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In medical imaging systems, denoising is one of the important image processing tasks. Automatic noise 

removal will improve the quality of diagnosis and requires careful treatment of obtained imagery. Com-

puted tomography (CT) and X-Ray imaging systems use the X radiation to capture images and they are 

usually corrupted by noise following a Poisson distribution. Due to the importance of Poisson noise re-

moval in medical imaging, there are many state-of-the-art methods that have been studied in the image 

processing literature. These include methods that are based on total variation (TV) regularization, wave-

lets, principal component analysis, machine learning etc. In this work, we will provide a review of the 

following important Poisson removal methods: the method based on the modified TV model, the adaptive 

TV method, the adaptive non-local total variation method, the method based on the higher-order natural 

image prior model, the Poisson reducing bilateral filter, the PURE-LET method, and the variance stabi-

lizing transform-based methods. Our task focuses on methodology overview, accuracy, execution time and 

their advantage/disadvantage assessments. The goal of this paper is to provide an apt choice of denoising 

method that suits to CT and X-ray images. The integration of several high-quality denoising methods in 

image processing software for medical imaging systems will be always excellent option and help further 

image analysis for computer-aided diagnosis. 

Povzetek: Pregledni članek opisuje metode za čiščenje slike, narejene z rentgenom ali CT. 

1 Introduction 
Image denoising and noise removal with structure preser-

vation is one of important tasks that are integrated in med-

ical diagnostic imaging system, such as X-Ray, computed 

tomography (CT). X-ray and CT images are formed when 

an area under consideration of a patient is exposed under 

X-ray/CT and resulting attenuation is captured [1]. The 

noise density in these systems follows by the Poisson dis-

tribution and well known as the Poisson noise, shot noise, 

photon noise, Schott noise or quantum noise. Although 

Poisson noise does not depend on temperature and fre-

quency, it depends on photon counters. Poisson noise 

strength is proportional with the pixel intensity growth: 

Poisson noise at higher intensity pixel is greater than one 

at less intensity pixel [2].  

Nowadays, digitization is an important technique to 

improve image quality in medical imaging systems and 

the Poisson noise characteristics needs to be considered to 

remove it effectively [1]. Because the Poisson noise is a 

type of signal dependent noises, applying the usual de-

noising methods like for additive noises is ineffective, we 

need to design specific methods based on its characteris-

tics. 

There are many approaches were used to remove the 

Poisson noise, including total variation, mathematical 

transforms (wavelets, etc.), Markov random field, princi-

pal component analysis (PCA), machine learning etc. This 

paper mainly focuses on non-learning-based methods, 

learning technique is just a tiny part of this review that re-

lates to the field of expert image prior model. 

The approach that has been widely studied in the past 

few year and earn many achievements is regularization by 

total variation. This approach based on the regularization 

that was developed long time ago. Rudin et al.  [3] used 

the total variation regularization to remove noise on digital 

images. Basically, they minimized an energy functional 

based on L2 norm of image gradient with fixed constraint 
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for noise variance. The proposed model was also known 

as ROF (Rudin-Osher-Fatemi) model. This work is well-

known and was cited by tens of thousands of times. How-

ever, the ROF model focuses on restoring images that are 

degraded by Gaussian noise. This model is ineffective to 

process Poisson noise: in the resulting image, the edge is 

not well preserved; if regularization strength is decreased, 

the noise in higher intensity-region still remains.  

To pass over those limitations of the ROF model, Triet 

et al. [2] proposed an improved version that can process 

the Poisson noise well. This model is known as modified 

ROF model (MROF). However, both of original methods 

that based on ROF and MROF create an effect: artificial 

artifacts [1]. The artificial artifacts on digital images are 

misrepresentations of image processing. This effect makes 

some regions of images get unnatural [4]. The artifacts 

have many types, such as: staircasing, star, halo etc. In 

medical imaging, these artifacts can cause doctors to mis-

take for actual pathology. Usually, they need to learn to 

recognize these artifacts to avoid mistaking. So, during the 

processing, these artificial regions should not to be cre-

ated. Prasath  [1] proposed an adaptive version of MROF 

to remove this effect. This method is known as the adap-

tive total variation method (ATV). 

A common problem of both MROF and ATV methods 

is ineffective to process on photon-limited image. To en-

hance quality of this type of image in denoising process, 

Salmon et al.  [5] proposed the non-local PCA method. 

