
 Informatica 41 (2017) 401–417 401
  

Artificial Intelligence in Life Extension: from Deep Learning to 

Superintelligence 

Mikhail Batin and Alexey Turchin 

Science for Life Extension Foundation, Prospect Mira 124-15, Moscow, Russia 

E-mail: alexeiturchin@gmail.com, http://scienceagainstaging.com/ 

 

Sergey Markov 

ActiveBusinessCollection, Russia, Moscow, d.19 ul. Vavilova, Moscow 117997, Russia 

E-mail: sergei.markoff@gmail.com, https://activebc.ru/ 

 

Alisa Zhila 

IBM Watson, IBM Corporation, 1 New Orchard Road, Armonk, NY 10504-1722, USA 

E-mail: alisa.zhila@gmail.com, https://www.ibm.com/watson/ 

 

David Denkenberger 

Global Catastrophic Risk Institute; Tennessee State University 

Alliance to Feed the Earth in Disasters; 3500 John A Merritt Blvd, Nashville, TN 37209, USA 

E-mail: david.denkenberger@gmail.com, http://allfed.info/ 

 

Keywords: artificial intelligence, life extension, aging, geroprotectors, biomarkers, machine learning  

Received: August 31, 2017 

In this paper we focus on the most efficacious AI applications for life extension and anti-aging at three 

expected stages of AI development: narrow AI, AGI and superintelligence. First, we overview the 

existing research and commercial work performed by a select number of startups and academic 

projects. We find that at the current stage of “narrow” AI, the most promising areas for life extension 

are geroprotector-combination discovery, detection of aging biomarkers, and personalized anti-aging 

therapy. These advances could help currently living people reach longevity escape velocity and survive 

until more advanced AI appears. When AI comes close to human level, the main contribution to life 

extension will come from AI integration with humans through brain-computer interfaces, integrated AI 

assistants capable of autonomously diagnosing and treating health issues, and cyber systems embedded 

into human bodies. Lastly, we speculate about the more remote future, when AI reaches the level of 

superintelligence and such life-extension methods as uploading human minds and creating 

nanotechnological bodies may become possible, thus lowering the probability of human death close to 

zero. We suggest that medical AI based superintelligence could be safer than, say, military AI, as it may 

help humans to evolve into part of the future superintelligence via brain augmentation, uploading, and a 

network of self-improving humans. Medical AI’s value system is focused on human benefit. 

Povzetek: Prispevek opisuje najbolj učinkovite aplikacije umetne inteligence za podaljšanje življenjske 

in delovne dobe od klasičnega strojnega učenja do superinteligence. 

1 Introduction 
The 2010s have shown a rapidly growing interest in 

Artificial Intelligence (AI) technologies [63]. In recent 

years, AI has appeared in top scientific news sources, in 

stories that have demonstrated that AI is “smarter” than 

humans when it comes to playing a number of 

boardgames [89] and word games [61], thus revealing 

that AI is approaching a revolutionary point in its 

development.  

Investments in AI-related projects have increased 

dramatically in the last few years. Global AI startup 

financing reached US$5 billion in 2016 [76]. The current 

market of AI in medicine is estimated at US$1.1 billion 

and is expected to grow to US$9.1 billion in the next 

decade [118]. Major IT companies including Google, 

Facebook, IBM, Intel, and Microsoft nearly 

simultaneously established biomedical subdivisions 

because their leadership sees great potential for AI in 

healthcare. Based on the current rate of development, it 

is probable that AI will become a revolutionary 

technology in healthcare in the upcoming decades.  

AI has the potential to have the greatest impact on 

the human life span through life-extension technologies, 

but the means are underexplored. In this article we 

investigate which AI technologies in healthcare are 

likely to provide the best results in the quest for 

increased life expectancy. There is a great number of 

publications about the practical applications of existing 

AI in medicine and healthcare. A recent review 

performed by Ching, et al. [24] describes opportunities 

and obstacles for the applications of deep learning in 

medicine. Unlike their review, ours concentrates on 

expected applications of different stages of AI 
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development to fight the main cause of death in humans, 

aging. We demonstrate how gradual evolution of AI in 

medicine will result in medically oriented beneficial 

superintelligence able to produce indefinite life 

extension. 

The considered time span also distinguishes this 

work from other analyses of benevolent AI, such as [16] 

and [58], which immediately jump to the stage of 

superintelligence, when AI will, by definition, be able to 

solve most or all of our problems. As AI is constantly 

evolving, we should determine how to use it most 

efficiently during each stage of its development and look 

at the period between now and superintelligence. Only 

by doing this will we be able to achieve the longest 

possible life extension for currently-living human 

beings.  

In this article we outline a path for the application of 

AI to life extension that yields increasing gains at each 

step. We show that analysis of aging biomarkers and 

geroprotectors with the use of narrow AI will make the 

largest impact on human life expectancy with a relatively 

small investment. We also show how an increasing 

amount of an individual’s healthcare data collected via 

wearable devices (“wearables”) will feed the data-

crunching ability of AI and provide constant 

personalized monitoring of that individual’s health on 

ever-deeper levels, thus preventing illness at earlier 

stages as well as repairing age-related damage. We also 

demonstrate how AI-powered robotics will gradually 

become inner parts of the human body, resulting in 

cyborgization and high survivability. Our final point of 

interest is integration of AI with the human brain via 

neuroimplants to enable mind uploading. See table 1 for 

an outline of the expected evolution of the application of 

medical AI in life extension. 

The growth of AI’s ability for independent research 

will be increasingly helpful in finding new technologies 

to lower human mortality until AI reaches the stage of 

self-improvement. We expect that the development of 

medical AI will at least partly offset the existential AI 

risk [16] via intrinsic orientation of medical AI on 

human benefit and AI’s closer integration with humans 

via brain implants (see section 7.2). 

This article is conceptually similar to the report on 

the expected development of military AI [28], in which 

the same three levels of the future of AI are considered. 

The idea that AI will help us to make large gains in life 

expectancy has been explored in works of futurists Ray 

Kurzweil [58] and Robert A. Freitas Jr. [36], among 

others. 

This paper is structured as follows. In section 2, we 

review the expected progress in AI, the levels of 

development of AI, and the predicted timeline for the 

corresponding advances. In section 3, we review the 

current applications of AI to life extension, as developed 

by select startups and academic projects. Prospective 

near-future applications of AI to life extension and anti-

aging are outlined in section 4, which covers research 

that is yet to be transferred from academia to the life-

extension industry. The expected effect of artificial 

general intelligence (AGI) on life extension and 

applications that it will enable are discussed in section 5. 

The more distant future of AI, including 

superintelligence and its effect on life expectancy, is 

outlined in section 6. In section 7, we conclude our 

overview with a discussion of the best strategies for 

using AI to maximize the life span of the currently living 

generation. 

2 AI development in the twenty-first 

century 

2.1 AI development pace 

Predictions about the development of AI have been 

complicated by AI “winters,” periods of decline in 

funding and enthusiasm due to the lack of breakthroughs.  

