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In this study, the controlability of the Kappa number in two cooking applications is investigated. The
Kappa number is one of the quality measures in the pulp cooking process and usually the only on-line
measurement. It is a measure of the residual lignin content in the pulp. The cooking of the pulp mainly
takes place in the digester, where the significant part of the lignin is removed from the chips. The control
of the Kappa number is mainly carried out by temperature before the cooking zone, therefore it is impor-
tant to get some indication of the quality (Kappa number) beforehand. The Kappa number is predicted
before the cooking zone in two different cooking applications with the main variables affecting the Kappa
number using a clustering and fault diagnosis system (SOM and fuzzy clustering). The clustering and fault
diagnosis system is used also for a monitoring of the input variables. The data is collected from industrial
conventional and Downflow Lo-Solids continuous cooking digesters. Good results were achieved using
the clustering and fault diagnosis system.

Povzetek:

1 Introduction
Industrial processes generate a lot of information for op-
erators. The operators have many measurements to ob-
serve and control at the same time. This can be helped
by combining the knowledge. Clustering (see e.g. [1] and
[2]) is one of the methods for combination, because the
information is saved in databases and it is available. In-
dustrial processes are usually highly non-linear and it is
very difficult or impossible to make accurate models with
conventional modeling techniques. These kinds of systems
can be called complex systems. Pulp and paper processes
are examples of this kind of systems. Due to the non-
linearities and insufficient measurements for physical mod-
eling, neural networks ([3] and [4]) and fuzzy methods ([5],
[6], [7],[8], [9], [10], [11], [12] and [13]) have been applied
for the modeling and clustering purposes of the industrial
systems.

The processes studied are continuous cooking applica-
tions. Most of the kraft pulp is produced in the continu-
ous digesters [14]. In a typical chemical pulping process,
the pre-treated and penetrated wood chips are fed into the
impregnation vessel and pulp digester where lignin is re-
moved from the chips with the aid of chemical reactions.
Thus the wood fibres are separated from each other. The
kraft pulping process has been widely investigated during
recent years (see e.g. [15], [16] and [17]) and the optimal
cooking conditions at the single chip scale are well known.
The usual problem, however, is that the optimal conditions

at the digester scale cannot be ensured. Reasons for this are
the large dimensions of the process equipment, inadequate
measurements and a residence time of several hours.

The quality of the pulping is characterized e.g. by the
pulp’s strength, viscosity, yield and Kappa number. The
Kappa number indicates the residual lignin content of the
pulp in the blow line. The control of the Kappa number
is a very important part of the continuous cooking process.
A steady blow line Kappa number enables an optimized
chemical consumption in the subsequent parts of the fibre
line. The quality of the pulp has a major effect on the final
paper quality. [18]

The Kappa number is one of the most important quality
indicators in the cooking process. Therefore, the control of
the Kappa number is important. In conventional cooking,
the main control actions are performed in the top of the di-
gester, but the on-line measurement of the Kappa number is
in the bottom of the digester. The residence time between
these points is about four hours. It is obvious that with a
prediction of the Kappa number in the top of the digester,
more information is achieved and control actions can be
executed earlier than without any prediction. The predic-
tion can give new information of the change in the process
state and the direction of a change earlier. In the Downflow
Lo-Solids cooking process, the cooking zone begins at the
middle of the digester and the cooking temperature is the
main variable for Kappa number control.

The main active variables for the Kappa number are
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temperature, alkali concentration, cooking (residence) time
and the wood species. The temperature is controlled prior
to the cooking zone. The alkali (white liquor) is added into
the several parts of the process, depending on the applica-
tion. The alkali is impregnated into the chips in the im-
pregnation vessel, before the cooking operation occurs in
the digester. The air is removed from the chips before the
impregnation vessel in order to ensure the impregnation of
the chips with the alkali. The lignin is partly removed in the
impregnation vessel, due to the high temperature and alkali
addition in the feed of the impregnation vessel. The main
lignin removal takes place in the cooking zone, where the
temperature is significantly higher than in the impregnation
vessel. The pulp is washed in the counter-current washing
zone.

The Kappa number is modeled or predicted in several
studies, e.g. [19],[20],[21],[22] and [23]. A neural network
trained with a back propagation learning rule was used in
Dayal [19]. In Musavi et al. [20] a radial basis function
neural network model was constructed. In Musavi et al.
[21] a neuro-fuzzy system is utilized in the Kappa num-
ber prediction. Gustafson’s Kappa number model [23] is
used in the real-time Kappa number modeling in the con-
ventional cooking process in [24] and in the Downflow Lo-
Solids cooking process in [25].

