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In the field of fingerprint identification, local histograms coding is one of the most popular techniques 

used for fingerprint representation, due to its simplicity. This technique is based on the concatenation of 

the local histograms resulting in a high dimension histogram, which causes two problems. First, long 

computing time and big memory capacities are required with databases growing. Second, the recognition 

rate may be degraded due to the curse of dimensionality phenomenon. In order to resolve these problems, 

we propose to reduce the dimensionality of histograms by choosing only the pertinent bins from them 

using a feature selection approach based on the mutual information computation. For fingerprint features 

extraction we use four descriptors: Local Binary Patterns (LBP), Histogram of Gradients (HoG), Local 

Phase Quantization (LPQ) and Binarized Statistical Image Features (BSIF). As mutual information based 

selection methods, we use four strategies: Maximization of Mutual Information (MIFS), minimum 

Redundancy and Maximal Relevance (mRMR), Conditional Info max Feature Extraction (CIFE) and Joint 

Mutual Information (JMI). We compare results in terms of recognition rates and number of selected 

features for the investigated descriptors and selection strategies. Our results are conducted on the four 

FVC 2002 datasets which present different image qualities. We show that the combination of mRMR or 

CIFE feature selection methods with HoG features gives the best results. We also show that the selection 

of useful fingerprint features can surely improve the recognition rate and reduce the complexity of the 

system in terms of computation cost. The feature selection algorithms may reach 98% of time reduction 

by considering only 20% of the total number of features while also improving the recognition rate of about 

2% by avoiding the curse of dimensionality phenomena. 

Povzetek: Analizirani so različni načini opisa in preiskovanja pri histogramskem kodiranju identifikacije 

prstnih odtisov. 

1 Introduction 
Biometric recognition has gained a considerable interest 

in the recent years because of the various applications in 

the large field of security. Security can be categorized in 

data access security (computer and mobile access, USB 

key, bank cards) or in person access security (forensic 

identification, ID access). Many technological solutions 

exist relying on distinctive biometric identifiers (e.g. 

fingerprints, face, iris or speech) each one having its own 

qualities. However, the most used biometric identifiers are 

the fingerprints due to their uniqueness, persistence, 

simplicity of acquisition and the availability of the 

electronic acquisition devices [1]. Indeed, the fingerprints 

are single to each person and they remain unchanged 

during all the life of the person. 

Fingerprint recognition systems can be categorized into 

three main approaches: minutiae-based systems, image-

based correlation systems and image-based distance 

systems [2]. For the first category, the fingerprint image 

must pass through several preprocessing steps to detect 

and extract some points of interest called minutiae: 

smoothing, local ridge orientation estimation, 

binarization, thinning, and minutia detection. The second 

category directly estimates the similarity between a test 

and a reference fingerprint pattern by the autocorrelation 

method. For the third category, global or local features are 

extracted from the fingerprint image such that the features 

also called descriptors retain most of the pertinent 

information representing the fingerprint. This kind of 
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fingerprint recognition systems is preferred in the case of 

low quality images, because it is difficult to extract 

reliable minutiae sets in this case [3]. A distance measure 

between a test and a reference fingerprint pattern or any 

other classifier are finally used for making a matching 

decision [3]. 

Within this last category, many descriptors have been 

proposed. These descriptors can be principally grouped 

into histogram-based features or linear transformed 

features. The descriptors of the first group exploit some 

statistical characteristics of the fingerprint by 

transforming the image into a histogram of fixed length 

like Local Binary Patterns (LBP), Gabor filter with Local 

Binary Patterns (GLBP) hybrid method [4], Local Phase 

Quantization (LPQ) [5], Histogram of Gradients [6] or 

Binarized Statistical Image Features (BSIF) [7] or Scale 

Invariant Feature Transform (SIFT) [8][9]. In the second 

group, the fingerprint image is transformed into a vector 

of different features extracted from the fingerprint image 

such as Discrete Cosine Transform (DCT) features [10], 

Gabor filters based descriptors [11][12] and Discrete 

Wavelet Transform (DWT) features [13][14][15][16]. 

 

In this work, we focus on the histogram-based 

fingerprint representation techniques such as LBP, LPQ, 

HoG and BSIF. Indeed, these techniques are very used for 

fingerprint recognition due to their simplicity. These 

techniques are based on the concatenation of the local 

histograms leading to a histogram of great dimension 

(e.g.1024 features for each fingerprint in the case of LBP), 

which requires long computing time, big memory capacity 

and requires a huge training dataset to model the classes. 

Practically, it has been observed that features addition can 

cause a performance degradation of the classifier if the 

number of data used for the classifier designing is too low 

relatively to the number of features [17][18]. This 

phenomenon called the curse of dimensionality leads to 

the phenomenon of "peaking" [19]. So it is desirable to 

keep the number of features as small as possible which is 

also of benefit for reducing computational cost in the 

fingerprint identification task and for avoiding memory 

obstruction too. Keeping a small number of features is a 

dimensionality reduction operation, which can be done 

with two approaches: the first approach is a features 

transformation in which the initial features set is replaced 

by a new reduced set using transformation algorithm like 

PCA (Principal Component Analysis), LDA (Linear 

Discriminant Analysis)…. The second approach is a 

features selection which selects the relevant features from 

the initial features set [20]. However, using a reduced set 

of features by transformation needs greater memory 

capacity and more computing time in the testing phase 

compared to using a reduced set of features obtained by 

selection algorithms [20] because the former requires 

computation of all the features before reduction. So, in the 

present work, we have considered the features selection 

algorithms to select the relevant bins of histograms for the 

histogram-based fingerprint representation techniques. 