Thereafter, Liu et al.  [6] proposed another adaptive non-

local total variation method (ANLTV). This method in-

creases the information structure of image and gives the 

better denoising result on photon-limited images. 

Non-local approaches like ANLTV are state-of-the-

art. However, if the local models are combined with train-

ing process, we can get the result that is not inferior to 

other state-of-the-art non-local models. Wensen et al. [7] 

proposed a local variational model that incorporates the 

fields of expert prior image that is widely used in image 

prior and regularization model. This model is known as 

the higher-order natural image prior model (HNIPM). The 

HNIPM can remove Poisson noise on both high and low 

peak images. Although this model is local, since the model 

is trained on the Anscombe transform domain (very effec-

tive for Poisson denoising), it is also a competitive model 

to compare to other state-of-the-art Poisson denoising 

models. 

However, above methods are performed on iteration 

and this requires more execution time to remove noise. 

Kirti et al.  [8] proposed a spatial domain filter by modi-

fying bilateral filter framework to remove Poisson noise. 

The Poisson reducing bilateral filter (PRBF) is non-itera-

tive nature. So, it can treat Poisson noise faster than itera-

tive based approaches. 

Another approach is highly expected – wavelet and its 

modifications. Thierry et al. proposed a denoising method 

based on image-domain minimization of Poisson unbiased 

risk estimation: PURE-LET (Poisson Unbiased Risk Esti-

mation – Linear Expansion of Thresholds) [9]. This 

method is performed in a transformed domain: undeci-

mated discrete wavelet transform and can be extended 

with some other transforms. Zhang et al.  [10] also pro-

posed a multiscale variance stabilizing transform (MS-

VST) that can be deemed as an extension of Anscombe 

transform. This transform also can be combined with 

wavelet, ridgelet, and curvelet [10]. Both PURE-LET and 

MS-VST are competitive relative to many existing de-

noising methods, in which, the VST based methods are 

new research trend for CT and X-Ray images denoising 

[11] [12] [13] [14], because of using VST, Poisson noise 

can be treated as the additive Gaussian noise. Hence, re-

searchers can reuse the existing Gaussian denoising meth-

ods, that get many achievements and it is unnecessary to 

develop a partial denoising method to treat Poisson noise. 

Our paper is organized as follows: in Section 2, a de-

tail about image formation on CT/X-Ray imaging systems 

and characteristics of Poisson noise are provided; in Sec-

tion 3, methodology of Poison denoising methods are cov-

ered shortly; Section 4 and Section 5 present the discus-

sion about accuracy, performance, advantages/disad-

vantages of methods and the conclusion. 

2 Image formation in medical imag-

ing systems and Poisson noise 
In CT and X-Ray imaging systems, to produce a radio-

graphic image, X-Ray photons must pass through tissue 

and interact with an image receptor. The process of image 

formation is a result of differential absorption of the X-

Ray beam as it interacts with the anatomic tissue [15]. Dif-

ferential absorption is a process whereby some of the X-

Ray beam is absorbed in the tissue and some passes 

through the anatomic part. Because varying anatomic 

parts do not absorb the primary beam to the same degree, 

anatomic parts composed of bone absorb more X-Ray 

photons than parts filled with air. Differential absorption 

of the primary X-Ray beam creates an image that structur-

ally represents the anatomic area of interest. 

 

 
a 

 
b 

 

Figure 1: The Poisson noise generation: a) The ex-

pected noise-free image; b) The noisy image 

 

Poisson noise is a fundamental form of uncertainty as-

sociated with the measurement of light, inherent to the 

quantized nature of light and the independence of photon 

detection [16]. Its expected magnitude is signal-dependent 

and causes the dominant source of image noise except in 

low-light conditions. 

Image sensors measure scene irradiance by counting 

the number of discrete photons incident on the sensor over 

a given time interval. Because of the photoelectric effect 
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in digital sensors, photons are converted into electrons, 

whereas film-based sensors rely on photo-sensitive chem-

ical reaction. Then, the random individual photon arrival 

leads to Poisson noise. 

Individual photon detections can be considered as in-

dependent events that follow a random temporal distribu-

tion. The photon counting is a Poisson process, and the 

number of photons 𝑘 measured by a given sensor element 

over a time interval 𝑡 is described by the discrete proba-

bility distribution 

𝑃(𝑘) =
𝑒−𝜆𝑡(𝜆𝑡)𝑘

𝑘!
, 

where 𝜆 – expected number of photons per unit time inter-

val, which is proportional to the incident scene irradiance. 

