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This paper presents new axiomatic definitions of entropy measure using concept of probability and 

distance for interval-valued intuitionistic fuzzy sets (IvIFSs) by considering degree of hesitancy which is 

consistent with the definition of entropy given by De Luca and Termini. Thereafter, we propose some 

entropy measures and also derived relation between distance, entropy and similarity measures for 

IvIFSs. Further, we checked the performance of proposed entropy and similarity measures on the basis 

of intuition and compared with the existing entropy and similarity measures using numerical examples. 

Lastly, proposed similarity measures are used to solve problems in the field of pattern recognition and 

medical diagnoses.  

Povzetek: V prispevku so predstavljene nove aksiomatske definicije entropijske mere za intervalno 

intuicionistične mehke množice. 

1 Introduction 
Fuzzy set theory (Zadeh, 1965) is tool that can handle 

uncertainty and imprecision effortlessly. Interval-valued, 

intuitionistic, interval-valued intuitionistic fuzzy sets 

(Zadeh (1975), Atanassov (1986), Atanassov & Gargov 

(1989)), vague sets (Gau & Buehrer, 1993) and R-fuzzy 

sets (Yang, Hinde, 2010) are various generalizations of 

Fuzzy sets (FSs). From all these generalizations IvIFSs 

and intuitionistic fuzzy sets (IFSs) are two conventional 

extensions of FSs. IvIFSs are more practical and flexible 

than IFSs as they are characterized by membership and 

non-membership degree range instead of real numbers. It 

makes IvIFSs more useful in dealing with real world 

complexities which arises due to insufficient information, 

lack of data, imprecise knowledge and human nature 

wherein range is provided instead of real numbers. 

Distance, entropy and similarity measures are the central 

arenas that are investigated by various researchers under 

intuitionistic and interval-valued fuzzy environment (IFE 

and IvFE). These measures identify the similarity or 

dissimilarity between two FSs. Till date, vivid entropy, 

distance or similarity measures are presented by various 

investigators. Some of these research findings are 

mentioned as follows: Xu (2007 a, b) introduced the 

concept of similarity between IvIFSs along with some 

distance measure. Zang et al. (2009) defined a entropy 

axiomatically for interval-valued fuzzy sets (IvFSs) and 

discussed relation between entropy and similarity 

measures. Xu and Yager (2009) studied preference 

relation and defined similarity measure under IvFE and 

interval-valued intuitionistic environment (IvIFE).  Wei 

et al (2011) derived a generalized measure of entropy for 

IvIFSs. Cosine similarity measures for IvIFSs are defined 

by both Ye (2012) and Singh (2012). Sun & Liu (2012), 

Hu & Li (2013), Zhang et al. (2014) proposed entropy 

and similarity measure along with their relationship for 

IvIFSs. Applications of the aforesaid entropy, distance 

and similarity measures are for recognition of patterns, 

medical diagnoses, and decision making with multiple 

criteria and expert systems problems. However, most of 

these distance, similarity or entropy measures do not 

consider hesitancy index between IvIFSs. Hesitance 

index play a very important role when membership and 

non-membership degree do not differ much for two 

IvIFSs but their hesitant index does. Some of the authors, 

Xu (2007), Xu & Xia (2011), Wu et al. (2014) 

considered hesitancy into the measure of distance, 

similarity and entropy developed by them. Since 

hesitancy index also has a vital role in any decision 

making as it outclasses the existing methods and deals 

with decision process in a better way. Dammak et al. 

(2016) studies some possibility measures in multi-criteria 

decision making under 𝐼𝑣𝐼𝐹𝐸. Tiwari & Gupta(in press) 

proposed generalized entropy and similarity measure for 

𝐼𝑣𝐼𝐹𝑆 with application in decision making. Zang et al. 

(2016) defined some operations on 𝐼𝑣𝐼𝐹𝑆𝑠 and proposed 

some aggregation operators for 𝐼𝑣𝐼𝐹𝑆𝑠 w.r.t. the 

restricted interval Shapley function with application in  

multi-criteria decision making. In this paper we have 

developed some of the distance, entropy and similarity 

measures by taking all the three degrees in account and 

applied it to pattern recognition and medical diagnoses 

under 𝐼𝑣𝐼𝐹𝐸.  

This work is organized in various sections. Section 2 

has basic definition and operations on 𝐼𝑣𝐼𝐹𝑆𝑠. Section 3, 

presents the relationship between distance and entropy 

measures along with example to check the performance 

of entropy measures on the basis of intuition. A relation 

between measure of entropy and similarity measure is 

proposed in Section 4. Further, comparison of new 

similarity measures with the few existing one in done. 
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Thereafter in section 5 we applied new similarity 

measures to recognition of patterns and medical 

diagnoses. Lastly conclusion is drawn in Section 6. 

2 IvIFSs along with its distance and 

similarity measures 
This section has definitions and concepts for IvIFSs. In 

this paper Ω = {𝑥1, … . , 𝑥𝑛} denotes the universe of 

discourse;ℂ(Ω) and IvIFSs(Ω) denote all crisp sets and 

𝐼𝑣𝐼𝐹𝑆𝑠 respectively in Ω. 

Definition 1 ( Atanassov & Gargov,1989): An IvIFS  A 

in the finite universe Ω is defined by a triplet 

〈𝑥𝑖 , 𝑀𝑉𝐴(𝑥𝑖), 𝑁𝑉𝐴(𝑥𝑖), 𝐻𝑉𝐴(𝑥𝑖)〉 as 𝑥𝑖 ∈ Ω where 

𝑀𝑉𝐴(𝑥𝑖) = [𝑀𝑉𝐴𝐿(𝑥𝑖),𝑀𝑉𝐴𝑈(𝑥𝑖)] is called membership 

value interval ,𝑁𝑉𝐴(𝑥𝑖)  = [𝑁𝑉𝐴𝐿(𝑥𝑖), 𝑁𝑉𝐴𝑈(𝑥𝑖)] is called 

non-membership value interval and 𝐻𝑉𝐴(𝑥𝑖) =
[𝐻𝑉𝐴𝐿(𝑥𝑖), 𝐻𝑉𝐴𝑈(𝑥𝑖)], 𝐻𝑉𝐴𝐿(𝑥𝑖) = 1 − 𝑀𝑉𝐴𝑈(𝑥𝑖) −
𝑁𝑉𝐴𝑈(𝑥𝑖), 𝐻𝐴𝑈(𝑥𝑖) = 1 −𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐴𝐿(𝑥𝑖) such 

that 0 ≤ 𝑀𝑉𝐴𝑈(𝑥𝑖) + 𝑁𝑉𝐴𝑈(𝑥𝑖) ≤ 1 for each 𝑥𝑖 ∈ 𝐴. 