The feature selection methods are also divided into two 

categories, which are “wrapper” or “filter”. In “wrapper” 

methods, the relevance measure for a features subset is the 

training/testing recognition rate of the used classifier. 

Consequently, the wrapper selection procedure makes the 

computational cost rapidly increase, because a new 

classifier has to be built with training and testing phases 

each time a features subset is tested. Moreover, the 

features selected by wrapper methods are adapted to the 

used classifier, so their performance results are dependent 

on the type of classifier. In contrast, “filter” methods 

evaluate the features subset relevance independently of the 

classifier, so the selected features can be used for any 

classifier modelling [20][21]. For all these reasons, we 

have chosen the “filter” methods, which are the preferable 

methods in the case of high dimensionality and large 

datasets for computational reasons. 
The “filter” methods use a selection criterion typically 

based on information theory tools like Mutual Information 

(MI) useful for measuring the quantity of information that 

features may have for describing the data. To our 

knowledge, only few works have investigated the MI 

based criteria in the field of biometric identification. 

In [22], an efficient code selection method for face 

recognition is presented and compact LBP codes are 

obtained. The code selection is based on the maximization 

of mutual information (MMI) between features (LBP 

codes) and class labels. Applying this principle for 

selection is achieved by using the max-relevance and min-

redundancy (mRMR) criterion. The method proposed 

consists of transforming the face images into LBP 

histograms, then selecting the relevant codes from these 

histograms using the maximization of the mutual 

information. In this work the authors have used the chi-

square formula for measuring the distance between the 

histograms of the reference and the test templates. 

In [23], the BSIF features have been investigated in the 

frame of a fingerprint recognition system, with 

preliminary results of feature selection using the FVC2002 

fingerprint dataset [24]. The experiments have shown that 

an increasing number of extracted sub-images leads to an 

increasing recognition rate, but also leads to higher 

dimension histograms which decreased accordingly 

performance of the system regarding computing time and 

memory capacity. This motivated the use of MI feature 

selection strategy, namely interaction capping (ICAP). 

 

In this work, we extend the fingerprint recognition 

system proposed in [23] by considering more datasets 

within the FVC2002 fingerprint database, more descriptor 

types and by investigating several other feature selection 

strategies, all based on mutual information computation to 

select the relevant bins of histograms that are extracted 

from the fingerprint images. The present study will focus 

on robustness of the fingerprint system regarding various 

descriptors and noisy datasets. The main aim of this work 

is to find a combination of feature selection method with 

a pertinent descriptor type in a larger context than in study 

[23]. To that aim, next section introduces the former 

developments of [23] and explains the novelty of the 

present paper comparatively. Section 3 proposes a brief 

review of all the descriptors used in this paper. Section 4 

describes the feature selection methods based on mutual 

information. In section 5 we present the experimental 
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procedure and we discuss the obtained results using a 

public fingerprint dataset in section 6. Finally, we draw a 

conclusion in section 7. 

2 Related work 
In our previous works [23] and [25], a fingerprint 

recognition system was created following the flowchart of 

Fig. 1. A sequence of many preprocessing steps were 

applied on the training and testing image datasets before 

extracting the LBP, LPQ or BSIF features, namely 

enhancement, alignment, extraction of the region of 

interest (ROI) around the core point and division of the 

ROI into sub-regions. This procedure is detailed in [23]. 

So the set of sub-regions are inputs for the features 

computation. In [25], we used the novel BSIF descriptor 

[7] compared with LBP and LPQ descriptors, for 

fingerprint images. From each sub-region, a histogram of 

BSIF is extracted and the final feature vector is obtained 

by concatenating all BSIF histograms extracted from the 

sub-regions. In [23] an extended work of this previous 

work was presented, in which the relevant bins of the BSIF 

descriptor extracted histograms were selected using ICAP 

features selection method. The last step of Fig. 1 is the 

decision making. It is based on the distance between the 

histograms of the reference fingerprints and the tested one. 

The distance is computed as a chi-square measure which 

formula is given below [22] 

𝜒2(𝑅, 𝑇) = ∑
(𝑅𝑖 − 𝑇𝑖)2

𝑅𝑖 + 𝑇𝑖

𝑛

𝑖=1
                           (1) 

where𝑅𝑖and 𝑇𝑖are the reference and the tested 

fingerprint histogram magnitudes respectively and 𝑛 is the 

number of bins. 

The recognition system uses the following rule to 

make a decision: if a test fingerprint gives the best match 

for the fingerprint of the same person it is declared to be a 

correct match; else it is declared to be a false match. 

The recognition rate is computed as 

 

𝑅𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (%)

=  
number of correctly recognized images 

number of test images
 × 100, (2) 

 

In the current paper, many extensions are proposed 

with respect to our former work [23].  The purpose is to 

evaluate the robustness of the system regarding changes in 

the datasets, depending on the descriptors type. We thus 

consider the new descriptor histogram of gradients (HoG). 

