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A color image quantization algorithm based on Particle Swarm Optimization (PSO) is developed in this 
paper. PSO is a population-based optimization algorithm modeled after the simulation of social 
behavior of bird flocks and follows similar steps as evolutionary algorithms to find near-optimal 
solutions. The proposed algorithm randomly initializes each particle in the swarm to contain K 
centroids (i.e. color triplets). The K-means clustering algorithm is then applied to each particle at a 
user-specified probability to refine the chosen centroids. Each pixel is then assigned to the cluster with 
the closest centroid. The PSO is then applied to refine the centroids obtained from the K-means 
algorithm. The proposed algorithm is then applied to commonly used images. It is shown from the 
conducted experiments that the proposed algorithm generally results in a significant improvement of 
image quality compared to other well-known approaches. The influence of different values of the 
algorithm control parameters is studied. Furthermore, the performance of different versions of PSO is 
also investigated. 
Povzetek: Evolucijski algoritem na osnovi jate ptičev je uporabljen za barvno obdelavo slik. 

 

1 Introduction 
Color image quantization is the process of reducing the 
number of colors presented in a digital color image [2]. 
Color image quantization can be formally defined as 
follows [27]: 
Given a set of S ′N  colors where dNℜ⊂′S  and Nd is 
the dimension of the data space. The color quantization is 
a map S  S ′′→′ :qf  where S ′′  is a set of S ′′N  colors 

such that SS ′⊂′′  and SS ′′′ < NN . The objective is to 
minimize the quantization error resulting from replacing 
a color Sc ′∈  with its quantized value Sc ′′∈)(qf .  
Color image quantization is an important problem in the 
fields of image processing and computer graphics [27]:  

• It can be used in lossy compression 
techniques [27];  

• It is suitable for mobile and hand-held 
devices where memory is usually small [18];  

• It is suitable for low-cost color display and 

printing devices where only a small number 
of colors can be displayed or printed 
simultaneously [20]. 

• Most graphics hardware use color lookup 
tables with a limited number of colors [8]. 

 
Color image quantization consists of two major steps:  

• Creating a colormap (or palette) where a 
small set of colors (typically 8-256 [20]) is 
chosen from the (224) possible combinations 
of red, green and blue (RGB). 

• Mapping each color pixel in the color image 
to one of the colors in the colormap. 

 
Therefore, the main objective of color image 
quantization is to map the set of colors in the original 
color image to a much smaller set of colors in the 
quantized image [32]. Furthermore, this mapping, as 
already mentioned, should minimize the 
differencebetween the original and the quantized images 
[8]. The color quantization problem is known to be NP-
complete [30]. This means that it is not feasible to find 
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the global optimal solution because this will require a 
prohibitive amount of time. To address this problem, 
several approximation techniques have been used. One 
popular approximation method is the use of a standard 
local search strategy such as K-means. K-means has 
already been applied to the color image quantization 
problem [22], [3]. However, K-means is a greedy 
algorithm which depends on the initial conditions, which 
may cause the algorithm to converge to suboptimal 
solutions. This drawback is magnified by the fact that the 
distribution of local optima is expected to be broad in the 
color image quantization problem due to the three 
dimensional color space. In addition, this local optimality 
is expected to affect the visual image quality.  The local 
optimality issue can be addressed by using stochastic 
optimization schemes. 
In this paper, a new color image quantization algorithm 
based on Particle Swarm Optimization (PSO) is 
proposed. PSO is a population-based stochastic 
optimization algorithm modeled after the simulation of 
the social behavior of bird flocks and follows similar 
steps as evolutionary algorithms to find near-optimal 
solutions. PSO and other evolutionary algorithms that 
depend on heuristics to find 'soft' solutions are 
considered to be soft computing algorithms. This 
population-based search approach reduces the effect of 
the initial conditions, compared to K-means (especially if 
the size of the population is relatively large). The 
feasibility of the approach is demonstrated by applying it 
to commonly used images. The results show that, in 
general, the proposed approach performs better than 
state-of-the-art color image quantization approaches. 
The rest of the paper is organized as follows. Section 2 
surveys related work in the field of color image 
quantization. An overview of PSO is shown in section 3. 
The proposed algorithm is presented in section 4, while 
an experimental evaluation of the algorithm is provided 
in section 5. Finally, section 6 concludes the paper and 
provides guidelines for future research.  