In this study, the Kappa number is predicted in the two
cooking applications before the cooking zone using the
main variables affecting the Kappa number. The inputs
before the cooking zone (BCZ) and the output (blow line
Kappa number) of the model are presented in the Table I.

Table I. Variables of the system.

.

Variable Unit
Alkali concentration BCZ g/l (Na2O, EA)
Temperature BCZ K
Production rate BCZ adt/d
Kappa number BCZ
Blow line Kappa number

The prediction model for the Kappa number is con-
structed by a combination of the SOM [4] and fuzzy clus-
tering [10]. The system is used for prediction and moni-
toring purposes. SOM is the first clustering tool and also a
fault diagnosis system. SOM has been used for monitoring
and prediction purposes in [26]. The quantization error is
calculated, and if the error is notable, information is given
that the prediction can be faulty. This signal is given with
color codes. The colors of the traffic light are used as in
Ahvenlampi et al. [27]. If the system is in a good process
state, the signal is green. A slight deviation from the nor-
mal process state is indicated using a yellow color, and very
significant changes are colored with red. This color code
is a very useful tool for the operators. The final predic-
tion model is done with a fuzzy clustering model. In this
study, the Gustafson-Kessel [28] fuzzy clustering model,
which is a modification of the fuzzy c-means [29] algo-
rithm, is used. The inputs are the main active variables of
the Kappa number: the effective alkali, the temperature and
the residence time of the chips in the cooking, which is, in

our case, the production rate. Also, the Kappa number be-
fore the cooking zone was used as an input to the system.
The Kappa number was modeled using Gustafson’s [23]
Kappa number model. The input variables are the same
as in Gustafson’s Kappa number model. The results for
the conventional cooking process are presented for the first
time in [30]. In this study, the results for the Downflow Lo-
Solids cooking process are also presented. Good results
were achieved in both processes using the clustering and
fault diagnosis system.

The structure of the paper is an following. The methods
used are presented in chapter 2. Results are considered in
chapter 3 and discussion and conclusions are displayed in
chapters 4 and 5.

2 Methods used
In this chapter, methods used are presented. Empirical
and experimental methods were applied. Gustafson’s [23]
Kappa number model is an empirical model for delignifi-
cation. Clustering methods, such as fuzzy clustering (see
e.g. [9] and [10]) and SOM [4] are also presented. The
clustering and fault diagnosis system is formulated using
the combination of SOM and the fuzzy clustering model.

2.1 Gustafson’s Kappa number model
Gustafson et al. [23] have derived a mathematical model
consisting of a series of differential equations describing
the combined diffusion and kinetics within a wood chip
during the kraft pulping process. The model development
has been based on the studies of several researchers (see,
e.g. [23], [31] and [15]). The results are compared with
data from cooks, in which the pulping rates were kineti-
cally controlled, and in which the pulping rates were par-
tially mass transfer controlled.

The lignin removal in the impregnation vessel can be cal-
culated using Gustafson’s Kappa number model for the ini-
tial phase. The rate equation for the initial phase delignifi-
cation. is:

dL

dt
= kile

(17.5−8760/T )L (1)

where L is the lignin content at time t,
kil is a species specific constant and
T is temperature.
The species specific parameter kil in the rate equation in

the initial phase is 1. The initial phase seems to be indepen-
dent of the OH− concentration. This does not mean one
can proceed through this phase without alkali, but only in-
dicates that alkali concentration does not influence the rate.

2.2 Clustering methods
Fuzzy clustering methods can be used in modeling, identi-
fication and pattern recognition [29]. In this chapter, sev-
eral objective functions used for Takagi-Sugeno[6] model
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identification, usually minimized by fuzzy clustering meth-
ods, are presented. SOM [4] is also presented in this chap-
ter. Classified data in c clusters is arranged in a vector
Z = {z1, z2, ..., zN}. In this study, the consequent pa-
rameters for Sugeno models are estimated using weighted
least squares.

2.2.1 Fuzzy c-means

Fuzzy c-means is a widely used algorithm for fuzzy iden-
tification. The FCM cost function is usually formulated as
[29]:

J(Z;U,C) =
c∑

i=1

N∑
(µik)m

D2
ik

k=1

(2)

where C = {c1, ..., cc}. {c1, ..., cc} are the cluster cen-
ters (prototypes) to be determined, U = [µik] is a fuzzy
partition matrix [29] and

D2
ik = (zk − ci)

T
B (zk − ci) (3)

is a distance (norm) defined by matrix B (usually the
identity matrix), and m is a weighting exponent which de-
termines the fuzziness of the resulting clusters.