Despite past “winters,” the advancement of AI 

technologies has skyrocketed in recent years. We are 

living in a very exciting moment, considering the overall 

rise in enthusiasm for AI. According to one survey [16], 

a majority of scientists believe that human-level AI, then 

superintelligence, will be achieved before the end of the 

twenty-first century. The current moment (2016–2017), 

is a period of accelerated AI development, fueled partly 

by the hype surrounding neural networks and machine 

 
Table 1: Expected evolution of medical AI in life extension. 
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learning. Dozens of startups are working to develop AGI, 

and they are attracting substantial funding. Achievements 

in the development of AI are doubling every year in such 

areas as complexity in text understanding, speech and 

visual recognition, and natural language conversation 

[33].  

If we extrapolate current trends in the performance 

and capacity of neural networks, infrahuman (that is able 

to most things that can do ordinary human being and may 

work as a robotic brain; but some complex creative 

activity is still beyond its abilities). AI could be achieved 

as soon as the 2020s [93].  

A recent, large poll of AI scientists [41] shows that 

AI is expected to be able to master human language 

around 2026 and, with 50 percent confidence, that 

machines will exceed humans in every task by 2062.  

If AGI appears soon enough, its impact will 

overshadow that of the slower, decade-long research in 

geroprotectors described below, and thus make them 

obsolete even before their fruition, as AGI will provide 

better solutions. Yet we cannot rely on the early AGI 

scenario, as AI prediction is known to be difficult.   

In any case, two possible scenarios are:  

- AGI will be achieved in the coming two decades;  

- AGI will be achieved by the end of the twenty-first 

century.  

There is a big practical difference between these two 

scenarios. In the first case, the majority of people living 

today will be able to use AI for almost indefinite life 

extension. In the second case, most currently living 

people will be able to enjoy the benefits of AGI only if a 

huge effort is made to take advantage of all intermediate 

life-extension technologies to help the current population 

survive to see AGI achieved.  

Aubrey de Grey named the situation of improving 

life expectancy rate equal to the passage of time 

“longevity escape velocity” [4]. The result would be 

indefinite life expectancy (ignoring accidents, global 

catastrophes, etc.). In this paper we show that AI is the 

main “game changer” that will help currently living 

people reach longevity escape velocity, as its effects over 

time will outweigh other known means of life extension. 

AI is the most rapidly developing technology, and it 

affects and accelerates the development of all other life-

extension technologies.  

The exponential growth of AI, which is now 

doubling with a period of one year, according to [33], 

will potentially be able to compensate for the exponential 

growth of the probability of human death because of 

aging, which doubles every seven years [37], but there is 

large lag of implementation of medical AI technology. 

However, it is possible that AI growth will slow down, as 

it happened several times before during AI winters, and 

will be sigmoidal. 

In [15], Nick Bostrom shows that each day of delay 

in the achievement of superintelligent AI, which would 

reverse aging, costs 100 thousand human lives. 

The pace of the AI progress is very uncertain but for 

the purpose of this article, we are going to talk about 

stages of AI development in a way that is agnostic to 

timelines. 

2.2 The three levels of the future of AI 

development 

In this section we clarify and enhance the classification 

of the levels of the prospective AI. These levels are often 

mixed in AI discussion, which leads to confusion. 

Narrow AI (weak AI) is the level of a computer 

program that achieves above-human performance in a 

specific, narrow task [16]. For example, the tasks of MRI 

scan recognition and facial recognition require two 

differently trained systems, although the underlying 

learning mechanism may be the same. Most existing AI 

systems are considered narrow AI. The number of such 

programs is growing rapidly due to the success of 

machine learning and neural networks.  

The difference between narrow AI and conventional 

computer programs is the ability of the former to learn. 

Autonomous cars employ a good example narrow AI. 

Such AI systems do not have full human capacity, 

particularly in generalization. 

Additionally, the majority of contemporary AI 

systems need ongoing human supervision.  

AGI (human-level AI) is AI at the level of human 

intelligence in many areas. For example, there would 

likely be communication in natural language, 

understanding the context of most situations, as well as 

performing most of the intellectual tasks that humans are 

able to perform. 

 Philosophical questions about the possibility of 

consciousness in AI are outside the scope of this 

pragmatic definition. Ability to self-improve is an 

obvious consequence of this level of AI development. As 

a result, according to Nick Bostrom [16], an era of 

human-level AI will be brief, as AGI with self-improving 

abilities will soon evolve superintelligence. Robin 

Hanson [45] adheres to the view that computer models—

emulations—of the human brain will dominate in the 

future. 

Superintelligence is the level at which AI will 

supersede humans in all aspects, overtaking the 

intelligence of the entirety of human civilization. It will 

be able to govern the world, make scientific discoveries, 

launch space exploration, and create accurate simulations 

of the human past. Bostrom [16], Yampolskiy [113], 

Yudkowsky [114], and many other scientists expect its 

eventual appearance. 

3 The current applications of AI in 

healthcare and medical research 

3.1 Growth of investments in healthcare 

AI 

In 2014–16 the giants of the IT industry announced the 

launch of biotechnology and life-extension projects 

based on machine-learning techniques. Among those 

projects are Google’s Calico, focusing on anti-aging; 

Facebook’s Chan Zuckerberg Biohub, searching for 

drugs for all diseases and creating an atlas of cells for 

this task; IBM’s Watson Health, targeting healthcare in 
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general; Intel’s large biotech section [52]; Microsoft’s 

innovative cloud computations for new drug discovery; 

and Apple’s platform for wearables and software for 

health monitoring. 

Not only big business invests in healthcare research 

and development; many startups are also making great 

strides. It is estimated that in 2016, there were 106 

startups that used AI in various areas of healthcare. The 

number of mergers and acquisitions in healthcare AI 

grew from less than 20 in 2012 to nearly 70 in 2016 [51].  

Many startups promise almost unbelievable feats. A 

collection of press releases for such companies comprises 

hundreds of pages of breathtaking announcements and 

lengthy enumerations, but most projects vanish within a 

few years as the survival rate of startups is low [38]. In 

order to attract investors, promises are often exaggerated. 

However, these promises may be used to measure 

general trends and expectations in the industry. 

We can expect investment in AI to grow in the next 

years if a new AI winter does not occur. The healthcare 

sector is the largest potential source of funding for AI 

[11], as it is still a “deficit market” due to a large, unmet 

demand for better health. 

3.2 AI in medical research  

Even in scientific research, it is necessary to distinguish 

between “advertising” statements that often exaggerate 

achievements and real practical achievements. As to the 

former, in 2009 it was stated that a robot called Adam 

was able to formulate hypotheses and conduct 

experiments on the yeast genome [95]. But there were no 

subsequent publications on this device. 

On the other hand, robots have indeed made 

substantial contributions to the automation of laboratory 

studies. For instance, robotic manipulators have 

automated repetitive operations with test tubes [13]. 

Among the recent practical applications of AI is the 

use of artificial neural networks for visual recognition of 

brain scans, including reconstruction of the relationships 

between biological neurons in brain connections [25].  

Several companies are using AI to accelerate their 

research: 

Gero (formerly known as Quantum 

Pharmaceuticals) employs the methods of physical 

kinetics and the modern theory of dynamical systems to 

model aging processes in complex biological regulatory 

networks [27] aiming to develop novel anti-aging 

therapies. To control the health effects of the future drugs 

Gero team has applied a deep convolutional neural 

network (CNN) to time series representing human 

locomotor activity from wearable devices, which allowed 

to produce a digital biomarker of aging [28]. This 

biomarker now serves as the scientific basis for Gero 

lifespan/health risks estimation app1 and could be used as 

a metrics of health outcomes for wellness and life 

insurance industries.  