Since the Poisson noise is derived from the nature of 

signal itself, it provides a lower bound on the uncertainty 

of measuring light. Any measurement would relate to 

Poisson noise, even under the ideal conditions of free-

noise sources. When Poisson noise is the only significant 

source of uncertainty, as commonly occurs in bright pho-

ton-rich environments, imaging is called photon-limited 

[16]. By the Poisson distribution, to reduce the Poisson 

noise, need to capture more photons. This requires longer 

exposures times or increasing the X-Ray intensity beam. 

However, the number of photons captured in a single shot 

is limited by the full well capacity of the sensor. Moreo-

ver, increasing exposures times or photon intensity beam 

would be harmful for health of patients. Since this limita-

tion of technology, it is necessary to reduce the Poisson 

noise by image processing algorithms.  

Figure 1 simulates the Poisson noise generation on 

image. We use the built-in imnoise function of MATLAB 

to generate the Poisson noise on skull image [17]. The 

Poisson noise in the higher intensity regions is greater than 

one of the lower intensity regions. 

3 Denoising methods on CT and X-

Ray images 

3.1 The modified ROF model 

Suppose that 𝑓 – a given grayscale image on Ω (a bounded 

open subset of ℝ2, i.e. Ω ⊂ ℝ2), 𝑢 – an expected denoising 

image that closely matches to observed image, 𝑥 =
(𝑥1, 𝑥2) ∈ Ω – pixels. 

By using total variation regularization, Triet et al. con-

vert the Poisson denoising problem to the following mini-

mization problem: 

𝑢 = argmin
𝑢

(∫ (𝑢 − 𝑓. 𝑙𝑛(𝑢))𝑑𝑥
Ω

 

+𝛽 ∫ |∇𝑢|𝑑𝑥
Ω

)       (1) 

where, 𝛽 > 0 – regularization parameter. 

To solve this problem, Triet et al. used the gradient 

descent method that replaces the regularization parameter 

by function that is suitable to process noise on image re-

gions with both low and high intensity. This manner ex-

actly suits the signal-dependent nature of Poisson noise.  

3.2 The adaptive Total variation method 

The adaptive total variation method is similar with above 

method. However, the second term in (1) is replaced by an 

adaptive total variation: 

 

𝑢 = argmin
𝑢

(∫ (𝑢 − 𝑓. 𝑙𝑛(𝑢))𝑑𝑥
Ω

 

+ ∫ 𝜔(𝑥)|∇𝑢|𝑑𝑥
Ω

)       (2) 

where, 

𝜔(𝑥) =
1

1 + 𝑘|𝐺𝜎 ∗ ∇𝑢|
, 

𝐺𝜎  – the Gaussian kernel for smoothing with 𝜎 variance, 

𝑘 > 0 – contrast parameter, operator ∗ is convolution. 

In order avoid staircasing artifacts, Prasath  [1] pro-

posed the generalized inverse gradient term incorporating 

to the local statistics with patches extracted from image. 

The detail about this term is presented below. 

Let 𝒩𝑥,𝑟 be the local region centered at 𝑥 with radius 

𝑟. Consider the local histogram of a pixel 𝑥 ∈ Ω and its 

corresponding cumulative distribution function [18]: 

𝐻𝑥(𝑦) =
|{𝑧 ∈ 𝒩𝑥,𝑟 ∩ Ω|𝑢(𝑧) = 𝑦|}|

|𝒩𝑥,𝑟 ∩ Ω|
, 

𝐶𝑥(𝑦) =
|{𝑧 ∈ 𝒩𝑥,𝑟 ∩ Ω|𝑢(𝑧) ≤ 𝑦|}|

|𝒩𝑥,𝑟 ∩ Ω|
, 

Where 0 ≤ 𝑦 ≤ 𝐿, 𝐿 – maximum possible pixel value of 

the image, |∙| – the number of elements of set (cardinality). 

The local histogram quantity to quantify local regions 

of given image is: 

𝒬(𝑥) = ∫ 𝐶𝑥(𝑦)𝑑𝑦
𝐿

0

. 

Finally, the adaptive weight in (2) is defined as: 

𝜔(𝑥) =
1

1 + 𝑘(|𝐺𝜎 ∗ ∇𝑢(𝑥)|/𝒬(𝑥))2
 

The alternating direction method of multipliers [1] is 

provided to solve the problem (2). This iterative manner 

also gives good performance. 