Liu (1992) defined distance and similarity measures 

for IvIFSs axiomatically which are given as follows:  

Definition 2: For any two IvIFSs A and B, a real valued 

function D: IvIFSs(Ω) × IvIFSs(Ω) ⟶ [0,1] is termed as 

a distance measure of IvIFSs on Ω, if it satisfies the 

below mentioned axioms: 

1. For any crisp set A, we have D(A, A̅ ) = 1. 

2. Distance between any two IvIFSs A and B is 

zero  iff A = B. 
3. Distance measure is symmetrical w.r.t to any 

two IvIFSs A and B. 

4. For any three IvIFSs A, B and C such that A ⊆
B ⊆ C, we have D(A, C) ≥ D(A, B) 
and D(A, C) ≥ D(B, C). 

Distance between FSs was presented by (Kacprzyk, 

1997). Then its extension was proposed by Atanassov in 

1999 as two dimensional distances whereas third 

parameter hesitancy degree in distance was introduced by 

Szmidt and Kacprzyk (2000) for intuitionistic fuzzy sets. 

Yang & Chiclana (2012) proved three dimensional 

distance consistency over two dimensional distances. 

Grzegorzewski (2004) and Park et al. (2007) gave 

distance measure for IvFSs and IvIFSs respectively. Here 

we extend the distance measures by considering 

hesitancy degree for IvIFSs. For any two IvIFSs A and B, 

we define the following measures of distance: 

1) Normalized Euclidean Distance  

D1(A, B) = {
1

12𝑛
∑ [(𝑀𝑉𝐴𝐿(𝑥𝑖) −
𝑛
𝑖=1

𝑀𝑉𝐵𝐿(𝑥𝑖))
2
+ (𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖))

2
+

(𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖))
2
+ (𝑁𝑉𝐴𝑈(𝑥𝑖) −

𝑁𝑉𝐵𝑈(𝑥𝑖))
2
+ (𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖))

2
+

(𝐻𝑉𝐴𝑈(𝑥𝑖) − 𝐻𝑉𝐵𝑈(𝑥𝑖))
2
]}
1
2⁄

  

    …(1) 

2) Normalized Hamming Distance  

𝐃𝟐(𝐀, 𝐁) =
𝟏

𝟖𝐧
∑ [|𝑴𝑽𝑨𝑳(𝒙𝒊) −𝑴𝑽𝑩𝑳(𝒙𝒊)| +
𝒏
𝒊=𝟏

|𝑴𝑽𝑨𝑼(𝒙𝒊) − 𝑴𝑽𝑩𝑼(𝒙𝒊)| + |𝑵𝑽𝑨𝑳(𝒙𝒊) −
𝑵𝑽𝑩𝑳(𝒙𝒊)| + |𝑵𝑽𝑨𝑼(𝒙𝒊) − 𝑵𝑽𝑩𝑼(𝒙𝒊)| +
|𝑯𝑽𝑨𝑳(𝒙𝒊) − 𝑯𝑽𝑩𝑳(𝒙𝒊)| + |𝑯𝑽𝑨𝑼(𝒙𝒊) −
𝑯𝑽𝑩𝑼(𝒙𝒊)|]    

    …(2)  

3) Hamming Hausdorff Normalized Distance 

D3(A, B) =
1

4n
∑ [|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨
𝑛
𝑖=1

|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)| + |𝑁𝑉𝐴𝐿(𝑥𝑖) −
𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)| +
|𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝐻𝑉𝐴𝑈(𝑥𝑖) −
𝐻𝑉𝐵𝑈(𝑥𝑖)|]    

    …(3) 

4) Hausdorff  Normalized Hamming Distance 

D4(A, B) =

1

4n
∑ 𝑚𝑎𝑥

{
 
 

 
 
|𝑀𝑉𝐴𝐿(𝑥𝑖)−𝑀𝑉𝐵𝐿(𝑥𝑖)|+|𝑀𝑉𝐴𝑈(𝑥𝑖)−𝑀𝑉𝐵𝑈(𝑥𝑖)|

2
,

|𝑁𝑉𝐴𝐿(𝑥𝑖)−𝑁𝑉𝐵𝐿(𝑥𝑖)|+|𝑁𝑉𝐴𝑈(𝑥𝑖)−𝑁𝑉𝐵𝑈(𝑥𝑖)|

2
,

|𝐻𝑉𝐴𝐿(𝑥𝑖)−𝐻𝑉𝐵𝐿(𝑥𝑖)|+|𝐻𝑉𝐴𝑈(𝑥𝑖)−𝐻𝑉𝐵𝑈(𝑥𝑖)|

2 }
 
 

 
 

𝑛
𝑖=1

    …(4) 

5) Averaged fifth Distance Measure  

D5(A, B) =

1

2n
∑

{
 
 

 
 [

|𝑀𝑉𝐴𝐿(𝑥𝑖)−𝑀𝑉𝐵𝐿(𝑥𝑖)|+|𝑀𝑉𝐴𝑈(𝑥𝑖)−𝑀𝑉𝐵𝑈(𝑥𝑖)|

+|𝑁𝑉𝐴𝐿(𝑥𝑖)−𝑁𝑉𝐵𝐿(𝑥𝑖)|+|𝑁𝑉𝐴𝑈(𝑥𝑖)−𝑁𝑉𝐵𝑈(𝑥𝑖)|

+|𝐻𝑉𝐴𝐿(𝑥𝑖)−𝐻𝑉𝐵𝐿(𝑥𝑖)|+|𝐻𝑉𝐴𝑈(𝑥𝑖)−𝐻𝑉𝐵𝑈(𝑥𝑖)|
]

8
+𝑛

𝑖=1

𝑚𝑎𝑥(

|𝑀𝑉𝐴𝐿(𝑥𝑖)−𝑀𝑉𝐵𝐿(𝑥𝑖)|+|𝑀𝑉𝐴𝑈(𝑥𝑖)−𝑀𝑉𝐵𝑈(𝑥𝑖)|,

|𝑁𝑉𝐴𝐿(𝑥𝑖)−𝑁𝑉𝐵𝐿(𝑥𝑖)|+|𝑁𝑉𝐴𝑈(𝑥𝑖)−𝑁𝑉𝐵𝑈(𝑥𝑖)|,

|𝐻𝑉𝐴𝐿(𝑥𝑖)−𝐻𝑉𝐵𝐿(𝑥𝑖)|+|𝐻𝑉𝐴𝑈(𝑥𝑖)−𝐻𝑉𝐵𝑈(𝑥𝑖)|
)

