and the domain, it has the limitation of the agent
model as being task-oriented.

Other formal approaches have shown limited scope
because they are assuming a fixed agent model, usually
more as a kind of reactive process rather than intentional,
and demand too detailed specifications, which makes
these techniques work for toy examples but unaffordable
for real cases, apart of the learning curve that they imply
for developers. For these reasons, there are several
approaches that try to mix the goodness of formal
languages with the expressive power of semi-formal
(usually graphical) languages.

An example of this is the use of model checking
techniques to verify the satisfaction of requirements in

Tropos [49]. Specifications with the graphical language
of Tropos are translated into Formal Tropos, adding
temporal logic constructs. This offers the possibility of
verifying the specification with formal methods.

Recently we start to see the application of theories
coming from other fields, such as Sociology. Activity
Theory, for instance, has been applied to the
identification of contradiction patterns (e.g., conflicts
between individual goals and community goals) by
translating concepts for the social science to agent
concepts, in this case for INGENIAS and Tropos [47].
Activity Theory is also being considered for analysing
social coordination in the TuCSoN platform [89].

Concerning testing, apart of debugging tools that
help the developer to follow messages exchange and in
some cases to introspect agents (as in the case of MadKit
[53]) an interesting approach is the use of data mining
tools for analysing and presenting results to the
developer. This is used for the JADE platform in the
ACLAnalyser tool [14]. Another work, specifically
conceived for the JADE platform and including both a
test method (aimed at testing single agent features with a
regression testing approach) and a supporting tool is
presented in [20].

7 Conclusion
The agent-oriented approach, from a software
engineering point of view, is mainly used for analysis
and design of complex systems. Implementation and
deployment of these systems may take a variety of forms,
sometimes following agent related standards (such as
FIPA and MAF) but usually as conventional distributed
objects or component based software. Thus, the main
benefit of agent-orientation at present seems to be at the
level of modelling. The coupling with that diversity of
target platforms is motivating approaches in the AOSE
community which are in line with the OMG Model
Driven Architecture (MDA) approach. Following this,
and considering the state-of-the-art as reported in this
work, we think the agent approach can be profitably used
for modelling the solution at a platform independent
level, and then some tools could provide proper
transformations to specific target platforms.

Acknowledgement
We would like to thank all the members of the
AgentLink AOSE Technical Forum Group for their
active participation during the AL3 Technical Fora and
their contribution in the off-line work.

References
[1] Amor M., Fuentes L. and Vallecillo A. (2005).

Bridging the Gap Between Agent-Oriented Design
and Implementation Using MDA. In: Agent-
Oriented Software Engineering V: 5th International
Workshop, AOSE 2004. Lecture Notes in Computer
Science 3382, Springer Verlag, pp. 93—108.

[2] Bauer, B. (2002). UML Class Diagrams Revisited
in the Context of Agent-Based Systems. In: Agent-
Oriented Software Engineering II: Second
International Workshop, AOSE 2001. Lecture Notes

AN OVERVIEW OF CURRENT TRENDS IN... Informatica 29 (2005) 379–390 387

in Computer Science 2222, Springer-Verlag, pp.
101—118.

[3] Bauer B, Müller J., and Odell J. (2001). Agent
UML: A Formalism for Specifying Multiagent
Interaction. In: Agent-Oriented Software
Engineering: First International Workshop, AOSE
2000. Lecture Notes in Computer Science 1957,
Springer-Verlag, pp. 91—103.

[4] Beck K., et al. Manifesto for Agile Software
Development. http://www.agilemanifesto.org.

[5] Beck K., and Andres C. (2004). Extreme
Programming Explained: Embrace Change , 2nd
Edition. Addison-Wesley.

[6] Bellifemine F., Poggi A., and Rimassa, G. (2001).
Developing multi-agent systems with a FIPA-
compliant agent framework. Software Practice and
Experience 31 (2), pp. 103—128.

[7] Bergenti F., and Huhns M. (2004). On the Use of
Agents as Components of Software Systems, In:
[8], chapter 2, pp. 19—32.