 Deep Genomics is working on a system that will 

allow studying, predicting, and interpreting how genetic 

                                                           
1 https://itunes.apple.com/us/app/gero-lifespan/id1222911907 

variations change important cellular processes such as 

transcription, splicing, and so on. [119]. 

Atomwise aims to reduce the cost of new-drug 

development through the use of a supercomputer and a 

database of molecular structures to predict which 

versions of a potential drug will work and which will not. 

[120]. 

There are many other companies and scientific 

groups that use AI to accelerate their medical research, 

and competition is fierce. Not all of them will survive. 

3.3 AI in diagnosis 

Claims that AI has outperformed humans in various 

narrow areas of healthcare have appeared since the 1980s 

[18]. In the early days, such claims mostly referred to 

expert systems that were popular at the time. It was 

difficult to translate such success into wider practice, 

though—and this scaling issue has plagued AI research 

from the beginning. 

Yet humans are not much better. It was found that in 

88% of cases a second opinion gives a different diagnosis 

[104]. Of course, this estimate may be unrepresentative, 

as only uncertain cases require additional evaluation, yet 

it demonstrates uncertainty in human diagnostics.  

In April 2016, it was stressed by Mark Zuckerberg 

that machine learning helps to make diagnosis more 

accurate, inexpensive, and, perhaps most important, 

quick [46]. For example, an app that tracks changes in 

moles based on photos taken with a cell-phone camera 

can replace expensive visits to a doctor. This software, 

Total Body Photography, analyzes photos of moles in 

comparison with images of 50 million malignant moles 

using Israeli image recognition technology [88]. 

AI will be able to simulate biological processes in 

the human body and use the resulting models for 

prediction and diagnosis. This is done by using “big 

data”—that is, by combining a vast amount of data 

collected from wearables with the extensive data 

accumulated in previous medical practice. In 2016, IBM 

bought several corporations that had extensive data on an 

enormous number of patients. One of these, Truven, 

which alone has hundreds of millions of medical records, 

has been bought for US$2.6 billion [26].  

AI is also working with text and natural language, 

which helps to handle scientific papers, medical records, 

and patient complaints, but it still has considerable 

difficulty understanding human language [7].  

IBM Watson for Oncology is a cognitive-

computing system that can answer questions formulated 

in a natural language (that is, in a human language). It 

has access to various sources of data: encyclopedias, 

databases of scientific articles, and knowledge 

ontologies. Thanks to its huge computing power and 

preprocessed sources, it can give accurate answers 

questions it is asked. 

Since 2013, IBM Watson has been used at the 

Memorial Sloan Kettering Cancer Center to facilitate 

decision-making about treatment of patients with lung 

cancer. Its database is constantly updated with new 

disease records. 

http://www.intel.com/content/www/us/en/healthcare-it/healthcare-overview.html
https://l.facebook.com/l.php?u=https%3A%2F%2Fitunes.apple.com%2Fus%2Fapp%2Fgero-lifespan%2Fid1222911907&h=ATN-s7nXKEyiXHH5LjTczFRHv_r4r5arrkP0ZFq7TcSJUQBUtxZGx4-_c8d1mLatOQ3_bW13Sq4wn15HOehg91AogM57ZV_9HBLimJubJJ6GAtZ1ghqOsDatR-2UlOSPx4qsYgAuiyTKO1ey
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IBM Medical Sieve “is an ambitious long-term 

exploratory grand challenge project to build a next 

generation cognitive assistant with advanced multimodal 

analytics, clinical knowledge and reasoning capabilities 

that is qualified to assist in clinical decision making in 

radiology and cardiology” [50]. 

Google DeepMind (DM) Health is a Google 

DeepMind subproject that applies AI technology to 

healthcare [29]. In collaboration with the University 

College London Hospital, DM will be involved in an 

algorithm-development project for automated 

distinguishing between healthy and cancerous tissues in 

the head and neck area. 

Babylon Health (iOS, Android) is a mobile 

application that allows a user to have an online 

consultation with a British or Irish doctor [5]. 

Turbine.ai is a team of scientists that formulate 

personalized methods of treatment for any type of cancer 

based on AI. [98]. 

Insilico Medicine is another startup working on the 

implementation of deep learning in drug discovery.  

3.4 AI in bioinformatics and modeling of 

living organisms 

Often artificial intelligence is thought of as something 

that people have not experienced yet, and when it 

becomes familiar and accessible, it stops being perceived 

as AI and is perceived more as a mere "computational 

method." A set of such computational methods in biology 

is called bioinformatics. The field of bioinformatics 

consists of analysis of the genome, its changes, genome 

linking to proteins, conformation of proteins, and the 

evolution of living organisms in general. 

The next step in the development of bioinformatics is 

simulation of living organisms. To make this happen, an 

entity needs data on cellular processes, huge computing 

power, and adequate biological models. 

One of the first computer models of a living cell was 

created at Stanford in 2012 [54]. It was the simplest 

mycoplasma, with only 525 genes. However, Craig 

Venter, who was working with the same mycoplasma in 

2015, recognized that the functions of some 90 genes 

were unknown, and therefore the completeness of the 

model is in question [49]. Venter managed to create a 

viable synthetic organism (Mycoplasma mycoides JCVI-

syn3.0), whose genome consists of 473 genes, but 149 of 

them were not fully understood [117].  

Cell modeling cannot always be accurate, as it has 

many levels of uncertainty, starting from the quantum 

level and protein folding, Brownian motion, and so on. 

Quantum computers may help with protein-folding 

modeling in the future.  

So far, the most advanced simulation of a 

multicellular organism has been carried out on the 

Caenorhabditis elegans worm [77]. The simulation 

includes a model of its "brain," which consists of 302 

neurons, and the connectome of which has been known 

for a long time [110]. Some of its functions have been 

put into the model, but full, correct modeling of its 

behavior has not been achieved yet. 

Modeling of a human cell is much more complex 

than modeling of a mycoplasma cell because it includes 

up to 40 times more genes, but such a model will allow 

medication testing through computer simulation. It will 

also allow preclinical testing on a variety of substances 

as well as determining the positive effects of a particular 

medication positive and how it works. Any divergence 

from an experiment will contribute to the model’s 

improvement. For now, “organ-on-a-chip” works as a 

proxy for in vitro and in silico research [80]. 

The next stage of this approach will be the modeling 

of a particular human organs and then full body based on 

its genome, epigenome, and data from medical analysis. 

Such a model will enable precise calculation and 

definition of a medical intervention when required [10]. 

Big companies are interested in cell modeling as 

well. Chan Zuckerberg Biohub, for instance, has begun 

work on the atlas of all human cells [121]. 

3.5 Merging computational biology, cell 

programming, and AI 

Cell programming is akin to bionanorobotics: making a 

cell perform more and more complex tasks, including 

calculations, guided moving, and most importantly, 

protein creation in specified locations. One of the main 

applications of the technology is drug delivery to fight 

cancer.  

However, to program cells, one needs to process 

enormous amount of data about their DNA networks. 

This is where AI and machine learning come in. 