3.3 The adaptive non-local Total Variation 

method 

In the case of photon-limited image, a lot of useful struc-

ture information of original image has been lost. So, the 

corrupted image is close to the binary image. If we only 

apply the denoising methods, such as the modified ROF 

model or the adaptive total variation, the denoising result 

is not really effective. 

For this type of images, firstly, we need to enhance 

image (improve light, contrast, etc.) and after that, per-

form the denoising process. 

The method that Liu et al.  [6] proposed is similar with 

above idea. For first step, they enhance the image detail 

by using Euler’s elastica. In second step, they remove 

noise by using non-local total variation to aim to preserve 

the structure information. 

The Euler’s elastica-based noise image enhancement 

model is proposed hereafter: 
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𝑢 = argmin
𝑢

(∫ 𝑢 − 𝑓. 𝑙𝑛(𝑢)𝑑𝑥
Ω

 

+𝜆 ∫ (𝑎 + 𝑏 (∇.
∇𝑢

|∇𝑢|
)

2

) |∇𝑢|𝑑𝑥
Ω

)     (3) 

where 𝜆 > 0 – regularization parameter, 𝑎 > 0, 𝑏 > 0 – 

weight parameters. 

The Poisson denoising model based on non-local total 

variation is provided as follows: 

𝑈 = argmin
𝑢

(∫ (𝑢 − 𝑈)2𝑑𝑥
Ω

 

+𝛼 ∫ |∇NL𝑢|𝑑𝑥
Ω

),     (4) 

where 

∫ |∇NL𝑢|𝑑𝑥
Ω

= ∫ √∫ (𝑢(𝑥) − 𝑢(𝑦))
2

𝜔(𝑥, 𝑦)𝑑𝑦
Ω

𝑑𝑥
Ω

 

– is non-local total variation, 𝜔(𝑥, 𝑦) – the non-local 

weight to measure the similarity of patches centered at the 

pixels 𝑥 and 𝑦. The denoised version will be restored from 

(4) by using an inverse Anscombe transform as bellow: 

𝑢 = (
𝑈

2
)

2

−
3

8
. 

The alternating direction method of multipliers is also 

recommended to solve the models (3) and (4). 

3.4 The higher-order natural image prior 

model 

The denoising method by the higher-order natural image 

prior model is based on the fields of expert image prior 

model that can be presented as follows: 

argmin
𝑢

∑ 𝛼𝑖 ∑ 𝜌((𝑘𝑖 ∗ 𝑢)𝑝)

𝑁

𝑝=1

𝑁𝑓

𝑖=1

+ 𝐷(𝑢, 𝑓),         (5) 

where 𝑁𝑓 – number of filters, 𝑘𝑖 – set of learned linear fil-

ters with corresponding weights 𝛼𝑖 > 0, 𝑁 – number of 

image pixels, 𝜌(𝑧) = ln (1 + 𝑧2) – the potential function, 
(𝑘𝑖 ∗ 𝑢)𝑝 – a convolution at pixel 𝑝. The first term is de-

rived from the fields of expert image prior model, the sec-

ond term 𝐷(𝑢, 𝑓) is data fidelity that has various forms. 

By using model (5), Wensen et al. [7] proposed two 

models that were trained in various transform domains: 

the first model – is trained in the original image domain 

with the Poisson noise statistics derived data term; the sec-

ond model – is trained in the Anscombe transform domain 

with a quadratic data term. The first model removes Pois-

son noise on high peak images effectively, but it fails for 

low peak image. The reason is for the low peak image, 

there are large regions of image, in which, there are many 

pixels with zero intensity. This leads to those pixels with 

zero intensity cannot be updated and fixed at 0 in the iter-

ations. Hence, noise still remains. The second model is 

powerful to remove noise for low peak images, but the 

quadratic data term is only effective to treat Gaussian 

noise. So, Wensen et al. combined the advantages of two 

models to make a novel model by replacing the quadratic 

data term in the second model by the Poisson noise statis-

tics of data term in the first model. The resulting model 

proved its own power to remove the Poisson noise for both 

cases of high and low peak images. 

The iPiano algorithm [19] is recommended to solve 

the resulting model. It is an efficient algorithm for non-

convex optimization problems. 