Then all the descriptors LBP, LPQ, HoG and BSIF are 

evaluated on all the datasets DB1, DB2, DB3, DB4 of the 

FVC2002 fingerprint dataset [24]. Indeed, the DB2 and 

DB3 datasets were discarded for the preliminary study in 

work [23] while interesting for a robustness study because 

these are noisy datasets. Moreover, four MI strategies 

instead of only one in work [23] are investigated for 

achieving a comparison between them, also by 

considering the four descriptors instead of BSIF only as 

proposed in [23]. These novelties are described in the 

flowchart of Fig. 2. Furthermore, the impact of feature 

selection on computing time is analyzed. A deep 

performance analysis of the dimensionality reduction 

procedure is also proposed. 

The parameter values of the fingerprint recognition 

system depicted in Fig. 2 will be given in section 5.2 of 

the experimental part. 

3 A brief review of descriptors LBP, 

LPQ, HoG and BSIF 
In this section we give a brief review of the descriptors 

LBP, LPQ, HoG and BSIF used in this work for features 

extraction. 

3.1 LBP (Local Binary Patterns) 

This operator was proposed by Ojala et al [26] for texture 

analysis. It is characterized by its tolerance to illumination 

changes, its computational simplicity and its invariance 

against changes in gray levels. The LBP descriptor works 

on eight neighbors of a pixel and uses the gray value of 

this pixel as a threshold; thus, if a neighbor pixel has a 

higher or a same gray value than the center pixel then a 

binary one is assigned to that pixel, else it gets a binary 

zero. The LBP code for the center pixel is then produced 

by concatenating the eight ones or zeros to obtain a binary 

number that is transformed after that to a decimal number. 

The LBP code has a certain value from 0 to 255. 

Therefore, a histogram of 256 bins is composed from these 

values and used for matching. 

3.2 LPQ (Local Phase Quantization) 

This texture descriptor was originally proposed by 

Ojansivu and Heikkila [27]. It is based on the blur 

invariance property of the Fourier phase spectrum. It has 

shown good performance in recognition of textures even 

when there is no blur and outperforms the Local Binary 

Pattern operator in texture classification. It uses the local 

phase information extracted using the 2-D local Fourier 

transform computed over a window of size (2R+1) by 

(2R+1) neighborhood at each pixel position in image of 

size n by n. For LPQ, only four complex coefficients 

corresponding to 2-D spatial frequencies 𝑣1 = [𝑎, 0], 𝑣2 =

[0, 𝑎], 𝑣3 = [𝑎, 𝑎] and 𝑣4 = [−𝑎, 𝑎] where 𝑎 =
1

2𝑅+1
 are 

retained. The real and the imaginary parts of the complex 

values are stacked in a vector of 8 components for each 

pixel which gives a matrix of size 8 by n x n.  Then, the 

coefficients are decorrelated by a whitening operation 

assuming a correlation coefficient of 0.95 between 

adjacent pixel values and a Gaussian distribution of the 

pixel values. Finally, this matrix is binarized by looking 

the sign of each element, so that if it has a positive value, 

a binary 1 is assigned to that element otherwise a binary 0 

is assigned. The last step is the histogram construction by 

transforming each column of 8 elements to a decimal 

value between 0 and 255. Finally a 256-dimensional 

histogram is composed from these values and used in 

classification. 
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Figure 1: Flowchart of the related work system of fingerprint recognition. 

 
Figure 2: Flowchart of the proposed system. The red characters indicate the added elements for a deep study  

of the system (details of image preprocessing and matching steps can be found in reference [23]). 

 

3.3 HoG (Histogram of Gradients) 

The HoG descriptor has been first proposed by Dalal and 

Triggs [28] as an image descriptor used in computer vision 

and image processing for object detection. The basic idea 

of this descriptor is that local object appearance and shape 

can be characterized rather well by the distribution of local 

intensity gradients. The gradient filter is applied in both 

directions x and y of the image. The two obtained images 

are then transformed in magnitude and orientation 

gradients. After, they are divided into small spatial regions 

(cells). For each cell, each pixel has a gradient magnitude 

which accumulates the distribution at the bin 

corresponding to its orientation value. The concatenation 

of these histograms gives the HoG histogram. For 

example, if  the number of orientation bins spaced over 0° 

- 180° is 9 (180°/20°) and the image is split into 3x4 cells 

(12 is the total number of cells), we then obtain a 

histogram of G with 3x4x9=108 bins. Actually, the 

obtained histogram is not a genuine one since the bins 

cumulative does not reach the total number of pixels. A 

histogram-like is finally obtained with sqrt L2-

normalization [28]. 

3.4 BSIF (Binarized Statistical Image 

Features) 

BSIF is a new descriptor recently proposed by 

Kannla&Rahtu [7] for texture classification and face 

recognition. Its main idea is that it automatically learns a 

set of filters from a small set of natural images instead of 

using manual filters such as in LBP and LPQ descriptors. 

BSIF is a binary code string which length is the number of 

filters. Each bit of the code string is computed by 

binarizing the response of the image to a linear filter from 

the set with a fixed threshold. Given an image patch X of 

size l × l pixels and the #i linear filter Wi of the same size 

from the set of learned filters, the response si is obtained 

by 

si = ∑ Wi(u, v)X(u, v) = wi
𝑇x,                          (3)

u,v

 

where vectors wi and x contain the pixels of  Wi and 

X. The binarized feature bi is obtained by setting bi= 1 if 

si> 0 and bi = 0 otherwise [7]. The BSIF descriptor 

depends on two parameters which are the filter window 

size and the number of bits representing the binary code 

string. So, the number of bits determines the number of 

extracted features. If the binary code string is 

represented with 8 bits, we get 256 features vector, which 

means a histogram of BSIF features of 256 bins. 