The Cellos project [47], which was presented to the 

public in 2016, performs DNA-design automation for 

new living organisms. It can calculate (and then 

synthesize) a DNA sequence that corresponds to a certain 

function carried out for specified cell types. Boolean 

logic (commands such as “AND” and “OR”) can be used 

in this function. 

Molecula Maxima [69] is a similar platform, which 

is positioned as a programming language for genetic 

engineering.  

It is worth mentioning DNA origami technology [6], 

which allows the construction of different microscopic 

mechanisms from DNA. It is enabled through a very 

powerful system of computer-aided design that can 

decompose a designed project into its component 

elements (blocks), and then write the DNA code that will 

guide self-assembly into a predetermined shape.  

3.6 AI, wearables, and big data 

There are hundreds of different medically oriented 

wearables on the market, the explosion of which began 

several years ago with fitness trackers such as Fitbit. 

Other wearables include professional medical monitoring 

devices, such as devices that track heart abnormalities. 

The BioStampRC sensor [122] is a patch that can be 

glued to different parts of a body, and it collects various 

kinds of data and automatically loads them into the 

cloud.  



406 Informatica 41 (2017) 401–417 M. Batin et al.  

 

Similar to wearables are medical implants. One 

example is an implanted cardiac defibrillator (ICD), 

which was been used to give an electric shock to restart 

the heart and save a soccer player on the field [21].  

It might be possible to improve the situation by 

introducing AI trained on large amounts of data in order 

to define the probabilities of successful ICD therapy for a 

particular patient in a particular case.  

Final Frontier Medical Devices produces devices 

that can diagnose 90% of emergency situations at home. 

[109]. 

Nimb is a wearable ring for requesting emergency 

help. [123]. 

Wearables can collect chemical signals from the skin 

or electrical signals from the brain and heart. The next 

stage in the development of wearables will involve 

integrating them more closely with the human body and 

reducing their size. 

Wearables have improved clinical trials by 

constantly measuring numerous parameters as well as 

tracking whether drugs have been taken. AiCure requires 

taking a photo of a pill in a patient’s mouth [124]. 

A general trend is that smartphones “absorb” 

specialized gadget functions. This has happened with 

fitness trackers, which are currently being replaced by 

the Argus app. Current smartphones can measure blood 

oxygenation with their camera, replacing a US$50 

monitoring gadget with a US$5 app.  

Besides the cost savings, the body space limits the 

number wearables that can be used at one time (setting 

aside the inconvenience of keeping multiple devices 

charged and updated). Hence, incorporating all wearables 

into one device is reasonable. The future universal device 

will likely combine a smartphone, medical device, and 

brain-computer interface, and might well take a wearable 

form such as glasses (Google Glass, for example) or a 

necklace. 

Wearables will work together with different safety 

systems, integrating with infrastructure and optimizing 

the performance of smart homes [12], self-driving cars, 

robot police, surveillance, drones, and the “Internet of 

things,” providing a ubiquitous safety and healthcare net. 

Even toilets can be made “smart,” analyzing biological 

material every time you visit them [91], [116]. Google 

has already patented a smart bathroom [59].  

3.7 The problem of research data 

verification: blockchain and evidence 

systems 

There is a reproducibility crisis medicine [53]. It is 

explained by a number of statistical biases as well as 

fraud and market pressure. Life-extension studies are 

especially susceptible to fraud, as people are willing to 

pay for “youth,” and it is not easy to make objective 

measurements in such studies. By being able to work 

through a large amount of patient data, AI will increase 

the reliability of results. 

Experiment automation, experiment-procedure 

recording, and the use of blockchain [70] to keep records 

secure could simplify verification processes and reduce 

bias and fraud in the field. 

4 Prospective applications of AI in 

aging research 

4.1 Fighting aging as the most efficient 

means for life extension 

It is widely understood nowadays that the purpose of 

general healthcare is not only to treat certain diseases but 

also to prolong healthy human life span.  

Different applications of AI in healthcare have 

different effects on life expectancy. For example, 

fighting rare diseases or advanced stages of cancer will 

not yield much increase in total life expectancy over the 

entire population. 

The main causes of death in the US are circulatory 

diseases (23.1% cardiac deaths, 5.1% stroke deaths), 

cancer (22.5%), chronic lower respiratory disease 

(5.6%), and Alzheimer’s disease (3.6%). Combined, 

these conditions cause 59.9% of all deaths in the United 

States [44]. The probability of these diseases increases 

exponentially according to the Gompertz law of mortality 

[66, 67]. More than 75% of all deaths happen to people 

of 65 years of age or older [40].  

As a result, some authors [105], [115] say that aging 

is the main cause of death and that if we are able to slow 

the aging process, we will lower the probability of age-

related diseases and increase the healthy life span. 

Experiments show that even simple interventions can 

slow the aging process and thus delay the onset of deadly 

diseases in and extend the healthy life span of the C. 

elegans worm [20], mice [66], and rats [87].  

These life-extension experiments on animals have 

involved relatively simple interventions, such as 

administering long-known drugs (metformin or 

rapamycin, for example) or restricting caloric intake. 

Such life-extending drugs are called geroprotectors [71]. 

 Unfortunately, studies of the life-extending effects 

of geroprotectors on humans are scarce, although similar 

interventions have often been used for other diseases 

(treating diabetes with metformin, for example), hence 

proving their safety. Although such studies could have 

begun long ago, this has not happened, because of a 

number of social and economic reasons. Naturally, such 

experiments would require a lot of time (longitudinal 

experiments take decades) and test groups would need to 

be large. 

Yet there is not the luxury of decades and centuries 

for classical experiments, as people are dying now, 

during our lifetime. There is a need to find ways to 

extend human life—and prove that these inventions 

work—in a shorter time. A well-recognized way to do 

this is to find aging biomarkers that will track that aging 

is slowing before all participants of an experiment die. 

In short, to slow the aging process, we must find 

efficient geroprotectors and combinations of 

geroprotectors; to prove that they work, we need to have 

independently verified aging biomarkers.  
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There are many other advanced ideas in the fight 

against aging, including gene therapy, stem cell research, 

and Strategies for Engineered Negligible Senescence 

(SENS) [27]. However, in this section we will limit 

ourselves to AI-based methods for creating efficient 

geroprotectors and biomarkers.  

There has been only one known attempt to use AI to 

predict aging biomarkers, which involved training neural 

networks on a large age-labeled sample of blood tests 

[82].  

4.2 Aging biomarkers as a computational 

problem 

Aging biomarkers are quantitative characteristics that 

predict the future life expectancy of an organism based 

on its current state [72]. They can be normalized to a 

“biological age,” which can be older or younger than the 

actual age. Future life expectancy is the difference 

between the average median life expectancy for a 

species2 and the biological age of an individual. Different 

aging biomarkers have different predictive power [64]. 

For example, gray hair is a marker of aging, but it has 

low correlation with mortality. Good aging biomarkers 

should be causally connected to a potential cause of 

death. Hair color is not causally connected to a potential 

cause of death, as one could dye one’s hair without 

affecting life expectancy. In contrast, blood pressure and 

a number of genetic mutations are causally connected 

with mortality. Thus, they are better biomarkers for 

aging. Since aging is a complex process, it cannot be 

expressed by a single number; a large array of parameters 

is needed to represent it. Aging biomarkers should also 

be reversible: if the aging process has been reversed, the 

biomarkers’ respective characteristics should change 

correspondingly (e.g., decrease in number). 