2 Related Work 
Several heuristic techniques for color image quantization 
have been proposed in the literature. These techniques 
can be categorized into two main categories: pre-
clustering and post-clustering. The next subsections 
discuss each of these categories. 

2.1 Pre-clustering approaches 
Pre-clustering approaches divide the color into disjoint 
regions of similar colors. A representative color is then 
determined from each region. These representatives form 
the colormap. There are many fast algorithms in this 
category which are commonly used. 
The median cut algorithm (MCA) [10] is often used in 
image applications because of its simplicity [8]. MCA 
divides the color space repeatedly along the median into 
rectangular boxes until the desired number of colors is 
obtained. 

The variance-based algorithm (VBA) [28] also divides 
the color space into rectangular boxes. However, in VBA 
the box with the largest mean squared error between the 
colors in the box and their mean is split. 
The octree quantization algorithm [9] repeatedly 
subdivides a cube into eight smaller cubes in a tree 
structure of degree eight. Then adjacent cubes with the 
least number of pixels are merged. This is repeated until 
the required number of colors is obtained [5]. Octree 
produces results similar to MCA, but with higher speed 
and smaller memory requirements [8]. 
Xiang and Joy [32] proposed an agglomerative clustering 
method which starts with each image color as a separate 
cluster. Small clusters are then repeatedly clustered into 
larger clusters in a hierarchical way until the required 
number of colors is obtained. The abandoning of the 
fixed hierarchical division of the color space is a 
significant improvement over the octree approach [32].  
A similar approach called Color Image Quantization by 
Pairwise Clustering was proposed by [27]. In this 
approach, a relatively large set of colors is chosen. An 
image histogram is then created. Two clusters that 
minimize the quantization error are then selected and 
merged together. This process is repeated until the 
required number of colors is obtained. According to [27], 
this approach performed better than MCA, VBA, octree, 
K-means and other popular quantization algorithms when 
applied to the two colored images used in their 
experiments. 
Xiang [31] proposed a color image quantization 
algorithm that minimizes the maximum distance between 
color pixels in each cluster (i.e. the intra-cluster 
distance). The algorithm starts by assigning all the pixels 
into one cluster. A pixel is then randomly chosen as the 
head of the cluster. A pixel that is the most distant from 
its cluster head is chosen as the head of a new cluster. 
Then, pixels nearer to the head of the new cluster move 
towards the new head forming the new cluster. This 
procedure is repeated until the desired number of clusters 
is obtained. The set of cluster heads forms the colormap.  
A hybrid competitive learning (HCL) approach 
combining competitive learning and splitting of the color 
space was proposed by [19]. HCL starts by randomly 
choosing a pixel as a cluster centroid. Competitive 
learning is then applied resulting in assigning all the 
image pixels to one cluster surrounding the centroid. A 
splitting process is then conducted by creating another 
copy of the centroid; competitive learning is then applied 
on both centroids. This process is repeated until the 
desired number of clusters is obtained. According to 
[19], HCL is fast, completely independent of initial 
conditions and can obtain near global optimal results. 
When applied to commonly used images, HCL 
outperformed MCA, VBA and K-means, and performed 
comparably with competitive learning [19], [20].  
Braquelaire and Brun [2] compared the various pre-
clustering heuristics and suggested some optimizations of 
the algorithms and data structures used. Furthermore, 
they proposed a new color space called H1 H2 H3 and 
argued that it improves the quantization heuristics. 
Finally, they proposed a new method which divides each 
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cluster along the axis H1, H2 or H3 of greatest variance. 
According to [2], the proposed approach generates 
images with comparable quality to that obtained from 
better but slower methods in this category. 
Recently, Cheng and Yang [4] proposed a color image 
quantization algorithm based on color space 
dimensionality reduction. The algorithm repeatedly sub-
divides the color histogram into smaller classes. The 
colors of each class are projected into a line. This line is 
defined by the mean color vector and the most distant 
color from the mean color. For each class, the vector 
generated from projection is then used to cluster the 
colors into two representative palette colors. This process 
is repeated until the desired number of representative 
colors is obtained. All color vectors in each class are then 
represented by their class mean. Finally, all these 
representative colors form the colormap. According to 
[4], this algorithm performed better than MCA, and 
performed comparably to SOM when applied on 
commonly used images. 