3.5 The Poisson reducing bilateral filter 

The bilateral filter was proposed by Tomasi et al.  [20] to 

reduce additive Gaussian noise. This filter was developed 

based on the geometric and photometric distances in a lo-

cal window. Kirti et al.  [8] modified this filter by replac-

ing the geometric distance by Poisson distribution. There-

fore, the mean value is selected as mean of image intensity 

in a local window. For every mean value in the local win-

dow, the expected value is estimated by the maximum 

likelihood estimation method. 

Since the Poisson reducing bilateral filter is non-iter-

ative nature, its performance primarily depends on the 

maximum likelihood estimation method. 

3.6 The PURE-LET method  

The PURE-LET (Poisson Unbiased Risk Estimation – 

Linear Expansion of Thresholds) method [9] is extended 

from SURE-LET method [21]. The PURE-LET method is 

used to reduce Poisson noise. Basically, this denoising 

method was proposed based on a minimization of Poisson 

unbiased risk estimation by using the linear expansion of 

thresholds (LET). Luisier et al.  [9] proposed the PURE-

LET to reduce Poisson noise without any priori hypothe-

ses on noise-free image.  

The main goal of this proposed denoising method is a 

minimization of the mean squared error of the noise-free 

image and the denoised image. However, since the noise-

free image is unknown, unbiased risk estimation was used 

that known as the Poisson unbiased risk estimation. This 

estimation was given in the unnormalized-Haar-discrete-

wavelet-transform domain. In this estimation, an unknown 

image function used to replace for the noise-free image. 

To minimize this estimation, above unknow image 

function will be expressed in the linear expansion of 

thresholds. If elementary denoising functions are given, 

the minimization problem gets to be the problem of find-

ing weight parameters in the linear expansion. Hence, the 

main task of this PURE-LET method focuses on solving a 

linear system of equations, in which the variables are 

weight parameters of the linear expansion. 

The linear expansion of thresholds can be presented in 

transformed domain, such as unnormalized wavelet trans-

form, Anscombe transform and Haar-Fisz transform.  

Another important task in the PURE-LET methods is 

choosing a set of elementary denoising functions (or 

thresholding functions). These functions need to be satis-

fied the following minimal properties: differentiability, 

anti-symmetry, linear behavior for large coefficients. 

The PURE-LET method is a competitive method to 

compare to other state-of-the-art Poisson denoising meth-

ods. This method is also easy to be extended to treat other 

noises, such as Gaussian noise [22] [23] [24] [25], the 

mixed noise [26] [27] [28] [29] [30]. The method perfor-

mance much depends on the performance of methods of 
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solving linear system of equations, for example, the 

Gauss-Seidel method. 

3.7 The multiscale variance stabilizing 

transform method 

The multiscale variance stabilizing transform method is 

proposed by Zhang et al. [10] to reduce Poisson noise on 

photon-limited image. This method is based on the vari-

ance stabilizing transform (VST) that is incorporated 

within the multiscale framework offered by the undeci-

mated wavelet transform (UWT). This transform is used 

because of its translation-invariant denoising. The de-

noising task comes to finding coefficients of the mul-

tiscale variance stabilizing transform. By using these co-

efficients, we can estimate the noise-free image. 

The denoising method involves in the following steps: 

transformation – computation of UWT in conjunction with 

MS-VST; detection – detection of significant detail coef-

ficients by hypotheses test; estimation – reconstruction of 

the final estimate by using the knowledge of the detected 

coefficients. Since the signal reconstruction requires in-

verting the MS-VST-combined UWT, this reconstruction 

process is formulated as a convex sparsity-promotion op-

timization problem. This optimization problem can be 

solved by many iterative methods, such as the iterative hy-

brid steepest descent method. 

The MS-VST method can be combined with wavelet, 

as well as ridgelet (wavelet analysis in Radon domain) or 

curvelet. Further, this method can also to be extended to 

reduce other types of noise. 

3.8 Adaptive variance stabilizing trans-

form based methods 

The Poisson denoising methods by VST-based approach 

is often performed by three steps: applying the variance 

stabilizing transform, such as Anscombe transform; apply-

ing the denoising methods to resulting image, in which the 

denoising methods are the one for additive Gaussian 

noise; using inverse transformation to denoised image to 

get the Poisson denoised image. 

Hence, VST-based methods can use state-of-the-art 

Gaussian denoising methods. By this idea, there are some 

very effective methods, such as BM3D [31], SAFIR [32], 

BLS-GSM [33]. 