4 Feature selection using Mutual 

Information 
Feature selection is used to identify the useful features and 

remove the features that are redundant and irrelevant for 

the task of classification. For this reason, it is necessary to 

reach a measurement of features relevance which makes it 

possible to quantify their importance in this task. In this 

section we briefly give some basic concepts and notions 

from information theory that are useful for understanding 

the four feature selection methods used in this work. In 

information theory, MI measures the statistical 

dependence between two random variables. So, MI can be 

used to evaluate the relative utility of each feature to 

classification, in which entropy and mutual information 

are two principal concepts. 

Entropy H can be interpreted as a measure of the 

uncertainty of random variables. Let X be (or represent) a 

discrete random variable with probabilistic 

distribution  p(x). The entropy of X is defined as [29]: 

H(X) = − ∑ p(x) log(p(x))

x∈X

                       (4) 
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preprocessing 
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of BSIF descriptor 
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using chi-
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distance 

formula 
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The mutual information MI between two discrete 

variables X and Y is defined using their joint probabilistic 

distribution p(x, y) and their respective marginal 

probabilities p(x) and p(y) as: 

MI(X; Y) = ∑ p(x, y) log
p(x, y)

p(x)p(y)
(5)

x∈X y∈Y

 

The objective of using MI is to select a subset S of 

relevant features from a set F of features, which share the 

most information with the class variable. The treatment of 

each feature needs a very big number of possible subsets 

(combination Ck
n), this leads to the iterative "greedy" 

algorithms which select the relevant features one by one 

(sequential forward selection) or deletes the unneeded 

features (sequential backward selection). The use of the 

greedy forward selection procedure with the MI based 

relevance criterion is generally a good choice of feature 

selection procedure [30]. 

The Forward ‘‘greedy’’ algorithm based on MI is 

presented as follows [31][32]: 

1) (Initialization) set F ←“initial set of  n features”; S ← 

“empty subset” 

2) (Calculation of MI), ∀fi ∈ F , calculateMI(C; fi). 
3) (Choose the first feature fs1

), find the feature that 

maximizes MI(C; fi),  affect  F ←  F − {fs1
}, S ←

{fs1
}.   

4) (Greedy selection), repeat until the desired number of 

features: 

a. (Compute MI between features), ∀fi ∈ F , 
compute MI(C;  S, fi). 

b.  (Select the next feature fsj
), choose the feature 

fi ∈ F that maximizes MI(C;  S, fi) at the step j, 

affect F ←  F − {fsj
}, S ← S ∪ {fsj

}.  

5) Take out the subset S of the selected features. 

Practically, it is difficult to compute MI(C;  S, fi) when 

the cardinal of the subset S increases because it requires 

an estimation of high dimension probability density 

functions, which cannot be correctly estimated with a 

limited number of samples [20]. So the majority of the 

algorithms use measurements which are maximally based 

on three variables: two features plus the class index. For 

this reason, many proposed criteria based on MI are 

heuristic [32][33]. 
As previously stated, “filter”methods are preferred to 

wrapper ones. These methods are defined by a criterion J, 
also called relevance index or scoring criterion, which is 

planned to measure the relevance of a feature or a feature 

subset for the task of classification. The simplest feature-

scoring criterion is referred as MIM (Mutual Information 

Maximization) [21]: 

Jmim(fi ) = MI(C; fi )                                  (6) 

The Jmim criterion does not include the features 

already selected which leads to selecting redundant 

features (sharing the same information with the class 

index C) that must be eliminated. Numerous 

“filter”criteria have been proposed taking into account the 

redundancy [33][32]. We use four criteria in this work: 

MIFS, mRMR, CIFE and JMI [21]. 

4.1 Mutual Information Feature Selection 

strategy (MIFS) 

Proposed by Battiti [31], it is very useful in feature 

selection problems and classifying systems due to its 

simplicity. MIFS selects the feature that maximizes the 

information about the class label C, and subtract the MI 

between features fi and the already selected variable fj to 

achieve the minimum redundancy: 

Jmifs(fi ) = MI(C; fi ) − β ∑ MI(

fj∈S

fi ;  fj)             (7) 

In this latter expression, S stands for the set of already 

selected features. 

The parameter β is a configurable parameter that 

determines the degree of redundancy checking within 

MIFS. It must be set experimentally [21][34]. The 

performance of MIFS degrades if there are many 

irrelevant and redundant features because it penalizes 

redundancy too much. 

 

4.2 Minimum Redundancy and Maximal 

Relevance strategy (mRMR) 

Proposed by Peng et al [35], it is equivalent to MIFS with 

β =
1

|S|
 where |S| = card(S) is the number of already 

selected features. It finds a balance between the relevance, 

which is the dependence between the features and the 

class, and the redundancy of features with respect to the 

subset of previously selected features. The criterion can be 

written as: 

Jmrmr(fi ) = MI(C; fi ) −
1

|S|
∑ MI(

fj∈S

fi ;  fj). (8) 

With the minimum redundancy criterion of mRMR 

method, we can get more representative features of the 

class variable, which are maximally dissimilar to already 

selected ones, so it gives a small number of features which 

effectively covers the same space as a larger number of 

features. 