2.2.2 Gustafson-Kessel algorithm

Gustafson-Kessel algorithm [28] (Appendix A) is the ex-
tension most used by the FCM for identification [9]. In this
method, norm can be different with every cluster, and the
method has the advantage of looking for variable size hyper
ellipsoids. The new distance to be used in (2) becomes:

D2
ikBi = (zk − ci)

T
Bi (zk − ci) (4)

In this way, quasi-linear behaviors of the existing operat-
ing regimes are detected quite correctly. Improved covari-
ance estimation for Gustafson-Kessel algorithm has been
introduced in [32].

2.2.3 Number of the clusters

The decision of the number of the clusters is perhaps the
most critical point in fuzzy clustering. Many methods have
been introduced for the selection of the clusters, see e.g.
[9] and [10].

In this study, fuzzy hypervolume [33] is used in decid-
ing of the clusters. Fuzzy hypervolume is calculated using
equation (5)

Fhv =
c∑

i=1

[det (Fi)]
1/2 (5)

where Fi is a fuzzy covariance matrix.

2.2.4 SOM

The SOM [4] (Appendix B) is an unsupervised artifi-
cial neural network. The network is normally a two-
dimensional mapping / projection of the data group. The
visualization of the map is easier with a two-dimensional
map. In the training of the SOM network, data points are
sequentially introduced to the SOM. In each iteration, the
SOM neuron which is closest to the input unit is selected
by the equation (6). This unit is the Best Matching Unit
(BMU) or winner.

‖z − cc‖ = min
i
{‖z − ci‖} (6)

The weight vectors are updated using the following for-
mula. Only the weight vectors which are inside the neigh-
borhood radius, are updated.

ci (t + 1) = ci (t) + hci (t) [z (t)− ci (t)] (7)

2.3 Clustering and fault diagnosis system
The clustering and fault diagnosis system is formulated
with the combination of SOM and the fuzzy clustering al-
gorithm. The SOM is used as a first clustering method [34]
and a fault diagnosis tool in the system. The SOM is trained
with the normal operation data which is normalized. The
inputs to the system are the temperature, alkali concentra-
tion, production rate and Kappa number before the cooking
zone. The output is the Kappa number at the blow line of
the digester. The SOM codebook matrix (50 times 40 ma-
trix) is used as input data for fuzzy clustering identification.
When the clustering and fault diagnosis system is formu-
lated, the validation data is put through the SOM network
and the best matching unit is found. The best matching
units are used with the fuzzy clustering model. The quan-
tization errors are used in the coloring of the trends of the
measured inputs and the predicted output. The value of
the error is used in the color-coding. In the normal process
state, the color code is green. Yellow color is used for slight
deviations from the normal operation and major changes
are colored with a red color code. The structure of the clus-
tering and fault diagnosis system is illustrated in the Fig.
1.

3 Case studies
In this study, clustering and fault diagnosis system is used
for monitoring and prediction purposes in conventional and
Downflow Lo-Solids continuous cooking digesters. The in-
puts to the system are monitored and the Kappa number in
the blow line is predicted. The clustering and fault diagno-
sis system is a combination of SOM and fuzzy clustering
methods. The modeling data (about 30 000 data points for
both applications) was normal operation data from the in-
dustrial continuous digesters. The outliers and faulty mea-
surements are filtered out from the data. The inputs are
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Figure 1: Clustering and fault diagnosis system
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Figure 2: Impregnation vessel and continuous Kamyr di-
gester in conventional cooking process

temperature, alkali, Kappa number and production rate be-
fore the cooking zone. The output is the predicted Kappa
number at the bottom of the digester. The system is vali-
dated with the data from the same industrial digester, but
from the different time periods.

3.1 Case 1

Case one is a conventional Kamyr process consisting of an
impregnation vessel and a steam/liquor phase digester (Fig.
2). The process has been simplified by removing almost
all of the original liquor circulations, thus only the upper
and lower extraction screens in the end part of the cook-
ing zone are used. A characteristic of this process is the
grade changes between softwood and hardwood performed
almost every other day. The active alkali concentrations
of the white liquor, the digester feed circulation liquor and
the two black liquor circulations from the end of the cook-
ing zone are measured. The sulphide concentration of the
white liquor is also measured and it is assumed to stay con-
stant during the cooking. Before the latest simplifications

Figure 3: The coloring of the grade changes in the valida-
tion period 1.