4

}
 
 

 
 

  

     …(5) 

6) Generalized Measure of Distance , for p ≥ 2, 

D6(A, B) = {
1

12n
∑ (|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨
𝑛
𝑖=1

|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|)
𝑝 + (|𝑁𝑉𝐴𝐿(𝑥𝑖) −

𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|)
𝑝 +

(|𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝐻𝑉𝐴𝑈(𝑥𝑖) −

𝐻𝑉𝐵𝑈(𝑥𝑖)|)
𝑝}
1/p

    

    …(6) 

Definition 3: Let A and B be any two IvIFSs, a real 

valued function S: IvIFSs(Ω) × IvIFSs(Ω) ⟶ [0,1] is 

defined as a measure of similarity for IvIFSs on Ω, if it 

satisfies axioms mentioned below: 

1. For any crisp set A, we have S(A, A̅ ) = 0  

2. Measure of similarity between any two IvIFSs is 

1 iff A = B. 
3. Measure of similarity is symmetric w.r.t. any 

two IvIFSs. 

4. For any three IvIFSs A, B and C such that A ⊆
B ⊆ C. We have  S(A, C) ≤ S(A, B) and 

S(A, C) ≤ S(B, C). 
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From axiomatic definition of distance and similarity 

measures it is clear that S (A, B) = 1 −  D(A, B) where  A 

and B are IvIFSs , D  and S are distance and similarity 

measure for IvIFSs respectively. 

2.1 Entropy measure for IvIFSs 

In 1972, De Luca and Termini defined measure of 

entropy for FSs. Hung & Yang (2006) extended 

definition for IFSs considering hesitancy degree. The 

following definition for entropy is an extension of 

definition of entropy proposed by Hung & Yang (2006) 

for IvIFSs. 

Definition 4: A real valued function E: IvIFSs(Ω) →
[0,1] is termed as measure of entropy under IvIFE, if 

below mentioned axioms are satisfied: 

1. E(A) = 0, ∀A ∈  ℂ(Ω); 
2. E(A) = 1, iff  𝑀𝐴(𝑥𝑖) = 𝑁𝐴(𝑥𝑖) = 𝐻𝐴(𝑥𝑖) =

[
1

3
,
1

3
] , ∀ 𝑥𝑖 ∈ Ω; 

3. E(A) ≤ E(B), if A is less fuzzy than B; 

4. E(A) = E(A̅), where A̅ is complement of  A, 

where A, B ∈ IvIFSs(Ω). 

Above definition is steady with description of measure of 

entropy given by De Luca & Termini (1972). As it is 

known that complete description of an IvIFS A ∈ Ω has 

three degrees membership, non-membership and 

hesitancy with 𝑀𝑉𝐴𝑈(𝑥𝑖) + 𝑁𝑉𝐴𝑈(𝑥𝑖) + 𝐻𝑉𝐴𝐿(𝑥𝑖) = 1 

and 𝑀𝑉𝐴𝐿(𝑥𝑖) + 𝑁𝑉𝐴𝐿(𝑥𝑖) + 𝐻𝑉𝐴𝑈(𝑥𝑖) = 1 with  

0 ≤ 𝑀𝑉𝐴𝑈(𝑥𝑖), 𝑁𝑉𝐴𝑈(𝑥𝑖), 𝐻𝑉𝐴𝐿(𝑥𝑖), 
𝑀𝑉𝐴𝐿(𝑥𝑖), 𝑁𝑉𝐴𝐿(𝑥𝑖), 𝐻𝑉𝐴𝑈(𝑥𝑖) ≤ 1. By taking all the 

three in to consideration we may assume them as 

probability measure. Therefore the entropy is maximum 

when all the variables are equal (i.e. 𝑀𝑉𝐴𝑈(𝑥𝑖) =

𝑁𝑉𝐴𝑈(𝑥𝑖) =  𝐻𝑉𝐴𝐿(𝑥𝑖) =
1

3
 and 𝑀𝑉𝐴𝐿(𝑥𝑖) = 𝑁𝑉𝐴𝐿(𝑥𝑖) =

 𝐻𝑉𝐴𝑈(𝑥𝑖) =
1

3
) and zero (minimum) when only one 

variable is exists (i.e. 𝑀𝑉𝐴𝐿(𝑥𝑖) = 𝑀𝑉𝐴𝑈(𝑥𝑖) =
1, 𝑁𝑉𝐴𝐿(𝑥𝑖) = 𝑁𝑉𝐴𝑈(𝑥𝑖) =  0, 𝐻𝑉𝐴𝐿(𝑥𝑖) = 𝐻𝑉𝐴𝑈(𝑥𝑖) = 0 

or  𝑀𝑉𝐴𝐿(𝑥𝑖) = 𝑀𝑉𝐴𝑈(𝑥𝑖) = 0, 𝑁𝑉𝐴𝐿(𝑥𝑖) = 𝑁𝑉𝐴𝑈(𝑥𝑖) =
 1, 𝐻𝑉𝐴𝐿(𝑥𝑖) = 𝐻𝑉𝐴𝑈(𝑥𝑖) = 1 

or  𝑀𝑉𝐴𝐿(𝑥𝑖) = 𝑀𝑉𝐴𝑈(𝑥𝑖) = 0, 𝑁𝑉𝐴𝐿(𝑥𝑖) =
𝑁𝑉𝐴𝑈(𝑥𝑖) =  0,𝐻𝑉𝐴𝐿(𝑥𝑖) = 𝐻𝑉𝐴𝑈(𝑥𝑖) = 1).  

Again we extend the definition of entropy given by Zang 

et al. (2014) based on distance for IvIFSs. In following 

definition we have considered degree of hesitation, 

which is not considered by other definitions of entropy. 

Definition 5: A real-valued function E: IvIFSs(Ω) →
[0,1] is termed as measure of entropy under IvIFE, if the 

following axioms are satisfied: 

 

1. E(A) = 0, ∀A ∈  ℂ(Ω); 
2. E(A) = 1, iff all the three description of IvIFSs 

intervals satifies   𝑀𝑉𝐴(𝑥𝑖) = 𝑁𝑉𝐴(𝑥𝑖) =

𝐻𝑉𝐴(𝑥𝑖) = [
1

3
,
1

3
] , ∀ 𝑥𝑖 ∈ Ω 

3. If D (A, 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉) ≥

D (B, 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉),then E(A) ≤ E(B),

∀A, B ∈ IvIFSs(Ω), where D is measure of 

distance. 