4.3 Conditional Infomax Feature 

Extraction strategy (CIFE) 

Lin and Tang [36] proposed a criterion, called Conditional 

Infomax Feature Extraction, in which the joint class-

relevant information is maximized by explicitly reducing 

the class-relevant redundancies among features [33]. Note 

that this criterion has been proposed by several authors in 

different ways [20][32][33][37]: 

 

Jcife(fi ) = MI(C; fi )

− ∑ MI(fi ;  fj)

fj∈S

+ ∑ MI(fi ; fj|C).                         (9)

fj∈S
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The CIFE criterion is same as MIFS plus the 

conditional redundancy term. 

4.4 Joint Mutual Information strategy 

(JMI) 

Proposed by Yang and Moody [38], the Joint Mutual 

Information score is 

Jjmi(fi ) = MI(C; fi ) −
1

|S|
∑ [MI(fi ; fj ) −fj∈S

                                                                 MI(fi ; fj|C)]           (10) 

JMI method studies relevancy and redundancy by 

taking the mean value, and takes into consideration the 

class label when calculating MI. JMI and mRMR are very 

similar but the difference is the conditional redundancy 

term. 

5 Experimental procedure 
First, we give a brief description of the public fingerprint 

dataset FVC2002 [24]. Second, we present the 

experimental parameters chosen for our fingerprint 

recognition system. Third, we describe the way we select 

the relevant bins from LBP, LPQ, HoG and BSIF 

histograms using the Brown’s toolbox for feature selection 

[21]. 

5.1 Datasets 

The experimental results have been conducted on the 

FVC2002 fingerprint dataset [24], which has been divided 

into two sets A and B. Each set is divided in 4 datasets 

DB1, DB2, DB3 and DB4. Three different scanners and 

the SFinGe synthetic generator were used to collect the 

fingerprints [24]. A total of 120 fingers and 12 

impressions per finger (1440 impressions) using 30 

volunteers have been collected. The top-ten quality fingers 

were removed from each dataset since they do not 

constitute an interesting case study [24]. The size of each 

dataset in the FVC2002 test, however, was established as 

110 fingers, 8 impressions per finger (880 impressions) 

and split into set A (100 fingers - evaluation set) and set B 

(10 fingers - training set). To make set B representative of 

the whole dataset, the 110 collected fingers were ordered 

by quality, and then the 8 images from every tenth finger 

were included in set B. The remaining fingers constituted 

set A. In this work, we have used set A to conduct our 

experimental results [6]. 

                                                           
1https://www.dropbox.com/s/wregrs3ah0qcfdd/SIfing.rar 

Table 1 presents the technologies and the scanners 

used to collect the FVC2002 datasets and the size of 

images in each dataset for each set. 

5.2 Fingerprint recognition system 

This section describes the experimental parameters 

chosen for our fingerprint recognition system. 

The related work in section 2 mentioned the region 

around the core point of the fingerprint image. The region 

of size (100x100 pixels) is extracted and divided into 4 

sub-regions of size (50x50 pixels) for each one. For 

features extraction we use the four descriptors LBP, LPQ, 

HoG and BSIF applied for each sub-region. 

• For LBP features extraction, we convert the gray value 

of each pixel to one of the 256 LBP codes. Next we 

construct the histogram of LBP codes. 

• For LPQ we use a radius equal to 3, so a histogram of 

256 bins is extracted. 

• For HoG, each sub-region is divided into sub windows 

of 3 rows and 3 columns (9 cells total). The orientation 

and magnitude of each pixel is calculated. The 

absolute orientation is divided into 9 equally sized 

bins, which results in a 9-bin histogram per each of the 

9 cells, so a histogram of 81 bins is produced. 

• For BSIF we use a filter of 11x11 size and number of 

bits equal to 8 to extract a histogram of 256 bins. The 

learnt filters are provided by [7]. 

For each region, the histograms of LBP, LPQ, HoG and 

BSIF are extracted independently and concatenated to 

construct the final normalized histogram for each 

descriptor. The LBP, LPQ, HoG and BSIF histograms are 

extracted using SIfingToolbox1. For LBP, BSIF and LPQ 

features, the normalization is carried out by dividing the 

value of each bin of the histogram by the sum of the values 

of the bins of this histogram. For HoG features, the 

normalization is done with sqrt L2-normalization as stated 

in [28]. 

Table 2 presents the number of bins in each extracted 

histogram for the different descriptors. 

In this work, the first results are obtained by training 

the system over 7 images of each person for each dataset. 

That is, we use 700 dataset images for training and use 

remaining 100 dataset images for testing for each dataset. 

In the experiments, the 8 fold-cross validation was 

applied, so the test step was repeated 8 times. 