2.2 Post-clustering approaches 
The main disadvantage of the pre-clustering approaches 
is that they only work with color spaces of simple 
geometric characteristics. On the other hand, post-
clustering approaches can work with arbitrary shaped 
clusters. Post-clustering approaches perform clustering of 
the color space [4]. A post-clustering algorithm starts 
with an initial colormap. It then iteratively modifies the 
colormap to improve the approximation. The major 
disadvantage of post-clustering algorithms is the fact that 
it is time consuming [8]. 
The K-means algorithm is one of the most popular post-
clustering algorithms. It starts with an initial set of colors 
(i.e. initial colormap). Then, each color pixel is assigned 
to the closest color in the colormap. The colors in the 
colormap are then recomputed as the centroids of the 
resulting clusters. This process is repeated until 
convergence. The K-means algorithm has been proven to 
converge to a local optimum [8]. As previously 
mentioned, a major disadvantage of K-means is its 
dependency on initial conditions.  
FCM [1] and Learning Vector Quantization [16] have 
also been used for color image quantization. Scheunders 
and De Backer [21] proposed a joint approach using both 
competitive learning and a dithering process to overcome 
the problem of contouring effects when using small 
colormaps. 
Fiume and Quellette [7] proposed an approach which 
uses simulated annealing for color image segmentation. 
Pre-clustering approaches were used to initialize the 
colormap. 
Self-Organizing Maps (SOMs) [15] were used by [5] to 
quantize color images. The approach selects an initial 
colormap, and then modifies the colors in the colormap 
by moving them in the direction of the image color 
pixels. However, to reduce the execution time, only 
samples of the colors in the image are used. According to 
[5], the algorithm performs better than MCA and octree.  

Rui et al. [18] presented an initialization and training 
method for SOM that reduces the computational load of 
SOM and at the same time generates reasonably good 
results.  
A hybrid approach combining evolutionary algorithms 
with K-means has been proposed by [8]. A population of 
individuals, each representing a colormap, are arbitrary 
initialized. Then, after each generation, the K-means 
algorithm (using a few iterations) is applied on each 
individual in the population. The standard error function 
of the Euclidean distance is chosen to be the fitness 
function of each individual. Based on the experiments 
conducted by [8], this hybrid approach outperformed 
both MCA and octree algorithms.  
The Genetic C-means algorithm (GCMA) uses a similar 
idea where a hybrid approach combining a genetic 
algorithm with K-means was proposed by [20]. The 
fitness function of each individual in the population is set 
to be the mean square error (MSE), defined as 
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As in [8], each chromosome represents a colormap. 
GCMA starts with a population of arbitrary initialized 
chromosomes. K-means is then applied to all the 
chromosomes to reduce the search space. A single-point 
crossover is then applied. This is followed by the 
application of mutation which randomly decides if a 
value of one is added to (or subtracted from) the gene's 
value (i.e. mutating the gene's value with ±1). All the 
chromosomes are then pairwise compared and the 
chromosome with the lowest MSE replaces the other 
chromosome. This process is repeated until a stopping 
criterion is satisfied. A faster version of this approach 
can be obtained by applying K-means to the best 
chromosome in each generation. For the remaining 
chromosomes, an approximation of K-means is used 
where a single iteration of K-means is applied on a 
randomly chosen subset of pixels. This process is 
repeated a user-specified number of times using different 
subsets. GCMA outperformed MCA, VBA, K-means, 
competitive learning and HCL when applied on 
commonly used images [19], [20]. However, GCMA is 
computationally expensive. 

3 Particle Swarm Optimization 
Particle swarm optimizers are population-based 
optimization algorithms modeled after the simulation of 
social behavior of bird flocks [12], [13]. PSO is generally 
considered to be an evolutionary computation (EC) 
paradigm. Other EC paradigms include genetic 
algorithms (GA), genetic programming (GP), 
evolutionary strategies (ES), and evolutionary 
programming (EP) [6]. These approaches simulate 
biological evolution and are population-based. In a PSO 
system, a swarm of individuals (called particles) fly 
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through the search space. Each particle represents a 
candidate solution to the optimization problem. The 
position of a particle is influenced by the best position 
visited by itself (i.e. its own experience) and the position 
of the best particle in its neighborhood (i.e. the 
experience of neighboring particles). When the 
neighborhood of a particle is the entire swarm, the best 
position in the neighborhood is referred to as the global 
best particle, and the resulting algorithm is referred to as 
the gbest PSO. When smaller neighborhoods are used, 
the algorithm is generally referred to as the lbest PSO 
[24]. The performance of each particle (i.e. how close the 
particle is to the global optimum) is measured using a 
fitness function that varies depending on the optimization 
problem. 