Figure 4: The coloring of the grade changes and shutdown
in the validation period 2.

of the process, alkali measurements were taken from the
extraction screens in the upper part of the digester’s cook-
ing zone. These measurements have been utilized in the
alkali profile. Temperatures are measured from the various
parts of the digester.

The size of the SOM network structure was 50 times
40. The SOM codebook vector (2000 neurons) was an in-
put data for the fuzzy clustering model. The fuzzy clus-
tering method used was the Gustafson-Kessel algorithm.
The fuzzy clustering model was divided into 4 local mod-
els (clusters) according to the fuzzy hypervolume [33]. The
premise membership functions (bell-typed) are projected
from the clusters and the local models are obtained using
weighted least squares. The fine tuning of the parameters
is performed by gradient descent algorithm, see e.g. [8].

The fault diagnosis phase uses different size quantization
errors to indicate the deviations from the normal operation
points. Thus, this information is used in the coloring of
the Kappa number prediction trend with the colors (green,
yellow, red). In the Figs. 3 and 4, the situations where
the errors deviate and the trends have changing colors are
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Figure 5: Predicted Kappa number and the quantization er-
ror in the validation period 3.

shown. In these process states, the deviations are caused
by the grade changes and shutdown. In Fig. 3, there are
grade changes at the points of 700 and 3500. In Fig. 4, the
grade changes are at the points of about 600 and 2900. The
shutdown can be seen in Fig. 4 at the point of 3800.

In Figs. 5 and 6, a faulty process state where the system
is not normal can be observed. There are grade changes at
the points of about 450 and 3250. A slight deviation can
be seen at the point of about 2750, and it can be observed
from both Figs. 5 and 6 as a yellow and red trend color. The
same kind of example is illustrated in Figs. 7 and 8, where
the grade changes are at the points of about 500 and 3750.
The operational failure is at the point of 2450, which has
been identified by the clustering and fault diagnosis system.
In these figures the only significant deviations are colored.
Thus, the system is not too sensitive to small deviations.
The error size can be used as a tuning factor to the system.
The color changing value can be small, if every deviation
is desired to be shown, and if only notable disturbances are
needed to be shown, the tuning factor can be big.

In Figs. 3-8, the validation results of the clustering and
fault diagnosis system in the conventional cooking process
are shown. The time period in the figures is one minute.
It is the same time period as for the history database in
this industrial plant. As it can be seen from the figures,
the combined clustering model is accurate and it is able
to observe the changes in the process. The clustering and
fault diagnosis system can be used in fault diagnosis and
for Kappa number prediction purposes.

3.2 Case 2
Case two is a Downflow Lo-Solids [35] cooking process
(Fig. 9). The chips are impregnated in the impregnation
vessel (I1-I2) and in the first zone (D1) of the digester. Be-
tween upper extraction and cooking circulation there is a
counter-current washing zone (D2). In this zone, black
liquor is displaced with cooking circulation liquor which

Figure 6: Inputs to the system in validation period 3

Figure 7: Prediction in validation period 4.
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Figure 8: Inputs in the validation period 4.

temperature and alkali concentration are high. The lignin is
mainly removed in the comparatively long co-current cook-
ing zone (D3). At the bottom of the digester there is a short
washing zone. Softwood chips mainly consist of pine chips
with a small amount of spruce chips. Hardwood chips con-
sist mainly of birch chips with a small addition of aspen
chips.

The effective alkali concentrations of the white liquor,
digester feed circulation liquor, two black liquor extrac-
tions and cooking circulation are measured. The white
liquor is added to the impregnation vessel’s feed circula-
tion, to the digester’s feed circulation and to the cooking
circulation. The sulphide concentration of the white liquor
is measured, and it is assumed to stay constant during the
cooking. Temperatures are measured from the liquor cir-
culations and from the heating steam at the top of the di-
gester. A temperature profile from the top of the digester
to the cooking circulation is constructed emphasizing the
measured temperatures suitably. The temperature profile
from the cooking circulation to the blow line is based on
the temperature of cooking circulation.

In Downflow Lo-Solids cooking, the Kappa number con-
trol is mainly performed by the cooking zone temperature
in the middle of the digester (before D3).

The Kappa number prediction is shown in Fig. 10 and
the inputs to the system in Fig. 11. The prediction is
quite accurate in both species (hardwood at 0-1750 and
softwood at 1750-3500). A grade change has occurred at
1750, where the system indicates a disturbance. Another
faulty period is between 1850-2100, where the system has
turned to a yellow signal.