 Technology Scanner 

Size of 

image (pixel 

× pixel) 

Set A Set B Resolution 

DB1 Optical IdentixTouchView II 388×374 100 persons 

with 8 

impressions 

per person 

(800) 

10 persons 

with 8 

impressions 

per person 

(80) 

500 dpi 

DB2 Optical Biometrika FX2000 296×560 569 dpi 

DB3 Capacitive Precise Biometrics 100 SC 300×300 500 dpi 

DB4 Synthetic SFinGEv2.51 288×384 
About 500 

dpi 

Table 1: The technologies and scanners used to collect the FVC2002 datasets and the size of images in each dataset. 

https://www.dropbox.com/s/wregrs3ah0qcfdd/SIfing.rar
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5.3 Bins selection 

Table 2 shows that the number of extracted features is 

high (histogram of 1024 in the case of BSIF, LBP and LPQ 

and 324 in the case of HoG) which makes the response 

time in the matching stage very long. The dimensionality 

reduction is achieved by a feature selection stage. To that 

aim, we have used the Brown’s Toolbox (FEAST 

toolbox)2, which contains the implementation of 13 

different features selection methods based on mutual 

information. In our case we have only used 4 feature 

selection methods. Two of them are based on the 

redundancy (MIFS and mRMR). The two other ones are 

based on the conditional redundancy (CIFE and JMI). 

Practically, the LBP, LPQ, BSIF and HoG histogram 

bins are extracted from all the training images that are also 

used for feature selection. At this point, each bin is 

considered as a feature in the feature selection process. 

This means that each feature is a random variable which 

probability density function can be estimated with a 

histogram construction using many realizations of the 

variable, each image being associated to a realization. 

Building the histogram of features necessitates the 

magnitude variation ranges to be properly discretized. 

This step is required for a low biased estimation of mutual 

information and entropies used in the Brown’s Toolbox. 

Now, we assume that the number of images is 𝑁which is 

the number of samples or realizations used for histogram 

estimation of the features. The number 𝑚 of bins 

representing the histogram for each feature can be 

obtained by Sturges’ formula [39]: 

𝑚 = 𝑙𝑜𝑔2(𝑁) + 1                                       (11) 

6 Results and discussion 

6.1 Impact of the descriptor type on 

classification performance 

In this section, we analyze performance results of the 

proposed descriptors for the fingerprint recognition task. 

Performance is measured in terms of recognition rates and 

computing time for the identification stage. Table 3 shows 

the recognition rates and the computing time with all 

extracted features obtained for each descriptor applied on 

the different datasets. It is clearly shown from Table 3 (a) 

                                                           
2http://www.cs.man.ac.uk/~gbrown/fstoolbox/ 

that the LBP features provide the poorest recognition rates 

compared to the other descriptors in all datasets with an 

about 10% drop in the recognition rate by comparison with 

the other rates. The BSIF descriptor gives the best 

recognition rates except in the DB2 dataset. For all the 

datasets, the HoG and LPQ descriptors give 

approximately the same results. It is also observed that 

DB3 dataset gives the poorest recognition rates. This is 

due to the fact that DB3 is the most difficult dataset among 

the four datasets in FVC2002 in terms of image quality 

[40]. Mainly it can be concluded that the HoG and LPQ 

descriptors are robust with respect to the dataset diversity 

because of general high recognition rates compared to the 

other descriptors. This is confirmed by an average rate 

over the four datasets reaching near 86.8% for both 

descriptors. Conversely, BSIF also reaches an average rate 

of 86% but with extreme values with the highest rates for 

three datasets and the poorest rate for one dataset. From 

Table 3 (b), it is clearly shown that the HoG descriptor 

requires less computing time than the other descriptors for 

the identification stage. This is due to the smaller number 

of histogram bins required for this method. Moreover, the 

computing time is rather independent of the tested dataset. 

So generally, we can conclude that HoG features 

outperform the other used features in terms of calculation 

complexity (only 324 features) and in recognition rate. 

A natural perspective is to deal with higher dimension 

datasets and/or real-time recognition systems. This 

requires keeping the number of the extracted features as 

small as possible, which implies computational and 

memory cost reductions for the training and testing stages. 

For this reason, many feature selection algorithms have 

been investigated to solve the problem of computational 

and memory cost reduction. 

6.2 Impact of the feature selection 

algorithm on classification 

performance 

Fig. 3 shows the results obtained by the four feature 

selection methods (MIFS, mRMR, CIFE and JMI) on the 

four datasets DB1, DB2, DB3 and DB4 and with all the 

descriptors. 

The results obtained with LPQ features are very close 

to those of HoG and BSIF, like observed in the previous 

study [23] with LBP also giving the poorest results. It can 

be noted that all the curves reach approximately a plateau 

as soon as 20% of the total number of features are selected 

by any of the selection algorithm except MIFS. A first 

conclusion is that dimensionality feature reduction can be 

achieved for all the datasets. In many cases, the MIFS 

algorithm shows an abrupt change at the beginning of the 

curve. Among the feature selection algorithms, the mRMR 

is slightly better than the other ones in average over all the 

datasets. 

The curse of dimensionality phenomenon can clearly 

be observed with DB3 and DB4 datasets in Fig.3, where 

higher recognition rates can be reached with a smaller 

number of features than the maximal one. However, the  

Feature extraction 

method 

Number 

of 

regions 

around 

the core 

point 

Number of histogram 

bins 

LBP 

4 regions 

of size 

50x50 

256*4=1024 

LPQ 256*4=1024 

HoG 81*4=324 

BSIF 256*4=1024 

Table 2: Number of histogram bins for each descriptor. 

 

http://www.cs.man.ac.uk/~gbrown/fstoolbox/
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Figure 3: Recognition rates on all the four datasets using HoG, LPQ, LBP and BSIF selected features and using 

MIFS, mRMR, CIFE and JMI feature selection strategies. 