 
Each particle in the swarm is represented by the 
following characteristics: 

 
xi: The current position of the particle; 
vi: The current velocity of the particle; 
yi: The personal best position of the particle. 
 

The personal best position of particle i is the best 
position (i.e. one resulting in the best fitness value) 
visited by particle i so far. Let f denote the objective 
function. Then the personal best of a particle at time step 
t is updated as 
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If the position of the global best particle is denoted by the 
vector ŷ , then 
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where s denotes the size of the swarm. For the lbest 
model, a swarm is divided into overlapping 
neighborhoods of particles. For each neighborhood Nj, a 
best particle is determined with position jŷ . This particle 
is referred to as the neighborhood best particle, defined 
as 
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Neighborhoods are usually determined using particle 
indices [25], however, topological neighborhoods can 
also be used [23]. It is clear that gbest is a special case of 
lbest with l = s; that is, the neighborhood is the entire 
swarm. While the lbest approach results in a larger 
diversity, it is still slower than the gbest approach. 

For each iteration of a PSO algorithm, the velocity vi 
update step is specified for each dimension j ∈ 1,…, Nd, 
where Nd is the dimension of the problem. Hence, vi,j 
represents the jth element of the velocity vector of the ith 
particle. Thus the velocity of particle i is updated using 
the following equation: 
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where w is the inertia weight [23], 1c  and 2c  are the 

acceleration constants and jr1, , (0,1)~2, Ur j . Eq. 6 
consists of three components, namely 

 
• The inertia weight term, w, which serves as a 

memory of previous velocities. The inertia 
weight controls the impact of the previous 
velocity: a large inertia weight favors 
exploration, while a small inertia weight 
favors exploitation [24]. 

• The cognitive component, ii t xy −)( , which 
represents the particle's own experience as to 
where the best solution is. 

• The social component, )()(ˆ tt ixy − , which 
represents the belief of the entire swarm as to 
where the best solution is. Different social 
structures have been investigated [11], [14], 
with the star topology being used most. 

 
The position of particle i, xi, is then updated using the 
following equation: 

 
)1()()1( ++=+ ttt iii vxx           (7) 

 
The reader is referred to [26] and [17] for a study of the 
relationship between the inertia weight and acceleration 
constants, in order to select values which will ensure 
convergent behavior. Velocity updates can also be 
clamped through a user defined maximum velocity, Vmax, 
which would prevent them from exploding, thereby 
causing premature convergence [26]. 
The PSO algorithm performs the update equations above, 
repeatedly, until a specified number of iterations have 
been exceeded, or velocity updates are close to zero. The 
quality of particles is measured using a fitness function 
which reflects the optimality of a particular solution. 

 

4 The PSO-based Color Image 
Quantization (PSO-CIQ) 
Algorithm 

This section defines the terminology used throughout this 
paper. A measure is given to quantify the quality of the 
resultant quantized image, after which the PSO-CIQ 
algorithm is introduced. 

 
Define the following symbols: 



A COLOR IMAGE QUANTIZATION ALGORITHM... Informatica 29 (2005) 261–269 265 

• Np  denotes the number of image pixels 
• K  denotes the number of clusters (i.e. 

colors in the colormap) 
• zp  denotes the coordinates of pixel p 
• mk  denotes the centroid of cluster k 

(representing one color triple in the 
colormap) 

 
In this paper, the terms centroid and color triplet are used 
interchangeably.   

4.1 Measure of Quality 
The most general measure of performance is the mean 
square error (MSE) of the quantized image using a 
specific colormap. The MSE was defined in Eq. 1, and is 
repeated here for convenience: 
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where Ck is the kth cluster. 