[8] Bergenti F., Gleizes M.-P., and Zambonelli F.,
editors (2004). Methodologies and Software
Engineering for Agent System: The Agent Oriented
Software Engineering Handbook. Kluwer
Academic Publisher, New York.

[9] Bernon C., Camps V., Gleizes M.-P., and Picard G.
(2005). Engineering Adaptive Multi-Agent
Systems: The ADELFE Methodology. In: [55],
chapter VII, pp. 172—202.

[10] Bernon C., Camps V., Gleizes M.-P. and Picard G.
(2004). Tools for Self-Organizing Applications
Engineering. In: Engineering Self-Organising
Systems, Nature-Inspired Approaches to Software
Engineering [revised and extended papers
presented at the Engineering Self-Organising
Applications Workshop, ESOA 2003]. Lecture
Notes in Artificial Intelligence 2977, Springer
Verlag, pp. 283—298.

[11] Bernon C., Cossentino M., Gleizes M-P., Turci P.,
and Zambonelli F. (2005). A Study of some Multi-
agent Meta-models. In: Agent-Oriented Software
Engineering V: 5th International Workshop, AOSE
2004. Lecture Notes in Computer Science 3382,
Springer Verlag, pp. 62—77.

[12] Booch, G. (1994). Object-Oriented Analysis and
Design with Applications. Addison-Wesley,
Reading, MA.

[13] Bordini, R., Braubach, L., El Fallah-Seghrouchni,
A., Dastani, M., Gomez-Sanz, J., Leite, J., O'Hare,
G., Pokahr, A., and Ricci, A. (2005). A Survey on
Languages and Platforms for MAS Implementation.
Informatica 29 (this issue).

[14] Botía J., López-Acosta A., and Gómez-Skarmeta A.
(2004). ACLAnalyser: A Tool for Debugging
Multi-Agent Systems. Proc. 16th European
Conference on Artificial Intelligence, ECAI 2004,
pp. 967—968.

[15] Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings,
N. R., and Treur, J. (1997). DESIRE: Modelling
Multi-Agent Systems in a Compositional Formal
Framework. International Journal of Cooperative
Information Systems 6(1). pp. 67—94.

[16] Bresciani P., Giorgini P., Giunchiglia F.,
Mylopoulos J., and Perini A. (2004). TROPOS: An
Agent-Oriented Software Development Methodolo-
gy. Journal of Autonomous Agents and Multi-Agent
Systems, Kluwer Academic Publishers 8(3), pp.
203—236.

[17] Brinkkemper S., Lyytinen K., and Welke R. (1996).
Method Engineering: Principles of Method
Construction and Tool Support. Chapman &Hall.

[18] Cabri G., Ferrari L., and Zambonelli F. (2004).
Role-based Approaches for Engineering
Interactions in Large-Scale Multiagent Systems. In:
Post-Proceedings of Advances in Software
Engineering for Large-Scale Multiagent Systems
(SELMAS 03), Lecture Notes in Computer Science
2940, Springer-Verlag, pp. 243—263.

[19] Cabri G., Leonardi L., and Zambonelli F. (2003).
Engineering Mobile Agent Applications via
Context-Dependent Coordination. IEEE Transac-
tions on Software Engineering 28(11), pp. 1039-
1055.

[20] Caire G., Cossentino M., Negri A., Poggi A, and
Turci P. (2004). Multi-agent Systems
Implementation and Testing, In: From Agent
Theory to Agent Implementation - Fourth
International Symposium (AT2AI-4), Vienna,
Austria.

[21] Caire G., Evans R. Massonet P., Coulier W., Garijo
F.J., Gomez J., Pavón J., Leal F., Chainho P.,
Kearney P.E., and Stark J. (2002). Agent Oriented
Analysis using MESSAGE/UML. In: The Second
International Workshop on Agent-Oriented
Software Engineering (AOSE 2001), Lecture Notes
in Computer Science 2222, Springer-Verlag, pp.
119-135.