(a) DB1 DB2 DB3 DB4 

HoG 90.75 90.86 73.25 92.13 

LPQ 90.25 91.25 74.13 91.50 

LBP 80.75 84.00 65.75 81.38 

BSIF 92.25 80.75 76.37 94.50 
 

(b) DB1 DB2 DB3 DB4 

HoG 563 569 554 564 

LPQ 10350 10493 10304 10378 

LBP 10161 10219 10253 10256 

BSIF 11381 10905 10609 11257 
 

Table 3: (a) Recognition rate results (%) (b) Computing time results (s) with HoG, LBP, LPQ and BSIF features 

on the four FVC 2002 datasets. 

(a) DB1 DB2 DB3 DB4 

HoG 96.44 96.48 96.39 96.45 

LPQ 98.08 98.15 98.11 98.09 

LBP 98.08 98.09 98.09 98.11 

BSIF 98.01 97.79 97.84 97.94 
 

(b) DB1 DB2 DB3 DB4 

HoG 2.62 2.19 -2.73 4.88 

LPQ 4.55 5.2 4.4 3.55 

LBP 0 2.98 3.04 -1.99 

BSIF 1.76 1.55 0.65 0.66 
 

Table 4: (a) Reduction Rate (%) of computing Time (b) Loss of Recognition Rate (%) caused by dimensionality reduction. 
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phenomenon of peaking can be far more significant in 

some curves without cross-validation. Indeed, the curves 

of Fig.3 are the result of cross-validation which makes an 

average of 8 recognition rate curves. This operation may 

mask outlier curves. As an example, we consider a case 

without cross-validation with HoG features on DB3 by 

taking the 7th image as a test image and the remainder 

images as references. From Fig.4, the CIFE algorithm 

allows 74% of recognition rate to be attained by selecting 

28 HoG features which is far better than the recognition 

rate of 66% obtained with all the features (324). 

Note in addition that such a case corresponds to the 

practical use of a feature selection algorithm because of 

averaging effect of the cross-validation process, which 

prevents delivering a common sequence of selected 

features. 

6.3 Impact of feature selection on 

computing time 

In this section, we evaluate the benefit of the selection 

procedure on the complexity of the system in terms of 

computing time and its effect on the recognition rate of the 

system. For this experiment, we use the JMI features 

selection method. 

Table 4(a) presents the Reduction Rate of the 

computing Time (𝑅𝑅𝑇) given as follow: 

𝑅𝑅𝑇 = (𝑇𝐹 − 𝑇𝑆)/𝑇𝐹                        (12) 

where 𝑇𝐹 is the computing Time corresponding to 

number of Full features and 𝑇𝑆 is the computing Time 

corresponding to the number of Selected features. 

Table 4(b) presents the Loss of Recognition Rate 

(LRR) caused by the dimensionality reduction. This is 

given by: 

𝐿𝑅𝑅 = (𝑅𝑅𝐹 − 𝑅𝑅𝑆)/𝑅𝑅𝐹                  (13) 

where 𝑅𝑅𝐹 is the Recognition Rate corresponding to 

the number of Full features and 𝑅𝑅𝑆 is the Recognition 

Rate corresponding to the number of Selected features. 

In this experiment, we consider the first 20% of the 

selected features w.r.t. to the full number of features. 

  
HoG DB1 HoG DB2 

  
HoG DB3 HoG DB4 

Figure 5: Number of HoG selected features with 𝒂𝒍𝒑𝒉𝒂 = {90%….99%} on all datasets, using MIFS, mRMR, 

CIFE and JMI features selection strategies. 
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Figure 4: The curse of dimensionality phenomenon 

(peaking) for DB3 dataset with HoG selected features. 
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From table 4(a), it can be concluded that considering 

20% of BSIF, LBP or LPQ selected features improves the 

computation time of about 98% compared to the 

computation time needed with the full number of features. 

Table 4(b) indicates that the loss of recognition rate may 

grow up to about 5% while some cases may improve the 

recognition rate (1.99% when selecting 20% of LBP 

features with DB3 or 2.73% when selecting 20% of HoG 

features with DB4 respectively). 

6.4 Performance analysis of the 

dimensionality reduction procedure 

It is interesting to know to what extent the number of 

features could be decreased by considering a small 

degradation of the recognition rate. For this experiment, 

we thus determine the number of selected HoG features 

that allows a recognition rate greater than an 

𝑎𝑙𝑝ℎ𝑎 percent value of the rate obtained with the 

minimum number of features using the formula  

𝑎𝑙𝑝ℎ𝑎 =
𝑅𝑅𝑆

𝑅𝑅𝐹
∗ 100                 (14) 

where 𝑅𝑅𝑆 is the recognition rate corresponding to the 

selected features. 𝑅𝑅𝐹 is the recognition rate obtained 

with all the features. The alpha parameter can take values 

from 0% to 100%. Fig.5 reports the number of HOG 

selected features corresponding to 𝑎𝑙𝑝ℎ𝑎 values located in 

{90%...99%}. From these results, it can be observed that 

the three feature-selection methods mRMR, CIFE and JMI 

give very close results, unlike MIFS that always shows 

poorer performance except in the case of DB3. It can also 

be observed that CIFE seems to show better results in the 

case of real bases (DB1, DB2 and DB3) with respect to the 

synthetic base (DB4). The number of features can be 

strongly reduced for DB3 with very little concession on 

the recognition rate (for example 34 features with CIFE 

are sufficient with 𝑎𝑙𝑝ℎ𝑎=98%), the profit being very 

weak for smaller 𝑎𝑙𝑝ℎ𝑎 values. On the other hand, willing 

to keep the same number of features (34) with the other 

bases, it is necessary to go down to 𝑎𝑙𝑝ℎ𝑎= 94% for DB1, 

95% for DB2 and less than 𝑎𝑙𝑝ℎ𝑎= 90% for DB4 (with 

mRMR). 