For VST-based methods, the choice of inverse trans-

formation is very important. Makitalo and Foi [11] pro-

posed the optimal inverse Anscombe transform. The adap-

tive variance stabilizing transform-based method of 

Makitalo et al. can be covered as follows: 

Step 1: Apply the Anscombe transform to Poisson 

noisy image to get asymptotically additive Gaussian noisy 

image. For 𝑧 – the observed pixel values obtained through 

an image acquisition device, the Anscombe transform is 

𝑓(𝑧) = 2√𝑧 +
3

8
, 𝑧 = (𝑧1, … , 𝑧𝑁), 𝑁 − pixel numbers. 

Step 2: Denoise the transformed images by additive 

Gaussian denoising method. 

Step 3: The denoising of 𝑓(𝑧) produces a signal 𝐷 that 

considered as an estimate of 𝐸{𝑓(𝑧)𝑦}, 𝑦 = (𝑦1, … , 𝑦𝑁) – 

pixel values of denoising image, 𝐸{. } – the mean. So, it is 

necessary to apply inverse transformation to 𝐷 to obtain 

the desired estimate of 𝑦. The inverse transformations can 

be used include: 

a) The exact Unbiased inverse 

ℐ𝐶(𝐷) = 2 ∑ (√𝑧 +
3

8
.
𝐷𝑧𝑒−𝐷

𝑧!
)

+∞

𝑧=0

. 

b) The ML inverse 

ℐ𝑀𝐿(𝐷) = {
ℐ𝐶(𝐷), 𝑖𝑓 𝐷 ≥ 2√3 8⁄

0,                 𝑖𝑓 𝐷 < 2√3 8⁄
. 

c) The MMSE inverse 

ℐ𝑀𝑀𝑆𝐸(𝐷) = ∫ 𝑝(𝐷|𝑦)𝑦𝑑𝑦
+∞

−∞

∫ 𝑝(𝐷|𝑦)𝑑𝑦
+∞

−∞

⁄ , 

where, 𝑝(𝐷|𝑦) =
1

√2𝜋𝜖2
e

−
1

2𝜖2(𝐷−𝐸{𝑓(𝑧)|𝑦})2

− the general-

ized probability density function of 𝑧 conditioned on 𝑦. 

Another adaptive VST-based method that has high 

accuracy and performance to treat Poisson noise was pro-

posed by Azzari and Foi [12]. This method is known as 

the iterative VST-based method.  

This method is also handled via three steps as above. 

However, in step 2, authors proposed another method to 

remove noise, but they did not use existing additive 

Gaussian denoising methods. The method is effective and 

has high performance because it exploited characteristics 

of Anscombe transformation. 

The algorithm starts by setting �̂�0 = 𝑧. At each itera-

tion 𝑖 = 1, … , 𝐾, a convex combination needs to be com-

puted: 

𝑧�̅� = 𝜆𝑖𝑧 + (1 − 𝜆𝑖)�̂�𝑖−1, 
where 0 < 𝜆𝑖 < 1, �̂� – estimate of 𝑦. So, �̂�𝑖−1 can be 

treated as a surrogate for 𝑦: 

𝐸{𝑧𝑖|𝑦} = 𝑦 = 𝜆𝑖
−2𝑣𝑎𝑟{𝑧𝑖|𝑦}, 

Where, 𝐸{. }, 𝑣𝑎𝑟{. } – the mean and variance respectively, 

and 𝑧𝑖 has higher SNR (signal-to-noise ratio) than 𝑧 for 

any 𝜆𝑖 < 1. 

Apply a VST 𝑓𝑖 to 𝑧𝑖 and obtain an image 𝑧𝑖 = 𝑓𝑖(𝑧𝑖), 

which can be denoised by a filter Φ for additive white 

Gaussian noise to get a filtered image 𝐷𝑖 = Φ(𝑧𝑖). Assum-

ing 𝐷𝑖 = 𝐸{𝑓𝑖(𝑧𝑖)|𝑦}, the exact unbiased inverse of 𝑓𝑖, 

ℐ: 𝐸{𝑓𝑖(𝑧𝑖)|𝑦} → 𝐸{𝑧𝑖|𝑦} = 𝑦, 
Will restore the original image: 

�̂�𝑖 = ℐ𝑓𝑖

𝜆𝑖(𝐷𝑖). 

This process loops until 𝑖 = 𝐾. 

The accuracy and performance of this method are 

competitive to other state-of-the-art Poisson denoising 

methods. 