4.2 The PSO-CIQ Algorithm 
In this section, a new post-clustering color image 
quantization approach is described. The proposed 
approach is of the class of quantization techniques that 
performs clustering of the color space.  
In the context of color image quantization, a single 
particle represents a colormap (i.e. a particle consists of 
K cluster centroids representing RGB color triplets). The 
RGB coordinates in each color triple are floating-point 
numbers. Each particle xi is constructed as xi = 
(mi,1,…,mi,k,…, Ki,m ) where mi,k refers to the kth cluster 
centroid vector of the ith particle. Therefore, a swarm 
represents a number of candidate colormaps. The quality 
of each particle is measured using the MSE (defined in 
Eq. 8) as follows: 

 
)()( ii MSEf xx =                              (9) 

 
The algorithm initializes each particle randomly from the 
color image to contain K centroids (i.e. color triplets). 
The set of K color triplets represents the colormap. The 
K-means clustering algorithm is then applied to each 
particle at a user-specified probability, pkmeans. The K-
means algorithm is used in order to refine the chosen 
colors and to reduce the search space. Each pixel is then 
assigned to the cluster with the closest centroid. The 
fitness function of each particle is calculated using Eq. 9. 
The PSO velocity and update Eq.'s 6 and 7 are then 
applied. The procedure is repeated until a stopping 
criterion is satisfied. The colormap of the global best 
particle after tmax iterations is chosen as the optimal 
result. 

 

The PSO-CIQ algorithm is summarized below: 
 
1. Initialize each particle by randomly choosing K 
color triplets from the image. 
2. For t = 1 to tmax 
(a) For each particle i 

i. Apply K-means for a few iterations with a 
probability  pkmeans. 

ii. For each pixel zp 
Calculate )(2

ki,pd mz − for all clusters ki,C . 

Assign zp to kki,C  where 
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2
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iii. Calculate the fitness, )( if x  

(b) Find the global best solution )(ˆ ty  
(c) Update the centroids using Eq.'s 6 and 7 
 

In general, the complexity of the PSO-CIQ algorithm is 
O(sKtmaxNp). The parameters s, K and tmax can be fixed in 
advance. Typically s, K and tmax << Np. Therefore, the 
time complexity of PSO-CIQ is O(Np). Hence, in general 
the algorithm has linear time complexity in the size of a 
data set. 

5 Experimental Results 
The PSO-CIQ algorithm was applied to a set of four 
commonly used color images namely: Lenna (shown in 
Figure 1(a)), peppers, jet and mandrill. The size of each 
image is 512 × 512 pixels. All images are quantized to 
16, 32 and 64 colors. 
The rest of this section is organized as follows: Section 
5.1 illustrates that the PSO-CIQ can be used successfully 
as a color image quantization algorithm by comparing it 
to other well-known color image quantization 
approaches. Section 5.2 investigates the influence of the 
different PSO-CIQ control parameters. Finally, the use of 
different PSO models (namely, gbest, lbest and lbest-to-
gbest) are investigated in section 5.3. 
The results reported in this section are averages and 
standard deviations over 10 simulations. An lbest PSO is 
used (unless otherwise specified) with an initial 
neighborhood of zero (considering the particle on its 
own) which linearly increased to a gbest implementation. 
This approach is referred to as lbest-to-gbest-PSO. This 
hybrid approach is used in order to initially avoid being 
trapped in local optima, by focusing on exploration [25]. 
The algorithm then attempts to converge to the best 
solution found by the initial phase by using a gbest 
approach. The PSO-CIQ parameters were initially set as 
follows: pkmeans = 0.1, s = 20, tmax = 50, number of K-
means iterations is 10 (the effect of these values are then 

investigated), w =0.72, 1c = 2c = 1.49 and Vmax= 255 
for all the test images. These parameters were used in 
this section unless otherwise specified. For the SOM, a 
Kohonen network of 4×4 nodes was used when 
quantizing an image to 16 colors, a Kohonen network of 
8×4 nodes was used when quantizing an image to 32 
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colors, and a Kohonen network of 8×8 nodes was used 
when quantizing an image to 64 colors. All SOM 
parameters were set as in Pandya and Macy [17]: the 

learning rate )(tη  was initially set to 0.9 then decreased 
by 0.005 until it reached 0.005, the neighborhood 

function )(tw∆  was initially set to (4+4)/4 for 16 
colors, (8+4)/4 for 32 colors, and (8+8)/4 for 64 colors. 
The neighborhood function is then decreased by 1 until it 
reached zero. 