[22] Capera D., Georgé J.P., Gleizes M.P., and Glize P,
(2003). The AMAS Theory for Complex Problem
Solving based on Self-organizing Cooperative
Agents. In: Proc. of the 1st International Workshop
on Theory And Practice of Open Computational
Systems (TAPOCS03@WETICE’03), Linz, Austria,
pp.283—288.

[23] Cernuzzi L., and Rossi G. (2002). On the
Evaluation of Agent Oriented Methodologies. In:
Proc. of the OOPSLA 2002 Workshop on Agent-
Oriented Methodologies, pp. 21-30.

[24] Cernuzzi L., Cossentino M., and Zambonelli F.
(2005). Process Models for Agent-based
Development. Engineering Applications of
Artificial Intelligence 18(2), pp. 205-222.

[25] Trencansky I., Cervenka R.. (2005). Agent
Modeling Language (AML): A Comprehensive
Approach to Modeling MAS, Informatica 29 (this
issue).

[26] Chella A., Cossentino M., Sabatucci L., and Seidita
V. (2004). From PASSI to Agile PASSI: Tailoring
a Design Process to Meet New Needs. In: 2004
IEEE/WIC/ACM International Joint Conference on
Intelligent Agent Technology (IAT’04), Beijing,
China. pp. 471-474.

[27] Ciancarini P. (1996). Coordination Model and
Languages as Software Integrators, ACM
Computing Surveys, 28(2), pp. 300-302.

388 Informatica 29 (2005) 379–390 C. Bernon et al.

[28] Cossentino M. (2002). Different Perspectives in
Designing Multi-agent Systems, AGES'02
workshop at NODe02, Erfurt, Germany. pp. 61-73.

[29] Cossentino M. (2005). From Requirements to Code
with the PASSI Methodology. In: [55], chapter IV,
pp. 79—106.

[30] Cossentino M., Sabatucci L., and Chella A. (2003).
A Possible Approach to the Development of
Robotic Multi-Agent Systems. In: IEEE/WIC
International Conference on Intelligent Agent
Technology (IAT'03), pp. 13-17.

[31] Cossentino M., and Seidita V. (2004). Composition
of a New Process to Meet Agile Needs Using
Method Engineering, In: Software Engineering for
Large Multi-Agent Systems vol. III, Lecture Notes
in Computer Science 3390, Springer-Verlag, pp.
36-51.

[32] Cossentino M., and Zambonelli F. (2004). Agent
Design from the Autonomy Perspective. In: Agents
and Computational Autonomy: Potential, Risks, and
Solutions, Lecture Notes in Computer Science
2969, Springer-Verlag, pp. 140-150.

[33] Dale J., and Ceccaroni L. (2002). Pizza and a
Movie: A Case Study in Advanced Web Services.
In: Agentcities: Challenges in Open Agent
Environments Workshop, AAMAS Conference
2002, Bologna, Italy.

[34] De Giacomo G., Lespérance Y., Levesque H.J., and
Sardina, S. (2004). On the Semantics of
Deliberation in IndiGolog - From Theory to
Implementation. Annals of Mathematics and
Artificial Intelligence 41(2-4), pp. 259-299.

[35] Demazeau Y. (1995). From Cognitive Interactions
to Collective Behaviour in Agent-Based Systems,
1st European Conference on Cognitive Science,
Saint-Malo, France, pp. 117-132.

[36] Di Marzo Serugendo, G., Gleizes, M.-P.,
Karageorgos, A. (2005). Self-Organisation and
Emergence in MAS: An Overview. Informatica 29
(this issue).

[37] Dori, D. (2002). Object-Process Methodology: A
Holistic System Paradigm. Springer.

[38] Drogoul A., and Collinot A. (1998). Applying an
Agent-Oriented Methodology to the Design of
Artificial Organisations: a Case Study in Robotic
Soccer. Journal of Autonomous Agents and Multi-
Agent Systems, 1(1), pp. 113-129.

[39] El Fallah Seghrouchni A. and Sun A. (2003).
Claim: A Computational Language for
Autonomous, Intelligent and Mobile Agents. In:
Proceedings of ProMAS’03, Lecture Notes in
Artificial Intelligence 3067, Springer Verlag, pp.
90–110.