In Figs. 12 and 13, the results from validation period 2
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Cooking circulation

Lower extraction

Blow-line
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Washing liquor

Feed circulation
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Figure 9: Main flows and flow directions of chips and
liquor in impregnation vessel and digester in Downflow Lo-
Solids cooking

Figure 10: Kappa number prediction in the Downflow Lo-
Solids cooking process. (Validation period 1)
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Figure 11: The input variables to the system in the Down-
flow Lo-Solids cooking process. (Validation period 1).

are presented. There are grades changes at the points of
about 400 and 2700. Shutdown has occurred at the point
5700. There is a faulty process state in both species. In the
hardwood, the faulty state is at the period 1300-1600 and
in the softwood case, the period is 4700-5100 and after the
shutdown at 5700-6000.

4 Discussion
The sampling interval of the on-line Kappa number mea-
surements is about half an hour. Hence, it is useful to also
get continuous information about quality properties. The
control of the Kappa number is mainly carried out with the
cooking temperature, therefore it is important to get an in-
dication of the quality (Kappa number) before the cook-
ing zone in order to execute necessary control actions soon
enough.

In this study, a clustering and fault diagnosis system for
the monitoring of the process and prediction of the Kappa
number in the blow line of the digester is constructed and
validated. The system is implemented with a combination
of SOM and the fuzzy clustering model.

As shown in Figs. 3-13, the results of the fault diagno-
sis and clustering system are very accurate. The proposed
method is suitable for the optimization and fault diagnosis
of the kraft cooking process. In the case of major process
changes, the adjustment and verification of the model para-
meters into the optimal form is quite easy.

Fault diagnosis is carried out using the quantization er-
rors in a coloring of the trends of the input measurements
and predicted Kappa numbers. In Figs. 3-13, only sig-
nificant deviations are colored. Thus, the system is not too
sensitive to small deviations. The error size can be used as a
tuning factor for the system. The color changing value can
be small, if every deviation is desired to be shown, and if
only major disturbances are needed to be shown, the tuning
factor can be bigger. Color can be used to observe failures
in the input measurements or deviation from good opera-
tion points. Yellow and red colors indicate also that the

Figure 12: Kappa number prediction in the Downflow Lo-
Solids cooking process. (Validation period 2)

Figure 13: The input variables to the system in Downflow
Lo-Solids cooking process. (Validation period 2).

prediction may be inaccurate.
The method has been tested with the conventional and

Downflow Lo-Solids continuous cooking digesters and the
possibility to implement the system into an automation sys-
tem is considered. The clustering and fault diagnosis sys-
tem will be used also as a fault diagnosis and redundant
system for Gustafson’s Kappa number model.

5 Conclusions
The applicability of SOM and fuzzy clustering approach
for the controlability of the Kappa number was consid-
ered. The results of the usability of the combined clus-
tering and fault diagnosis system in the monitoring of the
conventional and Downflow Lo-Solids continuous cooking
processes and the prediction of the Kappa number with the
system are shown.
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Appendix A
Process of Gustafson-Kessel algorithm:

Step 1: Compute the cluster centres:

c
(l)
i =

∑ (
µ

(l−1)
ik

)m

zk

∑(
µ

(l−1)
ik

)m , 1 ≤ i ≤ C

Step 2: Compute fuzzy covariance matrix:

Fi =

N∑
k=1

(
µ

(l−1)
ik

)m (
zk − c

(l)
i

) (
zk − c

(l)
i

)T

N∑
k=1

(
µ

(l−1)
ik

)m
,

1 ≤ i ≤ C

Step 3: Compute the distances:

Bi = ρi det (Fi)
1/n

F−1
i , 1 ≤ i ≤ C

D2
ikBi = (zk − ci)

T
Bi (zk − ci) , 1 ≤ i ≤ C, 1 ≤ k ≤ N

Step 4: Update the partition matrix:

µ
(l)
ik =

1
C∑

j=1

(DikBi/DjkBi)
2/(m−1)

iterate until
∥∥U (l) − U (l−1)

∥∥ < ε.

Appendix B
The training of the SOM network is as following:

Step 1: Give initial values for neighborhood radius
hci (t) and learning rate α(t)

Step 2: Choose the steps K
Step 3: Choose one vector z from the learning data Z
Step 4: Find c, BMU (best matching unit) from the ini-

tialized network, which distance is closest to the input vec-
tor z. Euclidian distance is used.

‖z − cc‖ = min {‖z − ci‖}
Step 5: The updating of the weight vectors. Only the

weight vectors which are inside the neighborhood radius
are updated.

ci (t + 1) = ci (t) + α(t)hci (t) [z (t)− ci (t)]

Step 6: Set t = t + 1. If t = K, stop. Otherwise go to
step 3.
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