5.1 PSO-CIQ vs. Well-Known Color 
Image Quantization Algorithms 

This section presents results to compare the performance 
of the PSO-CIQ algorithm with that of SOM and GCMA 
for each of the test images.  
Table 1 summarizes the results for the four images. The 
results of the GCMA represent the best case over several 
runs and are copied from [20]. The results are compared 
based on the MSE measure (defined in Eq. 8). The 
results showed that, in general, PSO-CIQ outperformed 
GCMA in all the test images except for the mandrill 
image and the case of quantizing the Jet image to 64 
colors. Furthermore, PSO-CIQ generally performed 
better than SOM for both Lenna and peppers images. 
SOM and PSO-CIQ performed comparably when applied 
to the mandrill image. SOM generally performed better 
than PSO-CIQ when applied to the Jet image. Figure 1 
show the visual quality of the quantized image generated 
by PSO-CIQ when applied to Lenna. 

5.2 Influence of PSO-CIQ Parameters 
The PSO-CIQ algorithm has a number of parameters that 
have an influence on the performance of the algorithm. 
These parameters include Vmax, the swarm size, the 
number of PSO iterations, pkmeans and the number of K-
means iterations. This section investigates the influence 
of different values of these parameters using the Lenna 
image when quantized to 16 colors. 

5.2.1 Velocity Clamping 
Table 2 shows that using Vmax = 5 or Vmax = 255 generally 
produces comparable results. 

5.2.2 Swarm Size 
Increasing the swarm size from 20 to 50 particles slightly 
improves the performance of the PSO-CIQ algorithm as 
shown in Table 3. Similarly, increasing the swarm size 
from 50 to 100 particles slightly improves the 
performance of the PSO-CIQ algorithm. On the other 
hand, reducing the swarm size from 20 to 10 particles 
significantly reduces the efficiency of the PSO-CIQ 
algorithm. The rationale behind these results is that 
increasing the number of particles increases diversity, 
thereby limiting the effects of initial conditions and 
reducing the possibility of being trapped in local minima.  

5.2.3 Number of PSO iterations 
Increasing the number of PSO iterations, tmax, from 50 to 
100 slightly improves the performance of the PSO-CIQ 
algorithm as shown in Table 4. Similarly, increasing tmax 
from 100 to 150 slightly improves the performance of the 
PSO-CIQ algorithm. Therefore, it can be concluded that 
increasing tmax generally improves the performance of the 
PSO-CIQ algorithm. 

5.2.4 pkmeans 
Applying the K-means clustering algorithm to a larger 
set of particles is expected to improve the performance of 
the PSO-CIQ algorithm. The rationale behind this 
expectation is the fact that the K-means algorithm 
generally reduces the search space and refines the chosen 
colors. This expectation is verified by the results shown 
in Table 5 which shows that increasing the value of 
pkmeans generally improves the performance of the PSO-
CIQ algorithm. However, as a trade-off, increasing the 
value of pkmeans will increase the computational 
requirements of the PSO-CIQ algorithm.  

5.3 Number of K-means iterations 
Reducing number of K-means iterations from 10 to 5 
degrades the performance of the PSO-CIQ as shown in 
Table 6. On the other hand, increasing the number of K-
means iterations from 10 to 50 significantly improves the 
performance of the PSO-CIQ as shown in Table 6. These 
results suggest that increasing the number of K-means 
iterations improves the performance of the PSO-CIQ. 
However, when the number of K-means iterations was 
reduced to 5 iterations but at the same time pkmeans was 
increased from 0.1 to 0.5 the generated MSE was equal 
to 210.315 ± 1.563 which is significantly better than the 
corresponding result in Table 6. This result suggests that 
the number of K-means iterations can be reduced without 
affecting the performance of PSO-CIQ given that the 
pkmeans is increased. 

5.4 Comparison of gbest-, lbest- and lbest-
to-gbest-PSO 

In this section, the effect of different models of PSO is 
investigated using the Lenna image when quantized to 16 
colors. A comparison is made between gbest-, lbest- and 
lbest-to-gbest-PSO (which has been used in the above 
experiments) using a swarm size of 20 particles. For 
lbest-PSO, a neighborhood size of l = 2 was used. Table 
7 shows the result of the comparison. The results show 
no significant difference in performance. 