3.9 Other Poisson denoising methods 

Since the Poisson denoising problem has important role 

not only in medicine, but also in other fields, such material 

science, astronomy etc., beside above state-of-the-art de-

noising methods, there are also many other denoising 

methods are highly assessed, such as: 
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The adaptive BLS-GSM method of Li et al.  [34]. 

They proposed this method based on Bayesian least 

squares method. Basically, this Poisson denoising method 

is a term of VST-based approach. 

The optimized anisotropic Poisson denoising method 

of Radow et al.  [35]. This method is proposed based on 

variational approach and anisotropic regulariser in the 

spirit of anisotropic diffusion. This method can be consid-

ered as a part of the total variation regularization. 

The Poisson denoising based on greedy approach of 

Dupe and Anthoine  [36]. The goal of this method is com-

bination of a greedy method with Moreau-Yosida regular-

ization of the Poisson likelihood. 

The Poisson reduction based on region classification 

and response median filtering of Kirti et al [37]. Their con-

tribution is usage of modified Harris corner point detector 

to predict noisy pixels and responsive median filtering in 

spatial domain. 

The primal-dual hybrid gradient algorithm [38] is a 

Poisson denoising method that should be also noticed. 

This method is based on total variation regularization and 

primal-dual hybrid gradient. So, this method has very 

good performance. 

4 Discussion 
Firstly, we will discuss on the accuracy of Poisson de-

noising methods. The MROF, ATV, ANLTV and HNIPM 

methods based on regularization, their accuracy is good 

enough to perform in medical imaging systems. Since the 

HNIPM method is trained on Anscombe transform do-

main, regardless of its localization, its accuracy is compet-

itive enough to other methods. If we combine the MROF, 

ATV, ANLTV methods with training process to select op-

timal parameters in iterative manners, their accuracy 

might be so far better than the HNIPM method, especially, 

for the ANLTV method, because it does not change the 

information structure of image in denoising process.  

An effect that reduces the accuracy in denoising pro-

cess is artificial artifacts. Almost of local methods usually 

create this effect. So, we need to perform some techniques 

to avoid adding artifacts to images, such in the case of the 

ATV method. For non-local methods, since the infor-

mation structure of image is preserved, the artifacts will 

be seldom added. The PRBF method has the lowest accu-

racy to compare to other denoising methods, including the 

PURE-LET, MS-VST and adaptive VST-based methods. 

When filter noise by PRBF, the hallo artifacts will appear 

in resulting images and the artifacts strength depends on 

filter parameters. Although we can control these parame-

ters to reduce the hallo artifacts, it is very hard to select 

optimal values. There are some methods were developed 

to reduce this type of artifacts [39] [40], but it is still un-

finished, especially, on Poisson noise reduction process by 

bilateral filter. For the PURE-LET, MS-VST and adaptive 

VST-based methods, the accuracy might be better than lo-

cal variational based methods without training process, 

particularly, for the photon-limited images. However, the 

PURE-LET method is usually unstable. In our test, the de-

noising result by the PURE-LET method is slightly differ-

ent in every execution, regardless of unchangeable input 

setting of parameters and configuration. When we com-

pare the MS-VST method to the PURE-LET method, the 

MS-VST method has better accuracy, especially, for pho-

ton-limited images [10]. The adaptive VST-based meth-

ods have better accuracy and performance to compare to 

MS-VST method [11] [12]. Both the PURE-LET and MS-

VST cause the artifacts. For the adaptive VST-based 

methods, appearance of the artifacts depends on selection 

of Gaussian denoising methods. 