4.  E(A) = E(A̅), where A̅ is complement of  A, 

where A, B ∈ IvIFSs(Ω). 

In the next section, we derive a relation which relates 

measure of distance and entropy for IvIFSs, which 

satisfies all the axioms of the definition of entropy. 

3 Relation between measure of 

distance and entropy 
Here, we develop a technique which obtains entropy 

measure for IvIFSs which satisfies the aforementioned 

properties. 

Theorem 2: Let Dj, j= 1,… ,6 be the above-mentioned 

six distance measure equations (1)-(6) between IvIFSs, 

then, Ej(A) = 1 − 3Dj (A, 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉), j=

1,… ,6  for any A ∈ IvIFSs(Ω) are measure of entropy of 

IvIFSs. 

Proof: We prove that E𝑗(A), for j = 1, … ,6  satisfies 

conditions given by definition 5. 

Property1): If A ∈  ℂ(Ω) ⇒ 𝐴(𝑥𝑖) = 〈[1,1], [0,0], [0,0]〉 
or 𝐴(𝑥𝑖) = 〈[0,0], [1,1], [0,0]〉, ∀ 𝑥𝑖 ∈ 𝛺, then for j=
1,… ,6 

Dj (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉) =

1

3
. 

Thus, Ej(A) = 0 

Property 2): For all j = 1, … ,6, Ej(A) = 1 

⟺ 1− 3Dj (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉) = 1 

⟺ 3D𝑗 (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉) = 0 

⟺  A = 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉 

Property3): Let A and B be any two IvIFSs and 

Dj (A, 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉) ≥

Dj (B, 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉) then 

1 − 3Dj (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉)

≥ 1 − 3Dj (B, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉) 

⟹ Ej(A) ≤ Ej(B),  for all j= 1,… ,6 

Property 4) : Let A be any 𝐼𝑣𝐼𝐹𝑆 then A̅ =
{〈𝑥𝑖 , [𝑁𝑉𝐴𝐿(𝑥𝑖), 𝑁𝑉𝐴𝑈(𝑥𝑖)], [𝑀𝑉𝐴𝐿(𝑥𝑖),𝑀𝑉𝐴𝑈(𝑥𝑖)]〉 𝑥𝑖 ∈ Ω⁄ } 

⟹ Dj (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉)

= D𝑗 (A̅, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉) 

Thus, E𝑗(A) = Ej(A̅), for all j= 1,… ,6. ∎ 

From theorem 2 and various distance formulas’ 

mentioned (equation (1) to (6)), we get corresponding 

entropy formulas as follows: 
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𝐸1(𝐴) = 1 − 3 {
1

12𝑛
∑ [(𝑀𝑉𝐴𝐿(𝑥𝑖) −

1

3
)
2

+𝑛
𝑖=1

(𝑀𝑉𝐴𝑈(𝑥𝑖) −
1

3
)
2

+ (𝑁𝑉𝐴𝐿(𝑥𝑖) −
1

3
)
2

+

(𝑁𝑉𝐴𝑈(𝑥𝑖) −
1

3
)
2

+ (𝐻𝑉𝐴𝐿(𝑥𝑖) −
1

3
)
2

+

(𝐻𝑉𝐴𝑈(𝑥𝑖) −
1

3
)
2

]}

1
2⁄

   

     

𝐸2(𝐴) = 1 −
3

8𝑛
∑ [|𝑀𝑉𝐴𝐿(𝑥𝑖) −

1

3
| +𝑛

𝑖=1

|𝑀𝑉𝐴𝑈(𝑥𝑖) −
1

3
| + |𝑁𝑉𝐴𝐿(𝑥𝑖) −

1

3
| +

|𝑁𝑉𝐴𝑈(𝑥𝑖) −
1

3
| + |𝐻𝑉𝐴𝐿(𝑥𝑖) −

1

3
| +

|𝐻𝑉𝐴𝑈(𝑥𝑖) −
1

3
|]    

      

𝐸3(𝐴) = 1 −
3

4𝑛
∑ [|𝑀𝑉𝐴𝐿(𝑥𝑖) −

1

3
| ∨𝑛

𝑖=1

|𝑀𝑉𝐴𝑈(𝑥𝑖) −
1

3
| + |𝑁𝑉𝐴𝐿(𝑥𝑖) −

1

3
| ∨

|𝑁𝑉𝐴𝑈(𝑥𝑖) −
1

3
| + |𝐻𝑉𝐴𝐿(𝑥𝑖) −

1

3
| ∨

|𝐻𝑉𝐴𝑈(𝑥𝑖) −
1

3
|]    

 

𝐸4(𝐴) = 1 −

3

2𝑛
∑ 𝑚𝑎𝑥

{
 
 

 
 
|𝑀𝑉𝐴𝐿(𝑥𝑖)−1/3|+|𝑀𝑉𝐴𝑈(𝑥𝑖)−1/3|

2
,

|𝑁𝑉𝐴𝐿(𝑥𝑖)−1/3|+|𝑁𝑉𝐴𝑈(𝑥𝑖)−1/3|

2
,

|𝐻𝑉𝐴𝐿(𝑥𝑖)−1/3|+|𝐻𝑉𝐴𝑈(𝑥𝑖)−1/3|

2 }
 
 

 
 

𝑛
𝑖=1

   

E5(A, B)
= 1

−
3

2n
∑

{
  
 

  
 
[

|𝑀𝑉𝐴𝐿(𝑥𝑖) − 1/3| + |𝑀𝑉𝐴𝑈(𝑥𝑖) − 1/3|

+|𝑁𝑉𝐴𝐿(𝑥𝑖) − 1/3| + |𝑁𝑉𝐴𝑈(𝑥𝑖) − 1/3|

+|𝐻𝑉𝐴𝐿(𝑥𝑖) − 1/3| + |𝐻𝑉𝐴𝑈(𝑥𝑖) − 1/3|
]

8

n

i=1

+

max(

|𝑀𝑉𝐴𝐿(𝑥𝑖) − 1/3| + |𝑀𝑉𝐴𝑈(𝑥𝑖) − 1/3|,
|𝑁𝑉𝐴𝐿(𝑥𝑖) − 1/3| + |𝑁𝑉𝐴𝑈(𝑥𝑖) − 1/3|,

|𝐻𝑉𝐴𝐿(𝑥𝑖) − 1/3| + |𝐻𝑉𝐴𝑈(𝑥𝑖) − 1/3|
)

2

}
  
 

  
 

 

 

𝐸6(𝐴, 𝐵) = 1 − 3∑ [
1

12𝑛
[(|𝑀𝑉𝐴𝐿(𝑥𝑖) −

1

3
| ∨𝑛

𝑖=1

|𝑀𝑉𝐴𝑈(𝑥𝑖) −
1

3
|)
𝑝

+ (|𝑁𝑉𝐴𝐿(𝑥𝑖) −
1

3
| ∨

|𝑁𝑉𝐴𝑈(𝑥𝑖) −
1

3
|)
𝑝

+ (|𝐻𝑉𝐴𝐿(𝑥𝑖) −
1

3
| ∨

|𝐻𝑉𝐴𝑈(𝑥𝑖) −
1

3
|)
𝑝

]]

1
𝑝⁄

    

To check the consistency of proposed entropy measures 

with the intuitionist beliefs we have used the following 

example.  