6 Conclusion 
This paper presented a PSO-based color image 
quantization algorithm (PSO-CIQ). The PSO-CIQ 
algorithm was compared against other well-known color 
image quantization techniques. In general, the PSO-CIQ 
performed better than the other techniques when applied 
to a set of commonly used images. The effects of 
different PSO-CIQ control parameters were studied. The 
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performance of different versions of PSO was then 
investigated. 
The PSO-CIQ uses the K-means clustering algorithm to 
refine the color triplets. Future research can investigate 
the use of other more efficient clustering algorithms such 
as FCM and KHM [33]. Finally, the PSO-CIQ uses the 
RGB color space. Although the RGB model is the most 
widely used model, it has some weaknesses. One of these 
weaknesses is that equal distances in the RGB color 
space may not correspond to equal distance in color 
perception. Hence, future research may try to apply the 
PSO-CIQ to other color spaces (e.g. the L*u*v* color 
space [29]). 
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Tables: 
 

Table 1.  Comparison between SOM, GCMA and PSO-CIQ 
Image K SOM GCMA PSO-CIQ 

16 235.6 ± 0.490 332 210.203 ± 
1.487 

32 126.400 ± 
1.200 

179 119.167 ± 
0.449 

Lenna 

64 74.700 ± 
0.458 

113 77.846 ± 
16.132 

16 425.600 ± 
13.162 

471 399.63 ± 
2.636 

32 244.500 ± 
3.854 

263 232.046 ± 
2.295 

Peppers 

64 141.600 ± 
0.917 

148 137.322 ± 
3.376 

16 121.700 ± 
0.458 

199 122.867 ± 
2.0837 

32 65.000 ± 
0.000 

96 71.564 ± 
6.089 

Jet 

64 38.100 ± 
0.539 

54 56.339 ± 
11.15 

16 629.000 ± 
0.775 

606 630.975 ± 
2.059 

32 373.600 ± 
0.490 

348 375.933 ± 
3.42 

Mandril
l 

64 234.000 ± 
0.000 

213 237.331 ± 
2.015 

 
Table 2. Effect of Vmax on the performance of PSO-CIQ 

using Lenna image (16 colors) 
 MSE 

Vmax=5 209.338 ± 0.402 
Vmax=255 210.203 ± 1.487 

 
Table 3. Effect of the swarm size on the performance of 

PSO-CIQ using Lenna image (16 colors) 
 MSE 

s = 10 212.196 ± 2.458 
s = 20 210.203 ± 1.487 
s = 50 210.06 ± 1.11 
s = 100 209.468 ± 0.703 

 
 

Table 4. Effect of the number of PSO iterations on the 
performance of PSO-CIQ using Lenna image (16 colors) 

 MSE 
tmax = 50 210.203 ± 1.487 
tmax = 100 209.412 ± 0.531 
tmax = 150 208.866 ± 0.22 
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Table 5. Effect of pkmeans on the performance of PSO-CIQ 
using Lenna image (16 colors) 

 MSE 
pkmeans = 0.1 210.203 ± 1.487 
pkmeans = 0.25 209.238 ± 0.74 
pkmeans = 0.5 209.045 ± 0.594 
pkmeans = 0.9 208.886 ± 0.207 

 
 

Table 6. Effect of the number of K-means iterations on the 
performance of PSO-CIQ using Lenna image (16 colors) 

No. of K-means iterations MSE 
5 212.627 ± 3.7 
10 210.203 ± 1.487 
50 208.791 ± 0.111 

 
 

Table 7.  Comparison of gbest-, lbest- and lbest-to-gbest- 
PSO versions of PSO-CIQ using Lenna image (16 colors) 

 MSE 
gbest PSO 209.841 ± 0.951 
lbest PSO 210.366 ± 1.846 
lbest-to-gbest PSO  210.203 ± 1.487 

 
 
 
Figures: 

  
(a) Original (b) 16 colors 

  
(c) 32 colors (d) 64 colors 
Figure  1:  Quantization results for the Lenna image using PSO-CIQ 

 