There are two ways to find biomarkers: modeling of 

aging processes, and statistics. As a side note, one could 

also measure small changes in the Gompertz curve of 

mortality, that is, use the number of deaths in a 

population as an aging biomarker [79]. However, to 

observe them, information about millions of people 

would be required.  

With the help of modern wearables, it is possible to 

record all the drugs and treatments received by a patient. 

A huge number of patient records, along with 

corresponding data on personal genetics, physical 

movement, and lifetime behavioral activity, could be 

collected and centralized. This would result in a cohort 

study with better information supply and stronger 

probative value. Collecting and interpreting this 

information would likely require powerful AI. 

One plausible AI scenario in biomarker detection is 

the use of unsupervised machine learning over a large set 

of biomedical parameters that may lead to the discovery 

of groups of parameters that correlate with biological 

aging. 

                                                           
2 Technically the life expectancy should be at the biological age, 

rather than at birth as is usually quoted. 

Further, parameter-variance analysis will help to 

detect real aging biomarkers. For example, the company 

Gero focuses on gene-stability networks [56]. 

Another application of AI in the fight against aging 

is in creating completely new geroprotectors by 

analyzing cell models, aging models, and molecular 

properties. Rather than drugs, the geroprotectors could be 

genetic interventions, that is, insertions of new genes or 

alterations in the expressions of existing genes 

(epigenomics).  

Five hundred thousand British senior citizens have 

donated their blood and anonymized their healthcare data 

for use by Biobank, which is now sequencing their 

genomes. Biobank will provide open access to all the 

resulting data, which will become an enormous data set 

for various forms of machine-learning research [125]. 

Especially promising is the search for genetic networks 

of aging. Similar projects are taking place in Iceland [81] 

and Estonia.  

4.3 Geroprotector’s combinatorial 

explosion 

A number of medications can extend the life of a mouse 

by slowing down its aging processes [57]. Most of these 

medications, however, yield only a 10–15% increase in 

life span. In humans such medications would yield even 

less, perhaps around 5%, as longer lives are more 

difficult to extend, and they respond less to known 

geroprotectors. But what if several geroprotectors are 

combined? Results of a few studies on mice are 

promising, as they show a multiplication of effects [96].  

Recent research used a sophisticated testing 

algorithm to identify three drugs that yield maximum life 

extension in worms and flies [31]. While that algorithm 

was designed manually, we expect that the best testing 

scheme would involve AI-aided design of a range of 

algorithm alternatives. 

Although combining certain pairs of geroprotectors 

works well enough, some geroprotectors are 

incompatible with one another. Moreover, combining 

them greatly reduces their effects. Hence, pairwise 

testing of geroprotector combinations is needed to begin 

with, followed by larger combinations. To test all 

combinations of 10 geroprotectors would require 1024 

experiments, and for 20 geroprotectors the number of 

experiments would be over a million, and that is for a 

single dosage rate for each geroprotector. This is 

virtually impossible, as there financing has been 

unsuccessful for even simple testing of one combination 

on mice (see lifespan.io campaign [126]). 

The problem of searching in an enormous space is 

similar to that of playing a complex board game with a 

huge search space, such as Go. The recent success of 

AlphaGo [127] promises that such a search could be 

simplified. Consequently, a much smaller number of 

experiments would need to be run to determine an 

optimal geroprotector combination. The underlying 

principle of AlphaGo is that the most promising 

combinations are selected by a neural network trained on 

a large number of previous games. Similarly, a neural 
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network can be trained to predict the biological effects of 

chemicals based on knowledge of their properties 

obtained from a comprehensive library of substances. A 

similar computational approach is used for drug 

discovery [92] and toxicity forecasting [103]. Toxcast is 

a large US-government-sponsored program designed to 

use machine learning to predict the toxicity of different 

chemicals [86]. 

To increase the number of useful outcomes of an 

experiment, it is also necessary to record a vast number 

of various vital parameter measurements of an organism 

(for instance, blood composition, physical movement, 

EEG readings) during the process of geroprotector 

testing. This would allow the discovery of aging 

biomarkers during geroprotector testing.  

Generally, the geroprotector-identification problem 

can be reduced to the task of finding a global minimum 

of a function of ten (or more) variables. A number of 

efficient machine-learning algorithms are suited for such 

a task. 

The search for aging biomarkers can be pursued in a 

similar manner. From the mathematical point of view, it 

is a search for the global minimum of the function of 

many properties of an organism. The same process can 

also be used to calculate specific gene interventions for 

an individual human, in view of the genome 

characteristics, age, and biomarkers. 

Activities in this area are carried out by Gero, 

Calico, the Buch Institute [19], and others. João Pedro de 

Magalhães has used random-forest machine learning to 

predict the properties of life-extending compounds [9].  

Additionally, several projects are searching in large 

combination spaces by using neural networks designed 

for other tasks: 

- Project AtomNet [3] predicts the properties of 

chemical materials using convolutional neural networks;  

- E. Pyzer-Knapp et al. [83] are using a multilayer 

neural network to predict the electrical properties of new 

molecules;  

- L. Rampasek and A. Goldenberg [84] are reviewing 

applications of neural-network project TensorFlow by 

Google in computational biology; 

- K. Myint and X.-Q. Xie are predicting ligand 

properties using a fingerprint-based neural network [74]. 

4.4 AI, aging, and personalized medicine 

Aging can be viewed as the accumulation of errors and 

lack of adequate regulation in a body by repair 

mechanisms and the immune system [37]. Hence, in the 

fight against aging, additional regulation is needed in the 

form of medical therapy. Medical therapy consists of 

tests (for instance, blood work, blood pressure readings, 

medical scans), hypothesizing about causes of disease 

(diagnosis), medical intervention, and in the case of an 

incorrect hypothesis, subsequent correction based on new 

observations. 

This process is similar to the scientific method, and 

at its core it is an information-based process, that is, a 

process of solving a particular computational task. This 

means that it will benefit from more data and more 

intelligent processing, followed by a precise and targeted 

intervention. Therefore, to cure a disease or rejuvenate a 

body, it is helpful to collect a large amount of 

information from that body, in order to construct a 

detailed model of it. This will enable calculations for the 

genetic interventions that will lead to recovery and 

functional improvement. 

It is now possible to obtain large amounts of data on 

a body via full genome sequencing, thousands of 

parameters of blood analysis, and analysis of the 

transcriptome, metabolome, and other similar “omics” 

(that is complex quantitative description of functions and 

statistics of a type of organism’s elements). This is 

achieved through continuous monitoring of food intake, 

physical activity, and heart parameters via ECG, various 

scans, and digital tomography. The rapid decline in the 

cost of all these procedures (US$999 in 2016 for 

complete sequencing of a genome [78]) has led to 

individual humans becoming sources of big data. Now 

we are faced with the question of how to interpret these 

data to produce the best effects on human health by not 

only diagnosing existing illnesses but also by predicting 

future illnesses and creating personalized aging profiles. 

For this reason, there needs to be better means to derive 

meaningful conclusions from this vast amount of data. 