 

Example: Consider two IvIFSs 𝐴 =
{𝑥, 〈[0.2,0.2], [0.2,0.3], [0.5,0.6]〉, 𝑥 ∈ 𝛺} and 𝐵 =
{𝑥, 〈[0.2,0.3], [0.4,0.6], [0.1,0.4]〉, 𝑥 ∈ 𝛺}, clearly we can 

see that A is more fuzzy than B. Then E𝑗(A) and E𝑗(B) 

are given in Table 1: 

Entropies A B 

E1 0.5570 0.65866 

E2 0.675 0.7 

E3 0.6 0.525 

E4 0.675 0.75 

E5 0.5125 0.6 

E6 0.7171 0.672 

Table 1: Entropies. 

Since E3(A) > E3(B) and E6(A) > E6(B) which 

indicates that E3and E6are consistent with the intuition. 

3.1 Comparison of existing entropy 

measure with proposed entropy 

measures 

We compared performance of existing entropy measures 

with the proposed measures with the help of an example. 

Let A be an IvIFS, then 

𝐸𝑍𝐽(𝐴) =

1

𝑛
∑

𝑚𝑖𝑛(𝑀𝑉𝐴𝐿(𝑥𝑖),𝑁𝑉𝐴𝐿(𝑥𝑖))+𝑚𝑖𝑛(𝑀𝑉𝐴𝑈(𝑥𝑖),𝑁𝑉𝐴𝑈(𝑥𝑖))

𝑚𝑎𝑥(𝑀𝑉𝐴𝐿(𝑥𝑖),𝑁𝑉𝐴𝐿(𝑥𝑖))+𝑚𝑎𝑥(𝑀𝑉𝐴𝑈(𝑥𝑖),𝑁𝑉𝐴𝑈(𝑥𝑖))

𝑛
=1 , 

 

𝐸𝑊𝑊(𝐴) =

1

n
∑

[
min(MVAL(xi),NVAL(xi))

+min(MVAU(xi),NVAU(xi))+HVAL(xi)+HVAU(xi)
]

[
max(MVAL(xi),NVAL(xi))

+max(MVAU(xi),NVAU(xi))++HVAL(xi)+HVAU(xi)
]

n
=1 , 

 

𝐸𝑍𝑀(𝐴) =
1

𝑛
∑ [1 − (𝑀𝑉̅̅ ̅̅ �̅�(𝑥𝑖) +
𝑛
𝑖=1

𝑁𝑉̅̅ ̅̅𝐴(𝑥𝑖))𝑒
1−(𝑀𝑉̅̅ ̅̅ ̅𝐴(𝑥𝑖)+𝑁𝑉̅̅ ̅̅ 𝐴(𝑥𝑖))], 

 

where 𝑀𝑉̅̅̅̅ �̅�(𝑥𝑖) = 𝑀𝑉𝐴𝐿(𝑥𝑖) + 𝜏∆𝑀𝑉𝐴(𝑥𝑖), 𝑁𝑉̅̅ ̅̅𝐴(𝑥𝑖) =
𝑁𝑉𝐴𝐿(𝑥𝑖) + 𝜏∆𝑁𝑉𝐴(𝑥𝑖) and ∆𝑀𝑉𝐴(𝑥𝑖) = 𝑀𝑉𝐴𝑈(𝑥𝑖) −
𝑀𝑉𝐴𝐿(𝑥𝑖) and ∆𝑁𝑉𝐴(𝑥𝑖) = 𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐴𝐿(𝑥𝑖), 𝜏 ∈
[0,1]  
are the measures of entropies given by Zang et al. (2010), 

Wei et al.(2011) and Zang et al. (2011) respectively. 

Example: Consider the example from Sun & Liu (2012) 

to review the entropies for an IvIFSs 𝐴𝑖 which are as 

follows: 

 

“𝐴1 = {𝑥, 〈[0.1,0.2], [0.2,0.4], [0.4,0.7]〉, 𝑥 ∈ 𝛺},  

𝐴2 = {𝑥, 〈[0.2,0.2], [0.3,0.5], [0.3,0.5]〉, 𝑥 ∈ 𝛺}, 

𝐴3 = {𝑥, 〈[0.2,0.4], [0,0], [0.6,0.8]〉, 𝑥 ∈ 𝛺}, 

𝐴4 = {𝑥, 〈[0.3,0.4], [0,0.142857], [0.4571,0.7]〉, 𝑥 ∈ 𝛺}, 

𝐴5 = {𝑥, 〈[0.1,0.1], [0,0.2], [0.6,0.9]〉, 𝑥 ∈ 𝛺},  

𝐴6 = {𝑥, 〈[0,0.2], [0,0.2], [0.4,1.0]〉, 𝑥 ∈ 𝛺}” 
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The values of  𝐸𝑍𝐽(𝐴1) = 0.5 = 𝐸𝑍𝐽(𝐴2), 

𝐸𝑊𝑊(𝐴3) = 0.7 = 𝐸𝑊𝑊(𝐴4) and 𝐸𝑍𝑀(𝐴5) = 0.5 =
𝐸𝑍𝑀(𝐴6) . Thus, the entropies 𝐸𝑍𝐽( 𝐴𝑖), 𝐸𝑊𝑊( 𝐴𝑖) and 

𝐸𝑍𝑀( 𝐴𝑖) are unreasonable. Proposed entropies Ej, j =

1,2, . .6 can discriminate the fuzziness of all the IvIFSs 

𝐴𝑖 , 𝑖 = 1, … ,6 given as follows and give the reasonable 

results given in Table 2. 