[40] Esteva M., Rosell B., Rodríguez-Aguilar J.A., and
Arcos, J.L. (2004). AMELI: An Agent-based
Middleware for Electronic Institutions. In: Third
International Joint Conference on Autonomous
Agents and Multi-agent Systems (AAMAS'04). pp.
236—243.

[41] Ferber J. (1999). Multi-Agent Systems, Addison-
Wesley: Reading, MA.

[42] Ferber J., and Gutknecht O. (1998). A Meta-model
for the Analysis and Design of Organizations in

Multi-agent Systems. In Proc. of the 3rd
International Conference on Multi-Agent Systems
(ICMAS’98), pp. 128–135.

[43] FIPA. Abstract Architecture Specification.
Document SC00001L. Available online at
http://www.fipa.org/specs/fipa00001/SC00001L.html.

[44] Firesmith D.G., and Henderson-Sellers B. (2002).
The OPEN Process Framework. Addison-Wesley.

[45] Fortino G., Garro A., and Russo W. (2004). From
Modeling to Simulation of Multi-Agent Systems:
an Integrated Approach and a Case Study. In:
Proceedings of the Second German Conference on
Multiagent System Technologies (MATES'04),
Lecture Notes in Artificial Intelligence 3187,
Springer-Verlag, pp. 213-227.

[46] Franklin S, and Graesser A. (1996) Is it an Agent,
or Just a Program?: A Taxonomy for Autonomous
Agents. In: Intelligent Agents III – Proceedings of
the Third International Workshop on Agent
Theories, Architectures, and Languages, Lecture
Notes in Artificial Intelligence, 1193, Springer
Verlag, pp. 21—35.

[47] Fuentes R., Gómez-Sanz J.J., and Pavón, J. (2004).
Social Analysis of Multi-Agent Systems with
Activity Theory. In: Proceedings of CAEPIA 2003,
Lecture Notes in Artificial Intelligence 3040,
Springer-Verlag, pp. 526-535.

[48] Fuggetta A. (2000). Software Process: a Roadmap.
In Proceedings of the Conference on the Future of
Software Engineering, ACM Press, New York
(USA), pp. 25-34

[49] Fuxman A., Pistore M., Mylopoulos J. and Traverso
P. (2001). Model Checking Early Requirements
Specifications in Tropos. In: Proceedings 5th IEEE
International Symposium on Requirements
Engineering (RE 2001), pp. 174-181.

[50] Gervais M. (2003). ODAC: An Agent-Oriented
Methodology based on ODP. Journal of
Autonomous Agents and Multi-Agent Systems 7(3),
pp. 199–228.

[51] Gomez-Sanz J. J., and Pavón, J. (2002). Meta-
modelling in Agent-Oriented Software Engineering.
In: Advances in Artificial Intelligence - IBERAMIA
2002, Lecture Notes in Artificial Intelligence 2527,
Springer-Verlag, 606-615.

[52] Guessoum Z., and Jarraya, T. (2005). Meta-Models
& Model-Driven Architectures, Contribution to the
AOSE TFG AgentLink3 meeting, Ljubljana, 2005.

[53] Gutknecht O., Ferber J., and Michel F. (2001).
Integrating Tools and Infrastructures for Generic
Multi-agent Systems. In: Proceedings of the fifth
international conference on Autonomous agents
(Agents 2001), ACM Press, pp. 441–448.

[54] Henderson-Sellers, B., and Debenham, J. (2003).
Towards Open Methodological Support for Agent
Oriented Systems Development. In: Proceedings of
the First International Conference on Agent-Based
Technologies and Systems. University of Canada,
Canada. pp. 14–24.

[55] Henderson-Sellers, B. and Giorgini, P., editors
(2005). Agent-Oriented Methodologies. Idea Group
Publishing.

AN OVERVIEW OF CURRENT TRENDS IN... Informatica 29 (2005) 379–390 389

[56] Hilaire V., Koukam A., Grue, P., and Muller J.-P.
(2000). Formal Specification and Prototyping of
Multi-agent Systems. In: Engineering Societies in
the Agents’ World (ESAW’00), Lecture Notes in
Artificial Intelligence 1972, Springer Verlag, pp.
114—127.