In the past, the following situation was typical: a 

patient complains to a doctor about various aches and, 

after having their blood pressure and temperature 

measured, receives treatment with a single prescribed 

medication. In this case the information exchange 

between the patient and the doctor consisted of “just a 

few bytes” and some intuitive impressions of the doctor. 

However, nowadays the information exchange may 

consist of gigabytes of information at the same cost. For 

the processing of this data stream, powerful data crunch 

techniques are required. 

During aging, a body gradually accumulates errors, 

and its natural repair systems begin to fail. The 

information theory of aging could be designed to enable 

therapies to correct all these errors, and this idea is at the 

core of the Strategies for Engineered Negligible 

Senescence (SENS) project [27].  

AI may help humans to model aging by creating a 

complex causal map of aging processes in a body [90] 

and then personalizing the model. 

Naturally, an organism’s body is able to solve most 

of its problems locally without sending information 

outside: cells know what to repair, and higher-level 

attention is needed only when they fail locally. An aging 

body fails to solve its problems locally. Therefore, it may 

be reasonable neither to extract information from the 

body nor to direct therapy into the body, but rather to 

introduce “AI helpers” inside the body, where they can 

help solve problems as they appear. Implants and future 

nanomedicine will be employed along these lines.  

Another solution to the “messy problem of aging” is 

growing completely new body parts and full bodies. 

However, designing the immunogenic properties of such 

parts and solving a complex “connection problem” will 

require analysis of large amounts of information, which 

will only be feasible if AI is employed. 
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4.5 Narrow AI in medical-cost reduction 

and affordable healthcare 

Efficient and affordable healthcare will be essential to a 

global increase in life expectancy. Cheap mobile phones 

solved the communication problem at the global scale by 

operating as a standard solution. A similar kind of 

solution must be sought in healthcare. 

High-quality healthcare is very expensive. Nursing, 

hospitals, drugs, tests, insurance, and highly paid 

specialists all cost much money, and as a result, 

advanced healthcare is out of reach for many people. 

AI will provide less expensive services and make 

them available to larger population groups in developing 

countries. Just as generic drugs can be taken in place of 

expensive brand-name drugs, an AI-powered 

consultation could provide diagnostics for people who 

cannot afford a doctor. 

Many people—for instance, those who search the 

Internet for answers to their medical questions—may be 

less reluctant to consult an AI-powered specialist than a 

real doctor.  

The following instruments will make AI-based 

healthcare an inexpensive alternative to hospitals: 

- AI chatbots, such as the Babylon app [5]; 

- Smartphones as a universal diagnostic implement 

(they can be used to monitor heart rate, diet, physical 

activity, oxygen saturation, mole changes, and so on); 

- Home delivery of cheap generic drugs; 

- Web-based medical expert systems. 

4.6 Effects of narrow AI on life extension 

Narrow AI will help unleash the full potential of life 

extension, leading to dramatically slower aging. If 

humans did not age, they could live hundreds of years 

despite accidents (If we exclude age-dependent 

component of mortality by extrapolating of minimal 

probability of death found in 10 years old American 

girls, which is 0.000084 for a year [1], we will get life 

expectancy of 5925 years. But increasing probability of 

death with age lowers it to 81. Most of this death 

probability increase comes from biological aging.) Yet 

introduction of narrow AI into effective medical practice 

could take much longer than related advances in research 

labs, possibly decades. 

The present era of narrow AI might be long, lasting 

until 2075 by pessimistic predictions [73]. However, this 

time can be spent usefully, exploring aging biomarkers 

and geroprotector combinations.  

For those who are not able to survive until the arrival 

of radical life-extension technologies, narrow AI may 

still play an important role by providing two main 

backup options: cryonics and digital immortality. 

In cryonics, AI applications may, via wearables, 

warn a patient’s cryonics organization of the impending 

death of that patient. Cryopreservation could be called 

plan B, while plan A is to survive until the implantation 

of life-extension technology. 

Digital immortality [107] is the concept of 

preserving a human being’s data so that future AI will be 

able to reconstruct his or her model using DNA, video 

recordings, and additional data gleaned from such 

sources as social networks. It depends on certain 

assumptions about AI’s capabilities, amounts of required 

information, and the nature of human identity. AI could 

help to collect and preserve data for digital immortality 

and perform initial analysis of that data. Digital 

immortality is plan C in achieving radical life extension. 

An early arrival of advanced forms of AI may make 

these three approaches obsolete before they are 

implemented.  

5 Prospective applications of AGI to 

life extension 

5.1 Personal robot physician 

AGI may appear in the form of a human-mind upload 

[23], [45], or as an infrahuman robotic brain [17] capable 

of performing most human tasks. It will be Turing 

complete [112], meaning that it will be able to interact 

conversationally approximately as well as a human.  

There are numerous ways in which AGI may be 

applied to life extension. In this section, we will explore 

those that are likely to provide the biggest gains in life 

expectancy. 

Cheap and efficient AGI will enable accessible and 

predictive personal healthcare. A plausible example is an 

AI-based personal assistant that will be a combination of 

a healthcare researcher and personal physician and will 

be able to provide personal treatment and early response 

to symptoms. It will constantly monitor an individual’s 

aging biomarkers and other life parameters, allowing 

daily therapy adjustments. A patient will no longer need 

to visit a clinic, get a prescription, have it filled at a 

pharmacy, remember to take drugs at prescribed times, 

try to determine whether her or she is feeling better, and 

so on. A personal robot will simply utilize data gathered 

from wearable monitoring systems to determine an ideal 

drug combination, order it to be delivered, and then 

prompt the patient to take a pill. The process of diagnosis 

and cure will be as effortless and automated as an 

upgrade of antivirus software on a personal computer.  

The ability of AGI to comprehend human language 

will lead to the possibility of “artificial scientists” that 

are able to formulate hypotheses, organize experiments, 

and publish results as scientific papers with less and less 

help from humans. Combined with robotized labs and 

less expensive equipment manufacturing, AGI will 

accelerate scientific research in all fields, including life 

extension.  

Domestic medical robots and wearables will 

automate clinical trials, reducing costs and accelerating 

drug discovery by collecting data for clinical trails. 

Currently, a clinical trial may cost hundreds of millions 

of dollars because of legal and organizational issues. 

Home robots will record patient activity, automating 

clinical trials and making them independent of large 

medical companies via decentralization, which will 

reduce their costs and improve data objectivity.  
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Robotic drones with drugs and defibrillators will 

provide assistance to people whose wearable systems 

report an emergency. Domestic robots will monitor the 

health of a family, help with treatment, monitor medicine 

consumption, act as physical-exercise instructors, and 

predict disease. Additionally, they will provide 

companionship for the elderly, which will also increase 

life span. 

5.2 Integration of monitoring systems into 

human bodies and nanomedicine 

A person’s immune system maintains information on 

such parameters as locations of body inflammation and 

the types of viruses it is equipped to neutralize. This 

information is beyond the control of human 

consciousness. The immune system can be trained with 

vaccines, but information exchange between humans and 

immune systems is limited. If a person could read the 

immune system’s information and upload new 

information into the system, then it would be possible to 

cure a large range of ailments, including autoimmune 

diseases, infections, organ failure, tumors, and tissue 

senescence. Ray Kurzweil expects communication to 

appear in the 2020s [85]. The process will be similar to 

current computerized automobile diagnostics. A system 

of communication between an organism’s immune 

system and a computer can be called a “humoral 

interface” and would have much in common with a 

neurointerface. It could be created with some form of 

nano- or biotechnology, such as computer-programmed 

cells. 