Here we have proposed some entropy measures and 

evaluated its performance on the basis of intuitionistic 

belief and comparison with existing measures. In next 

section we propose relation between measures of entropy 

and similarity under IvIFE. Also, we have defined new 

measures of similarity and have evaluated their 

performance by comparing them with some existing 

measures. 

4 Relations between measure of 

entropy and similarity together 

with new similarity measures 
In this section contains definition of new measures of 

similarity under IvIFE and determined an important 

relation between entropy and similarity measure IvIFSs 

which is discussed as follows. 

Theorem 3: Let 𝑆𝑗, for 𝑗 = 1, . . ,6 be measure of 

similarity of IvIFSs w.r.t. the measure of distance 𝐷𝑗 , for 

𝑗 = 1, . . ,6 respectively, and A be any IvIFS. Then 

𝐸𝑗(𝐴) = 3𝑆𝑗 (𝐴, 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉) − 2, for 𝑗 =

1,… ,6 are measures of entropy for IvIFSs. 

 

Proof: We prove that Ej(A), for j = 1, … ,6  satisfies 

conditions given by definition 5. 

 

Property 1): If A ∈  ℂ(Ω) ⇒ 𝐴(𝑥𝑖) = 〈[1,1], [0,0], [0,0]〉 
or 𝐴(𝑥𝑖) = 〈[0,0], [1,1], [0,0]〉, ∀ 𝑥𝑖 ∈ 𝛺, then for j=
1,… ,6 

Sj (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉)

= 1 − Dj (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉)

=
2

3
. 

Thus, Ej(A) = 0 

 

Property 2): For all 𝑗 = 1,… ,6, 𝐸𝑗(𝐴) = 1 

⟺ 3Sj (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉) − 2 = 1 

⟺ Sj (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉) = 1 

⟺  A = 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉 

Property3): Let A and B be any two IvIFSs and 

Dj (A, 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉) ≥

Dj (B, 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉) then 

1 − D𝑗 (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉)

≤ 1 − D𝑗 (B, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉) 

⟺ Sj (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉)

≤ S𝑗 (B, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉) 

⟺ E𝑗(A) ≤ Ej(B),  for all 𝑗 = 1,… ,6 

Property 4) : Let A be any IvIFS then A̅ =
{〈𝑥𝑖 , [𝑁𝑉𝐴𝐿(𝑥𝑖), 𝑁𝑉𝐴𝑈(𝑥𝑖)], [𝑀𝑉𝐴𝐿(𝑥𝑖),𝑀𝑉𝐴𝑈(𝑥𝑖)]〉 𝑥𝑖 ∈ Ω⁄ } 

⟹𝐷𝑗 (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉)

= Dj (A̅, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉) 

⟹ S𝑗 (A, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉)

= S𝑗 (A̅, 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉) 

Thus, Ej(A) = Ej(A̅), for all j = 1, … ,6. ∎ 

Next, we present a conversion technique to define 

similarity measures established by entropy measure for 

IvIFSs. 

 

Definition 6  : For any two IvIFSs A and B in Ω, such 

that both A and B are defined by the triplet 

〈𝑥𝑖 , [𝑀𝑉𝐴𝐿(𝑥𝑖),𝑀𝑉𝐴𝑈(𝑥𝑖)], [𝑁𝑉𝐴𝐿(𝑥𝑖), 𝑁𝑉𝐴𝑈(𝑥𝑖)]〉  and  

〈𝑥𝑖 , [𝑀𝑉𝐵𝐿(𝑥𝑖),𝑀𝑉𝐵𝑈(𝑥𝑖)], [𝑁𝑉𝐵𝐿(𝑥𝑖), 𝑁𝑉𝐵𝑈(𝑥𝑖)]〉 respec

tively. we define an IvIFSs  ∅(A, B)using A and B as 

given below: 

𝑀𝑉∅(𝐴,𝐵)𝐿(𝑥𝑖)= 
1

3
{1 − [𝑚𝑎𝑥(|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|, |𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨
|𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|, |𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨
|𝐻𝑉𝐴𝑈(𝑥𝑖) − 𝐻𝑉𝐵𝑈(𝑥𝑖)|)]

1/2}; 

𝑀𝑉∅(𝐴,𝐵)𝑈(𝑥𝑖)= 
1

3
{1 − [𝑚𝑎𝑥(|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|, |𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨
|𝑁𝐴𝑈(𝑥𝑖) − 𝑁𝐵𝑈(𝑥𝑖)|, |𝐻𝐴𝐿(𝑥𝑖) − 𝐻𝐵𝐿(𝑥𝑖)| ∨
|𝐻𝐴𝑈(𝑥𝑖) − 𝐻𝐵𝑈(𝑥𝑖)|)]}; 

𝑁𝑉∅(𝐴,𝐵)𝐿(𝑥𝑖)= 
1

3
{1 + [𝑚𝑖𝑛(|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|, |𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨

 𝐸1(𝐴𝑖) 𝐸2(𝐴𝑖) 𝐸3(𝐴𝑖) 𝐸4(𝐴𝑖) 𝐸5(𝐴𝑖) 𝐸6(𝐴𝑖) 

A1 0.58167 0.625 0.45 0.675 0.4875 0.6063 

A2 0.735425 0.75 0.65 0.8 0.675 0.765479 

A3 0.367544 0.4 0.3 0.45 0.15 0.490098 

A4 0.523512 0.582143 0.425 0.607143 0.398214 0.566987 

A5 0.27889 0.3 0.15 0.3 0.05 0.395848 

A6 0.271989 0.375 0.01 0.45 0.1375 0.292893 

Table 2: Comparison of entropies. 
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|𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|, |𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨
|𝐻𝑉𝐴𝑈(𝑥𝑖) − 𝐻𝑉𝐵𝑈(𝑥𝑖)|)]

2}; 

𝑁𝑉∅(𝐴,𝐵)𝑈(𝑥𝑖)= 
1

3
{1 + [𝑚𝑖𝑛(|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|, |𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨
|𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|, |𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨
|𝐻𝑉𝐴𝑈(𝑥𝑖) − 𝐻𝑉𝐵𝑈(𝑥𝑖)|)]}. 

Theorem 4: E(∅(A, B)) be a similarity measure for 

IvIFSs Aand B, where E is an entropy. 

 

Proof: To prove that E(∅(A, B)) is a measure of 

similarity, we need to prove property given by definition 

3 holds . 