[57] Huget M.-P., and Odell J. (2005). A Study of some
Multi-agent Meta-models. In: Agent-Oriented
Software Engineering V: 5th International
Workshop, AOSE 2004. Lecture Notes in Computer
Science 3382, Springer Verlag, pp. 16—30.

[58] Hunhns M., and Singh M.P. (1999). A Multiagent
Treatment of Agenthood. Applied Artificial
Intelligence: An International Journal 13(1-2), pp.
3-10.

[59] IEEE Computer Society (2004). SWEBOK. Guide
to the Software Engineering Body of Knowledge.
Online at: http://www.swebok.org/.

[60] Iglesias C., Garijo M., Gonzales J., and Velasco J.
R. (1998). Analysis and Design of Multi-agent
Systems using MAS-CommonKADS. In: Intelligent
Agents IV, Proc. of the Fourth International
Workshop on Agent Theories, Architectures, and
Languages (ATAL‘97), Lecture Notes in Artificial
Intelligence 1365, Springer-Verlag, pp. 313–326.

[61] ISO/IEC X.900 (1995). IS 10746-x ITU-T Rec.
X90x, ODP Reference Model Part x.

[62] Jacobson I. (1992). Object-Oriented Software
Engineering, Addison-Wesley.

[63] Jennings N.R. (2000). On Agent-based Software
Engineering. Artificial Intelligence 117(2), pp.
277—296.

[64] Juan T., Pearce A., and Sterling L. (2002).
ROADMAP: Extending the Gaia Methodology for
Complex Open Systems. In: First International
Joint Conference on Autonomous Agents & Multi-
Agent Systems (AAMAS 2002), ACM Press, pp. 3—
10.

[65] Kendall E. A. (2000). Role Modeling for Agent
System Analysis, Design, and Implementation.
IEEE Concurrency. Volume 8 , Issue 2. pp. 34-41.

[66] Knublauch H. (2002). Extreme Programming of
Multi-Agent Systems. In: First International Joint
Conference on Autonomous Agents & Multi-Agent
Systems (AAMAS 2002), ACM Press, pp. 704—711.

[67] Levesque H. J., Reiter R., Lespérance Y., Lin F.,
and Scherl, R. B. (1997). GOLOG: A Logic
Programming Language for Dynamic Domains.
Journal of Logic Programming 31 (1-3), pp. 59–83.

[68] Lind J. (2001). Iterative Software Engineering for
Multiagent Systems: The MASSIVE Method.
Lecture Notes in Computer Science 1994, Springer-
Verlag.

[69] Luck M., and d’Inverno M. (2001). A Conceptual
Framework for Agent Definition and Development.
The Computer Journal 44(1), pp. 1—20.

[70] Luck, M., Ashri, R., D’Inverno, M. (2004). Agent-
Based Software Development. Artech House
Publishers.

[71] McCarthy J., and Hayes P.J. (1969). Some
Philosophical Problems from the Standpoint of
Artificial Intelligence. In: Machine Intelligence 4,
Edinburgh University Press, pp. 463—502.

[72] McIlraith S., Son T. C., and Zeng, H. (2001).
Semantic Web Services. IEEE Intelligent Systems
16(2), pp. 46-53.

[73] Miller J., and Mukerji, J. (eds) (2003). MDA Guide
Version 1.0.1, omg/2003-06-01.

[74] Molesini, A., Omicini, A., Ricci, A., and Detti, E.
(2005). Zooming Multi-Agent Systems. In: 6th
International Workshop Agent-Oriented Software
Engineering (AOSE 2005), pp. 193-204.

[75] Newell A. (1982) The Knowledge Level, Artificial
Intelligence, 18, pp. 87–127.

[76] Odell J. (2002) Objects and Agents Compared.
Journal of Object Technology 1(1), pp. 41—53.

[77] OMG (2000). Agent Technology – Green paper,
Agent Platform Special Interest Group, OMG
Document agent/00-09-01, version 1.0, 1
September 2000, http://www.objs.com/agent/
index.html.