Table.5 presents the optimal number of BSIF, HoG, 

LPQ and LBP selected features by the used feature 

selection methods with 𝑎𝑙𝑝ℎ𝑎=98%. Table.6 presents 

their corresponding recognition rates. 

From Tables 5 and 6, the following points can be 

highlighted: 

- For DB1 and DB3, the combination of HoG features 

with the feature selection method CIFE gives the best 

performance results with a reduced number of 66 

features in the case of DB1 and 34 features in the case 

of DB3. 

- For DB2 and DB4, the combination of HoG features 

with the feature selection method mRMR gives the 

best performance results with a reduced number of 66 

features in the case of DB2 and 91 in the case of DB4. 

- For DB4, using LBP features with feature selection 

method mRMR gives a reduced number of features 

equal to 48 but with a poor recognition rate compared 

to HoG and LPQ. The best performance result is 

obtained with 87 BSIF features. 

As a conclusion, the two feature-selection methods 

mRMR and CIFE allow obtaining the reduced number of 

the features in the majority of cases. 

7 Conclusion 
Histogram based techniques are very used for fingerprint 

image representation. Generally, concatenation of the 

histograms leads to the problem of high dimension, which 

degrades performance results of the identification system 

in terms of complexity (computing time and memory cost) 

and recognition rate. In this paper, we have deeply studied 

the problem of dimensionality reduction in a fingerprint 

identification system in order to reduce the complexity 

with possible improvement of the recognition rate 

avoiding the curse of dimensionality phenomenon. We 

have presented a fingerprint recognition system based on 

4 descriptors: local binary pattern (LBP), local phase 

quantization (LPQ), Histogram of gradients (HoG) and 

Binarized Statistical Image Features (BSIF). For the 

dimensionality reduction we used 4 feature selection 

methods based on mutual information: MIFS, mRMR, 

CIFE and JMI.  The experiments were conducted on the 

public FVC 2002 fingerprint dataset.  

The use of several types of features and several 

datasets allows efficiently to validate the feature selection 

 
BSIF HoG LPQ LBP 

MIFS mRMR CIFE JMI MIFS mRMR CIFE JMI MIFS mRMR CIFE JMI MIFS mRMR CIFE JMI 

DB1 425 202 176 201 138 107 66 80 261 472 313 448 918 144 220 137 

DB2 274 113 152 194 162 66 94 75 234 303 255 411 953 207 472 222 

DB3 363 121 152 124 202 38 34 35 845 303 290 348 950 260 150 216 

DB4 589 90 297 87 170 91 152 98 653 184 425 248 932 48 197 52 

Table 5: Number of BSIF, HoG, LPQ and LBP selected features with 𝒂𝒍𝒑𝒉𝒂 =98%. The green values correspond to the minimum number of 

selected features with a 98% degradation acceptance with respect to the rate obtained with all the features. 

 
BSIF HoG LPQ LBP 

MIFS mRMR CIFE JMI MIFS mRMR CIFE JMI MIFS mRMR CIFE JMI MIFS mRMR CIFE JMI 

DB1 90 90.37 90.10 90.37 89 89 89 89 88.5 88.5 88.5 88.62 79.38 79.38 79.25 79.38 

DB2 79 79.12 79 79.12 89.10 89.5 89.25 89.25 89.5 89.5 89.5 89.5 82.83 82.83 82.5 82.38 

DB3 74.74 74.75 74.75 74.75 71.8 72.25 72.10 72.25 72.75 72.75 72.75 72.87 64.5 64.63 64.75 64.5 

DB4 92.5 92.5 92.6 92.5 90.5 90.37 90.37 90.30 89.75 89.75 89.87 89.75 79.75 79.75 80.25 79.75 

Table 6: Recognition rates obtained by BSIF, HoG, LPQ and LBP selected features with 𝒂𝒍𝒑𝒉𝒂 =98%. The green numbers are those giving the 

smallest numbers of selected features. 
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techniques and to choose the best combination (type of 

features/feature selection method) for the task of 

fingerprint identification. From all the results we can 

conclude that the use of feature selection methods can 

reduce the number of features whatever the type of 

features and whatever the dataset, except in the case of 

using MIFS with LBP features that present bad 

performance result. We can conclude also that the feature 

selection techniques can reduce the curse of 

dimensionality phenomenon and probably improve the 

recognition rate of the identification system. The 

combination of HoG features with CIFE or mRMR gives 

the best performance in terms of recognition rate, 

robustness and complexity of the system. In terms of 

complexity, a huge computation time reduction (98%) is 

obtained by considering only 20% of the total number of 

features without much affecting the recognition rate. 

In definitive, employing feature selection algorithms 

will always provide a benefit when compared to no 

selection since higher or equal identification performance 

can be obtained and at the same time the computation 

complexity for the identification stage can be reduced. As 

perspective, we plan to investigate other descriptors and 

biometric modalities. 
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