 

Property 1): If 𝐴 ∈  ℂ(𝛺) ⇒ 𝐴(𝑥𝑖) = 〈[1,1], [0,0], [0,0]〉 
or 𝐴(𝑥𝑖) = 〈[0,0], [1,1], [0,0]〉, for any 𝑥𝑖 ∈ 𝛺, then 

𝑀𝑉∅(𝐴,�̅�)𝐿(𝑥𝑖) = 0 = 𝑀𝑉∅(𝐴,�̅�)𝑈(𝑥𝑖); 

And 𝑁𝑉∅(𝐴,�̅�)𝐿(𝑥𝑖) = 1 = 𝑁𝑉∅(𝐴,�̅�)𝑈(𝑥𝑖) 

Thus, ∅(𝐴, �̅�) = {〈𝑥𝑖 , [0,0], [1,1], [0,0]〉 𝑥𝑖 ∈ Ω⁄ } 
⟹  S(A, A̅) = E(∅(A, A̅)) = 0 

 

Property 2): Assume that S(A, B) = 1 ⇒ E(∅(A, B)) = 1 

⟺𝑀𝑉∅(𝐴,𝐵)(𝑥𝑖) = 𝑁𝑉∅(𝐴,𝐵)(𝑥𝑖) = 𝐻𝑉∅(𝐴,𝐵)(𝑥𝑖) = [
1

3
,
1

3
] 

⟺  𝑚𝑎𝑥(|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)|
∨ |𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|, |𝑁𝑉𝐴𝐿(𝑥𝑖)
− 𝑁𝑉𝐵𝐿(𝑥𝑖)|
∨ |𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|, |𝐻𝑉𝐴𝐿(𝑥𝑖)
− 𝐻𝑉𝐵𝐿(𝑥𝑖)|
∨ |𝐻𝑉𝐴𝑈(𝑥𝑖) − 𝐻𝑉𝐵𝑈(𝑥𝑖)|) = 0 

and 𝑚𝑖𝑛(|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝑀𝑉𝐴𝑈(𝑥𝑖) −
𝑀𝑉𝐵𝑈(𝑥𝑖)|, |𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝑁𝑉𝐴𝑈(𝑥𝑖) −
𝑁𝑉𝐵𝑈(𝑥𝑖)|, |𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝐻𝑉𝐴𝑈(𝑥𝑖) −
𝐻𝑉𝐵𝑈(𝑥𝑖)|) = 0 

⟺ |𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|
= 0, 

|𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)| = 0, 
and |𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝐻𝑉𝐴𝑈(𝑥𝑖) − 𝐻𝑉𝐵𝑈(𝑥𝑖)| =
0. 

⟺𝑀𝑉𝐴𝐿(𝑥𝑖) = 𝑀𝑉𝐵𝐿(𝑥𝑖),𝑀𝑉𝐴𝑈(𝑥𝑖) = 𝑀𝑉𝐵𝑈(𝑥𝑖), 
𝑁𝑉𝐴𝐿(𝑥𝑖) = 𝑁𝑉𝐵𝐿(𝑥𝑖), 𝑁𝑉𝐴𝑈(𝑥𝑖) = 𝑁𝑉𝐵𝑈(𝑥𝑖) 

and 𝐻𝑉𝐴𝐿(𝑥𝑖) = 𝐻𝑉𝐵𝐿(𝑥𝑖), 𝐻𝑉𝐴𝑈(𝑥𝑖) = 𝐻𝑉𝐵𝑈(𝑥𝑖). 
⟺ A = B. 

 

Property 3): ∅(𝐴, 𝐵) = ∅(𝐵, 𝐴) by definition of 

𝑀𝑉∅(𝐴,𝐵)𝐿(𝑥𝑖),𝑀𝑉∅(𝐴,𝐵)𝑈(𝑥𝑖),𝑁𝑉∅(𝐴,𝐵)𝐿(𝑥𝑖),

𝑁𝑉∅(𝐴,𝐵)𝑈(𝑥𝑖) for any 𝑥𝑖 ∈ 𝛺 

⟹ 𝐸(∅(𝐴, 𝐵)) = 𝐸(∅(𝐵, 𝐴)) 

⟺ 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴) 
 

Property 4): Let A, B and C be any three IvIFSs such that 

A ⊆ B ⊆ C for any 𝑥𝑖 ∈ 𝛺, we have 𝑀𝑉𝐴(𝑥𝑖) ≤
𝑀𝑉𝐵(𝑥𝑖) ≤ 𝑀𝑉𝐶(𝑥𝑖),𝑁𝑉𝐴(𝑥𝑖) ≥ 𝑁𝑉𝐵(𝑥𝑖) ≥ 𝑁𝑉𝐶(𝑥𝑖) or 

𝑀𝑉𝐴𝐿(𝑥𝑖) ≤ 𝑀𝑉𝐵𝐿(𝑥𝑖) ≤ 𝑀𝑉𝐶𝐿(𝑥𝑖),𝑁𝑉𝐴𝐿(𝑥𝑖) ≥
𝑁𝑉𝐵𝐿(𝑥𝑖) ≥ 𝑁𝑉𝐶𝐿(𝑥𝑖) and  𝑀𝑉𝐴𝑈(𝑥𝑖) ≤ 𝑀𝑉𝐵𝑈(𝑥𝑖) ≤
𝑀𝑉𝐶𝑈(𝑥𝑖),𝑁𝑉𝐴𝑈(𝑥𝑖) ≥ 𝑁𝑉𝐵𝑈(𝑥𝑖) ≥ 𝑁𝑉𝐶𝑈(𝑥𝑖). 
⟹ |𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐶𝐿(𝑥𝑖)| ≥ |𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)|, 
|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐶𝑈(𝑥𝑖)| ≥ |𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|; 

|𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐶𝐿(𝑥𝑖)| ≥ |𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)|, 
|𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐶𝑈(𝑥𝑖)| ≥ |𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|; 
and |𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐶𝐿(𝑥𝑖)| = |2(𝑀𝑉𝐶𝐿(𝑥𝑖) −
𝑀𝑉𝐴𝐿(𝑥𝑖)) + 2(𝑁𝑉𝐶𝐿(𝑥𝑖) − 𝑁𝑉𝐴𝐿(𝑥𝑖))| ≥
|2(𝑀𝑉𝐵𝐿(𝑥𝑖) − 𝑀𝑉𝐴𝐿(𝑥𝑖)) + 2(𝑁𝑉𝐵𝐿(𝑥𝑖) −
𝑁𝑉𝐴𝐿(𝑥𝑖))| = |𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)|,  
Similarly, we have |𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐶𝑈(𝑥𝑖)| ≥
|𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)| 

So, we have  

𝑀𝑉∅(𝐴,𝐵)(𝑥𝑖) ≤ 𝑀𝑉∅(𝐴,𝐶)(𝑥𝑖) ≤ [
1

3
,
1

3
] and 𝑁𝑉∅(𝐴,𝐵)(𝑥𝑖) ≥

𝑁𝑉∅(𝐴,𝐶)(𝑥𝑖) ≥ [
1

3
,
1

3
] for any 𝑥𝑖 ∈ 𝛺. ⟹ ∅(A, C) ⊆

∅(A, B) ⊆ 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉 

Similarly, we have ⟹ ∅(A, C) ⊆ ∅(B, C) ⊆

〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉. Thus 

D(∅(A, B), 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉) ≤

 D (∅(A, C), 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉) 

and D(∅(B, C), 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉) ≤

 D (∅(A, C), 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉).  