[78] OMG (2000). Mobile Agent Facility, version 1.0.
OMG Document - formal/00-01-02, online at
http://www.omg.org/cgi-bin/doc?formal/2000-01-
02.

[79] Omicini A. (2001). SODA: Societies and
Infrastructures in the Analysis and Design of
Agent-Based Systems. In: Agent-Oriented Software
Engineering: First International Workshop, AOSE
2000. Lecture Notes in Computer Science 1957,
Springer-Verlag, pp. 185—193.

[80] Omicini A., Papadopoulos, G. A. (2001). Why
Coordination Models and Languages in AI?.
Applied Artificial Intelligence 15(1), pp. 1—10 .

[81] Pavón J., and Gómez-Sanz J. (2003). Agent-
Oriented Software Engineering with INGENIAS. In:
Multi-Agent Systems and Applications III, 3rd
International Central and Eastern European
Conference on Multi-Agent Systems (CEEMAS’03),
Lecture Notes in Computer Science 2691, Springer
Verlag, pp. 394-403.

[82] Pavón J., Gómez-Sanz J. and Fuentes, R. (2005).
The INGENIAS Methodology and Tools. In: [55],
chapter IX, pp. 236—276.

[83] Pena J., and Corchuelo R. (2005). Towards
clarifying the importance of interactions in agent-
oriented software engineering. Inteligencia
Artificial, Revista Iberoamericana de Inteligencia
Artificial 25 (1), pp. 19-28.

[84] Peña J., Corchuelo R., and Arjona J. L. (2003). A
Top Down Approach for MAS Protocol
Descriptions. In: ACM Symposium on Applied
Computing SAC'03, ACM Press, pp. 49-54.

[85] Pressman Roger S. (1982). Software Engineering:
A Practitioner’s Approach, McGraw-Hill Series in
Software Engineering and Technology, McGraw-
Hill, New York, 6th edition.

[86] Ralyte J., and Rolland C. (2001). An Approach for
Method Reengineering. In: Proc. Conceptual
Modeling - ER 2001, 20th International Conference
on Conceptual Modeling, Lecture Notes in
Computer Science 2224, pp. 471—484.

[87] Rao A.S., and Georgeff M. P. (1995). BDI Agents:
from Theory to Practice. In: Proc. of the First
International Conference on Multi-Agent Systems
(ICMAS‘95), The MIT Press, pp. 312-319.

390 Informatica 29 (2005) 379–390 C. Bernon et al.

[88] Ricci A., and Omicini A. (2003). Supporting
Coordination in Open Computational Systems with
TuCSoN. In: 12th IEEE International Workshops
on Enabling Technologies (WETICE 2003),
Infrastructure for Collaborative Enterprises. IEEE
Computer Society, pp. 365—370.

[89] Ricci A., Omicini A. and Denti E. (2003). Activity
Theory as a Framework for MAS Coordination.
Engineering Societies in the Agents World III, 3rd
international Workshop (ESAW'02), Lecture Notes
in Computer Science 2577, Springer-Verlag, pp.
96—210 .

[90] Rumbaugh J., Jacobson I., and Booch, G. (1999).
The Unified Modeling Language Reference Manual.
Addison Wesley. Reading, MA.

[91] Russell S., and Norvig P. (1995). Artificial
Intelligence; A Modern Approach. Englewood
Cliffs, NJ: Prentice Hall.

[92] Schreiber A., Wielinga J., Akkermans J., and de
Velde W. V. (1994). CommonKADS: A
Comprehensive Methodology for KBS
Development. Technical report, Univ. of
Amsterdam, Netherlands Energy Research
Foundation ECN and Free Univ. of Brussels.

[93] Schillo, M., and Fischer, K. Holonic Multiagent
Systems. Zeitschrift für Künstliche Intelligenz, no.
3 (in printing).

[94] Serrano J. M., and Ossowski S., (2004). On the
Impact of Agent Communication Languages on the
Implementation of Agent Systems. In: Cooperative
Information Agents VIII, 8th International
Workshop, CIA 2004, Lecture Notes in Computer
Science 3191, Springer-Verlag, pp. 92—106.