The next step in this direction is artificial human 

immune system management. Such a system may consist 

of biological organisms, an individual’s own upgraded 

cells [30], or micro robots circulating in an organism’s 

blood. The following are the expected levels of a 

nanotechnology-based upgrade of the human body: 

1) In the first stage, the system will monitor 

emerging diseases;  

2) In the second stage, the system will assist in 

treatment by killing bacteria, viruses, and cancer cells, 

and by repairing vascular injuries; 

3) In the advanced stages, the system will constantly 

carry out body repair and treatment of aging; 

4) In the final stage, these systems will transform 

into nanomachines that will replace human cells, making 

the human body completely artificial and immortal. This 

will likely only happen when AI reaches the superhuman 

level. 

5.3 “The Upgrade Net”: a path to 

superintelligence through a network of 

self-improving humans and humanlike 

AI Systems 

As Elon Musk famously tweeted, “Humans must merge 

with machines or become irrelevant in AI age” [55]. 

Such a merger would require a powerful brain-

computer interface (BCI), and we think that the best 

way to achieve this is through the implementation of a 

personal AI health assistant, which would be integrated 

into human bodies and brains and focused on preserving 

human lives.  

Musk has also stated [102] that he wants to 

commercialize the AI health assistant with his Neuralink 

project. Neuralink will begin by using a simple BCI to 

treat depression and other mental illnesses. A simple BCI 

may be used to control human emotions, preventing 

mental-state-dependent types of violence such as road 

rage and suicide. This will provide experience that can be 

directed toward curing mental diseases with BCI, and 

eventually proceeding to a stage of augmented humans, 

who could later be connected into a network of self-

improving humans. 

In our opinion, there is another way of building a 

network of self-improving humans, and it starts with the 

creation of a medical social network: 

First, new type of patient organizations [42] will 

need to be established to connect people who are 

interested in the fight against aging [128]. These 

organizations will essentially operate as social networks 

for information exchange, mutual support, clinical trials, 

crowdfunding, data collection for digital immortality, 

civil science, aid in cryopreservation, and political 

action.  

Individual biohackers also could play important role 

by self experimentation, like Elizabeth Parrish: they 

could take higher risk experiments on themselves without 

legal restriction and costs [68]. 

The next step will be the creation of a network for 

direct interaction between the brains of human 

participants, a so-called neuroweb [60]. Information-

transmission mechanisms may be implemented using 

weak AI systems. The result of such a network will 

effectively be a collective brain. Direct brain connection 

may be confusing and inefficient, so a kind of AI firewall 

may be required to control access to the information that 

an individual wants to share. Also, an AI dispatcher may 

be needed to facilitate conversation by remembering 

conversation’s lines, providing relevant links, illustrating 

ideas, and so on. At a further stage of development, an 

AGI-based virtual assistant connected through BCI to a 

human’s brain may work as a form of exocortex [14]. 

The ultimate step is to merge with AI, which 

implies blurring the boundaries between the biological 

brain and the computer. This is equivalent to achieving 

practical immortality (if no global risks will happen), 

because brain data will be easily backed up and, if 

needed, restored. Effectively, human minds and 

computer superintelligence will merge into a single 

system. At the same time, people will be able to maintain 

a preferred level of autonomy with regard to memory, 

consciousness, and learned skills [34], [101], [75]. 
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6 Superintelligence and the distant 

future 

6.1 Superintelligence finally solving 

problems of aging and death 

We can use trends and polls to predict narrow AI and 

AGI. Superintelligence is by definition unpredictable. 

For expectations of its arrival and what it will be able to 

accomplish, we can refer to various futurists: Bostrom 

[16], Yamploskiy [113], Yudkowsky [114], Kurzweil 

[58], Vinge [106], and Goertzel [39] all depict a future 

dominated by global superintelligence. 

According to these futurists, the arrival of 

superhuman AI will enable solutions to the problems of 

aging, curing presently incurable diseases, designing 

universal medical nanorobots, and uploading an 

individual’s consciousness into a computer network.  

In the past, it took decades to accomplish complex, 

globally valuable tasks such as the development of 

modern aeronautics, wireless communication, and 

noninvasive surgery; superintelligent AI will be able to 

solve such problems very quickly, perhaps in moments. 

With the arrival of superintelligent AI, achieving 

practical immortality for the majority of people will 

become feasible. 

6.2 Simultaneous creation of 

superintelligence and advanced 

nanotechnologies 

K. Eric Drexler’s book Engines of Creation [32] and 

Robert A. Freitas Jr.’s Nanomedicine, Volume IIA: 

Biocompatibility [36] discuss nanotechnology as 

nanorobotics based on molecular manufacturing for 

medical treatment and intervention. According to 

Drexler, medical nanobots will: 

 be self-replicating; 

 be externally controlled; 

 carry onboard computers; 

 be capable of swarm behavior 

 be cell sized; 

 be capable of 3-D printing organic structures; 

and 

be capable of sensing their environment and 

navigating in it. 

If such nanobots arrive before AGI, they will quickly 

help us map the structure of the human brain and develop 

technology to create a very powerful supercomputer, 

leading to the advent of AGI. On the other hand, if AGI 

arrives first, it will create nanobots. The wait between 

nanorobotics and AGI will likely be no more than a few 

years. 

Designing the first nanobot and controlling 

nanorobotic swarms will be a huge computational task, 

itself requiring the use of available AI. 

When this technology matures, it may enable 

relatively quick (hours to weeks) and seamless 

replacement of living cells in a human body—with the 

possible exception of the neurons responsible for 

personal experiences—with fully controlled 

nanomachines by injecting a single self-replicating 

nanobot. Such a nanotechnological body will not age as 

it will be able constantly self-repair according to original 

plan.  

6.3 Superintelligence and the solution to 

the consciousness problem: identity 

copying  

On the one hand, it will be difficult to develop full-

fledged AGI without first solving the problem of 

consciousness. On the other hand, nanotechnology and 

AGI will give us the means to carry out various 

experiments on the conscious brain and map its structure. 

For example, investigation of qualia is feasible through a 

gradual uploading process similar to the thought 

experiment performed by David Chalmers [22]. This will 

enable detection of the brain parts and internal processes 

responsible for subjective experience.  

There are two possible scenarios: either there is no 

mystery here and the problem of uploading 

consciousness to a computer is purely informational, or 

consciousness has a certain substrate. This substrate 

could be a quantum process, continuity of causal 

relationships, special particles, or similar—that provides 

identity, and its preservation and transfer is a separate 

technical task. In either case, the transfer of 

consciousness to a new carrier is possible: an ordinary 

computer can be used in the first scenario; the second 

scenario will require a specialized computer, such as an 

artificial neuron or a quantum computer[2].  

This hypothetical consciousness-receptacle computer 

will need to be extremely resistant to damage and have 

advanced backing-up abilities in order to lower the risk 

of death.  

6.4 Using advanced forms of 

superintelligence for the reconstruction 

of the dead people 

Cryonics is the idea, introduced by Robert Chester 

Ettinger and Jean Rostand [35] of using low temperatures 

to preserve human bodies after death until it becomes 

possible to return them to life. Currently around 250 

people are cryopreserved by three cryocompanies [67]. 