Secondly, we focus on method performance by as-

sessing the execution time. Poisson denoising methods, 

such as MROF, ATV, ANLTV, PURE-LET, MS-VST and 

adaptive VST-based methods are designed on iterative 

manner, so their execution time is longer than one of the 

PRBF method. The PRBF method is very fast and this is 

proven in processing large images. Execution time of both 

of PURE-LET, MS-VST and adaptive VST-based meth-

ods also depends on computation time of transforms. Oth-

erwise, for the PURE-LET method, it also depends on ex-

ecution time of solving system of linear equations, and for 

the MS-VST method – depends on performance of method 

to solve convex optimization problem, such as the hybrid 

steepest decent method, and for adaptive VST-based 

methods – depends on performance of selective Gaussian 

denoising methods. For other methods: MROF, ATV, 

ANLTV, HNIPM, execution time much depend on perfor-

mance of method to solve optimization problem (convex 

optimization for the MROF, ATV, ANLTV methods and 

nonconvex optimization for the HNIPM method). There 

were some methods are recommended in their proposed 

works to solve these optimization problems: the gradient 

descent method, the alternating direction method of mul-

tipliers for convex optimization; iPiano for non-convex 

optimization. However, for the convex optimization, we 

can use other faster methods, such as: the primal-dual 

modified extragradient method, the primal-dual Arrow-

Hurwitz method, the graph-cut method [41]. In work [41], 

Chambolle et al. showed comparison of execution time of 

above methods with the alternating direction method of 

multipliers. Among of these methods, the primal-dual Ar-

row-Hurwitz method is the fastest, but proof of its conver-

gence is open problem. The primal-dual modified extra-

gradient method is certainly convergent and it is easy to 

parallelize on GPU. The graph-cut method is very fast and 

give exact discrete solutions, but an efficient paralleliza-

tion on GPU is still open problem. For the non-convex op-

timization, the iPiano method is state-of-the-art algorithm 

and fast enough to applied in this situation. Parallelization 

of the iPiano method is still open problem. Hence, the ex-

ecution time problem of all above methods can be solved 

by combining with higher performance algorithms and/or 

parallel processing. 

Finally, about methodology, the MROF, ATV, 

ANLTV and PRBF methods are simple and easy to under-

stand and easy to write program. The HNIPM is slightly 

more complex and requires the training process. Both of 

PURE-LET, MS-VST and adaptive VST-based methods 

are the most complex. They are performed in various 

transform domains. Their accuracy and performance also 

depend on calculation of these transforms. 
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To choose suitable method for Poisson denoising in 

specific cases, we need to know their advantages and dis-

advantages. These advantages and disadvantages are listed 

in Table 1 in terms of denoising capabilities of the re-

viewed denoising methods here. After decades of de-

noising research there are no universal denoising method 

even in the case of additive Gaussian noise. However, by 

concentrating on the state of the art denoising methods 

with emphasize of domain specific techniques will pave 

the way for choosing an optimal denoising method. We 

believe the overview of Poisson denoising methods based 

on mathematically well-defined techniques studied here 

can be used by researchers in developing and utilizing 

these in various domains. 

5 Conclusion 
The denoising on CT/X-Ray images is still a challenge in 

medical image processing, especially, on the photon-lim-

ited images. The state-of-the-art methods cannot solve 

simultaneously the following tasks: high accuracy on both 

photon-limited and photon-unlimited images, avoid add-

ing artificial artifacts and the performance. The goal to de-

velop an effective universal method that reduces multiple 

types of noise is even more difficult challenge.  

In this paper, we reviewed on the following methods: 

MROF, ATV, ANLTV, HNIPM, PRBF, PURE-LET and 

MS-VST. The PRBF is excellent choice if the execution 

time is the most important. However, if the accuracy is 

priority, non-local methods are recommended. If we need 

to process the photon-limited images, the ANLTV, MS-

VST and adaptive VST-based methods are very good 

choices. If we want to exploit the existing Gaussian de-

noising methods, we can use adaptive VST-based meth-

ods, including MS-VST. 

During denoising process is performed, it is necessary 

to avoid adding artificial structures, and one can choose 

ATV or ANLTV methods that provide good denoising 

performance without introducing discernible artifacts. In 

this case, the VST-based methods can be used if they are 

combined to the image structure preservation Gaussian de-

noising methods, such as BM3D [31], SAFIR [32] etc. 

By the research trend, the VST-based approach is a 

novel option by the criteria to create an “universal” 

method to remove multiple type of noises. This approach 

has potential if it is possible to expand the VST-based ap-

proach to apply to other signal dependent noises. 
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Property 

 

Method 

Ability of de-

noising on photon-

limited image 

Add  

artifacts 

Level of  

methodology 

Level of  

parallelization 

Level of  

execution time* 

MROF No Staircasing Easy Easy Immediate 

ATV No No Easy Easy Fast 

ANLTV Yes No Easy Easy Fast 

HNIPM No Staircasing Immediate Immediate Fast 

PRBF No Hallo Easy Unnecessary Very Fast 

PURE-LET No Star Hard Easy Fast 

MS-VST Yes Blocky Hard Easy Fast 

Adaptive VST-

based methods 
Yes Yes/No† Hard Easy Fast 

 

Table 1: Advantages and disadvantages of Poisson denoising methods 

 
* Execution time by method that was used in their proposed works. 
† This depends on selection of Gaussian denoising methods. 
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