[95] Sierra C., Rodríguez-Aguilar J.A., Noriega P.,
Esteva M., and Arcos J.L. (2004). Engineering
Multi-agent Systems as Electronic Institutions.
Upgrade, The European Journal for the Informatics
Professional, V(4), pp. 33—39.

[96] Singh M. (1997). Formal Methods in DAI: Logic
Based Representation and Reasoning. In:
Multiagent Systems - A Modern Approach to
Distributed Artificial Intelligence, pp. 331–376.

[97] Sommerville I. (2004). Software Engineering 7th
edition. Addison Wesley.

[98] Spivey J. (1992). The Z Notation: A Reference
Manual. Prentice Hall, Hemel Hempstead, 2nd
edition.

[99] Sturm, A., Dori, D., and Shehory, O. (2003).
Single-Model Method for Specifying Multi-Agent
Systems. In: Proceedings of the Second
International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2003), ACM
Press, pp. 121—128.

[100] Sturm A., and Shehory O. (2004) A Framework
for Evaluating Agent-Oriented Methodologies. In:
Agent-Oriented Information Systems, 5th Int. Bi-
Conference Workshop, AOIS 2003. Lecture Notes
in Computer Science 3030, Springer-Verlag, pp.
94—109.

[101] Tavares da Silva J.L., and Demazeau Y. (2002).
Vowels Co-ordination Model. In: First
International Joint Conference on Autonomous

Agents & Multi-Agent Systems (AAMAS 2002),
ACM Press, pp. 1129—1136.

[102] Tolvanen, J.-P., and Lyytinen, K. (1993)
Flexible Method Adaptation in CASE - the
Metamodeling Approach. Scandinavian Journal of
Information Systems, Vol. 5. IRIS Association. pp.
51-77.

[103] van Lamsweerde A. (2001). Goal-Oriented
Requirements Engineering: A Guided Tour. In:
Proceedings of the 5th IEEE International
Symposium on Requirements Engineering (RE
2001), IEEE Computer Society, pp. 249.

[104] Wagner G. (2003). The Agent-Object-
Relationship Metamodel: Towards a Unified View
of State and Behavior, Information Systems 28 (5),
pp. 475—504.

[105] Winograd T., and Flores C.F. (1986).
Understanding Computers and Cognition: A New
Foundation for Design. Norwood, NJ: Ablex.

[106] Wooldridge M., and Ciancarini P. (2001).
Agent-Oriented Software Engineering: The State of
the Art. In: Agent-Oriented Software Engineering:
First International Workshop, AOSE 2000. Lecture
Notes in Computer Science 1957, Springer-Verlag,
pp. 1—28.

[107] Wooldridge, M. (2000). Reasoning about
Agents. The MIT Press, Cambridge, MA.

[108] Wooldridge M., Fisher M., Huget M.-P., and
Parsons S. (2002). Model Checking Multi--agent
Systems with MABLE. In: First International Joint
Conference on Autonomous Agents & Multi-Agent
Systems (AAMAS 2002), ACM Press, pp 952—959.

[109] Wooldridge M., Jennings N. R., and Kinny, D.
(2000). The Gaia Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous
Agents and Multi-Agent Systems 3(3), pp. 285-312.

[110] Yu E. (1997). Towards Modelling and
Reasoning Support for Early-Phase Requirements
Engineering. In: Proceedings of the 3rd IEEE Int.
Symp. on Requirements Engineering (RE'97), pp.
226—235.

[111] Zambonelli F., Jennings N., and Wooldridge M.
(2003). Developing Multiagent Systems: the Gaia
Methodology. ACM Transactions on Software
Engineering and Methodology 12(3), pp. 417-470.

[112] Zambonelli F. and Jennings N. R., Omicini A.
and Wooldridge M. (2001). Agent-Oriented
Software Engineering for Internet Applications. In:
Coordination of Internet Agents: Models,
Technologies, and Applications, Springer Verlag,
pp. 326-346.

Last access date for web links reported in the paper: 30-

08-2005