At first, it was thought that bodies could be gradually 

unfrozen upon the appearance of appropriate 

technologies. Later it was thought that nanotechnology 

could be used to repair damage in thawing bodies [32]. A 

more recent view is that bodies can be scanned without 

thawing [65]. Advanced tomography [48] or slicing [43] 

would be employed, and the data from the scans would 

be entered into a computer, where the human mind 

would be reconstructed. Currently around 250 people are 

cryopreserved by three cryocompanies [122] and 

advanced nanotech created by AI could be used to scan 

and upload their minds. 

In addition, highly evolved superintelligence will be 

able to reconstruct humans who lived in the past by 

modeling their lives in a simulation. A reconstruction 
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would be based on a subject’s informational traces. It is 

called “digital immortality” [108].   

For global resurrection of the dead [123], 

superintelligence may perform a large-scale simulation 

of the past [124]. Then, based on all the data about the 

past, it will reconstruct everyone who ever lived.  

7 Discussion: strategies for applying 

AI to life extension 

7.1 Problems of AI application in 

healthcare 

In 1979, a rule-based expert system could make a 

diagnosis better than human doctors [18]. Since then, 

decades have passed, and yet a large-scale AI revolution 

still has not happened in healthcare. Most modern 

medical systems are still based on extremely simple 

algorithms, for example, if the heart rate is more than X, 

execute Y [8]. 

Brandon Ballinger [8] wrote that one major obstacle 

is the majority of “cheap” easily available datasets is not 

labeled, but machine-learning algorithms mostly require 

labeled data for training. For example, there is a lot of 

cardiac data, but it is not clear what disease it is 

associated with or what the patient’s vital parameters 

were. To obtain labeled data, it might be necessary to 

conduct costly and potentially harmful experiments on 

humans. Currently, this problem is being approached by 

unsupervised learning algorithms, which do not require 

labeled data, but their performance is still behind that of 

the supervised systems. 

In addition, there are regulatory issues regarding the 

utilization of AI in healthcare, as well as disputes about 

risk allocation and insurance payments between startups 

and hospitals. AI can easily be migrated into an 

individual’s smartphone, but getting it into a doctor’s 

office is more complicated, not to mention the intricacies 

of accounting for AI in insurance payment systems.  

One can imagine that the modest pace of 

advancement of AI applications in healthcare in recent 

decades might be disappointing to the authors of the first 

edition of Artificial Intelligence in Medicine, which was 

published back in 1982 [97]. Yet, due to substantial 

increase in computing power, availability of “cheap” 

digitized data, advanced data-analysis algorithms, and 

new regulations, we finally seem to find ourselves at the 

dawn of the rapid development of AI in healthcare. 

Privacy issues regarding personal data create a trade-

off for AI development. On one hand, the greater the 

amount of open data, the easier it is to train AI 

algorithms. (Sharing one’s personal health data may 

cause unpredictable harm to the individual, however.) On 

the other hand, if only anonymized data is available, 

important vital parameters and data points will be lost. 

The patient organizations discussed in section 5.3 may 

understand the importance of providing open access to 

personal data, as doing so would help train AI for 

healthcare. 

7.2 AI in medicine, and AI safety 

Issues of AI safety, on both local and global levels, are 

beyond the scope of this work. We want to emphasize 

just two points of intersection of AI in healthcare and AI 

safety: 

Medical AI is aimed at the preservation of human 

lives, whereas, for example, military AI is generally 

focused on human destruction. If we assume that AI 

preserves the values of its creators, medical AI should be 

more harmless. 

The development of such types of medical AI as 

neuroimplants will accelerate the development of AI in 

the form of a distributed social network consisting of 

self-upgrading people. Here, again, the values of such an 

intelligent neuroweb will be defined by the values of its 

participant “nodes,” which should be relatively safer than 

other routes to AI. Also, AI based on human uploads 

may be less probable to go into quick unlimited self-

improvement, because of complex and opaque structure. 

If the orthogonality of values and intelligence thesis 

[16] has some exceptions, medical AI may be safer than  

military AI.  

On the other way, medical AI may increase the risks 

as it will open the way to the neuromorphic AI, which is 

regarded dangerous [16], or it will be under less control 

than military AI, and could run into explosive run-away 

self-improvement. 

The Upgrade Net discussed above may become a 

useful instrument in solving the AI safety problem, as the 

growing collective human intelligence could operate as a 

global police force, identifying potential terrorist 

behavior and other threats.  

The safety will come from intrinsic value alignment 

of human uploads [94], combined with superintelligence 

power of the whole net which will be able to find and 

prevent appearance of other types of potentially 

dangerous AI systems, as well as exterminate the need of 

creation of such systems. Turchin addressed this question 

in greater details in [99]. 

7.3 Surviving to see AGI: personalized, 

age-dependent strategies 

The older a person gets, the lower his or her chances of 

surviving into the era of AGI and powerful life-extension 

technologies. Fortunately, it is not necessary to wait until 

superintelligence arises. In order for an individual’s life 

expectancy to be increased indefinitely, that individual 

must stay alive only until the moment when average life 

expectancy begins increasing by more than a year each 

year, at which point longevity escape velocity will be 

achieved [27]. 

However, the chances that a person will be able to 

benefit from life extension significantly increase if that 

person has better access to upcoming technologies by, for 

instance, living in a developed country, having financial 

security, or being foresighted enough to research and 

utilize those technologies when first available.  

In order to increase and spread the benefits of 

medical AI in the future, it will be necessary to increase 
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people’s awareness and encourage them to exercise all 

available means for life extension. As part of this 

strategy, we promote participation in patient 

organizations committed to fighting aging, signing up for 

cryonics, and sharing and collecting digital immortality 

data. 

8 Conclusion 
This work is an overview of the existing and prospective 

AI applications that the authors consider the most 

promising and beneficial for life extension and antiaging. 

We have considered a wide range of problems with the 

current state of the research and the industry, the most 

promising prospective applications of AI, and strategies 

to increase public awareness in order to ensure maximal 

life-extension opportunities for everyone.  

Based on related work, we have reviewed the 

expected stages of the development of AI in the near 

future, and estimated when the most advanced levels will 

arrive.   

Further, we have presented an overview of the 

current AI-based healthcare projects of certain for-profit 

companies of various scales. These projects include IBM 

Watson Healthcare, Google Calico, and DeepMind 

Health, as well as the research projects of certain 

academic groups and nonprofit organizations. 

We have shown that the exponential growth of AI’s 

capabilities makes it more likely that AI could help fight 

the exponential increase of the probability of a human 

being’s mortality over time, and that AI could help a 

person to reach longevity escape velocity before 

superintelligence is achieved. It may help millions or 

maybe even billions of people to “survive until 

immortality,” and thus rescue their life from impending 

death. Some of the authors explored this topic in greater 

detail in the article “Fighting aging as an effective 

altruism case: the model of impact” [100].  

We have emphasized the importance of establishing 

patient organizations to spread awareness of the subjects 

of life extension, voluntary patient data collection, early 

adoption of medical AI technologies, and the eventual 

formation of a “neuroweb” with the arrival of advanced 

forms of AI.    
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