So form definition of entropy corresponding to distance 

function, we get E(∅(A, C)) ≤ E(∅(A, B)) and 

E(∅(A, C)) ≤ E(∅(B, C)) 

or S(∅(A, C)) ≤ S(∅(A, B)) and S(∅(A, C)) ≤

S(∅(B, C)).      ∎ 

 

Corollary 1: Let E be an entropy measure for IvIFSs and 

∅(A, B)be an IvIFS defined on two IvIFSs A and 

B acaccording to definition 6, then  E(∅(A, B)̅̅ ̅̅ ̅̅ ̅̅ ̅) measure 

of similarity for 𝐴, 𝐵 ∈ 𝐼𝑣𝐼𝐹𝑆𝑠(𝛺). 
 

Proof: Proof followed from the definition of complement 

interval-valued intuitionistic fuzzy sets and theorem 4.

      ∎ 

Definition 7: Let 𝐴, 𝐵 ∈ 𝐼𝑣𝐼𝐹𝑆𝑠(𝛺)  , we can define 

𝐼𝑣𝐼𝐹𝑆 η(A, B)using A, B as follows: 

𝑀𝑉𝜂(𝐴,𝐵)𝐿(𝑥𝑖)= 
1

3
{1 + [𝑚𝑖𝑛((|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|
𝛼), (|𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|)
𝛼 , (|𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝐻𝑉𝐴𝑈(𝑥𝑖) − 𝐻𝑉𝐵𝑈(𝑥𝑖)|)
𝛼)]

2
}; 

𝑀𝑉𝜂(𝐴,𝐵)𝑈(𝑥𝑖)= 
1

3
{1 + [𝑚𝑖𝑛((|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|
𝛼), (|𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|)
𝛼 , (|𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝐻𝑉𝐴𝑈(𝑥𝑖) − 𝐻𝑉𝐵𝑈(𝑥𝑖)|)
𝛼)]}; 

𝑁𝑉𝜂(𝐴,𝐵)𝐿(𝑥𝑖)= 
1

3
{1 − [𝑚𝑎𝑥((|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|
𝛼), (|𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|)
𝛼 , (|𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝐻𝑉𝐴𝑈(𝑥𝑖) − 𝐻𝑉𝐵𝑈(𝑥𝑖)|)
𝛼)]

1/2
}; 

𝑁𝑉𝜂(𝐴,𝐵)𝑈(𝑥𝑖)= 
1

3
{1 − [𝑚𝑎𝑥((|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|
𝛼), (|𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|)
𝛼 , (|𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨

|𝐻𝑉𝐴𝑈(𝑥𝑖) − 𝐻𝑉𝐵𝑈(𝑥𝑖)|)
𝛼)]}, 

Where 𝛼 ∈ [1,∞[ and 𝑥𝑖 ∈ 𝛺. 
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Theorem 5: For any two 𝐼𝑣𝐼𝐹𝑆𝑠 A and B, E(η(A, B)) is a 

measure of similarity, where E is an entropy measure. 

 

Proof: To prove that E(η(A, B)) is a measure of 

similarity, we need to prove property given by definition 

3 holds . 

 

Property 1): If 𝐴 ∈  ℂ(𝛺) ⇒ 𝐴(𝑥𝑖) = 〈[1,1], [0,0], [0,0]〉 
or 𝐴(𝑥𝑖) = 〈[0,0], [1,1], [0,0]〉, for any 𝑥𝑖 ∈ 𝛺, then 

𝑀𝑉∅(𝐴,�̅�)𝐿(𝑥𝑖) = 1 = 𝑀𝑉∅(𝐴,�̅�)𝑈(𝑥𝑖); 

and 𝑁𝑉∅(𝐴,�̅�)𝐿(𝑥𝑖) = 0 = 𝑁𝑉∅(𝐴,�̅�)𝑈(𝑥𝑖) 

Thus, ∅(A, A̅) = {〈𝑥𝑖 , [1,1], [0,0], [0,0]〉 𝑥𝑖 ∈ Ω⁄ } 
⟹  S(A, A̅) = E(∅(A, A̅)) = 0 

 

Property 2): Assume that S(A, B) = 1 

Then E(η(A, B)) = 1 

⟺𝑀𝑉𝜂(𝐴,𝐵)(𝑥𝑖) = [
1

3
,
1

3
] = 𝑁𝑉𝜂(𝐴,𝐵)(𝑥𝑖)

=  𝐻𝑉𝜂(𝐴,𝐵)(𝑥𝑖) 

 
⟺ (|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)|

∨ |𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|)
𝛼 = 0, 

(|𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|)
𝛼

= 0, 
and (|𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝐻𝑉𝐴𝑈(𝑥𝑖) −
𝐻𝑉𝐵𝑈(𝑥𝑖)|)

𝛼 = 0. 

⟺𝑀𝑉𝐴𝐿(𝑥𝑖) = 𝑀𝑉𝐵𝐿(𝑥𝑖),𝑀𝑉𝐴𝑈(𝑥𝑖)
= 𝑀𝑉𝐵𝑈(𝑥𝑖), 𝑁𝑉𝐴𝐿(𝑥𝑖)
= 𝑁𝑉𝐵𝐿(𝑥𝑖), 𝑁𝑉𝐴𝑈(𝑥𝑖) = 𝑁𝑉𝐵𝑈(𝑥𝑖) 

and 𝐻𝑉𝐴𝐿(𝑥𝑖) = 𝐻𝑉𝐵𝐿(𝑥𝑖), 𝐻𝑉𝐴𝑈(𝑥𝑖) = 𝐻𝑉𝐵𝑈(𝑥𝑖). 
⟺ A = B. 

 

Property 3): η(A, B) = η(B, A) by definition of 

𝑀𝑉𝜂(𝐴,𝐵)𝐿(𝑥𝑖),𝑀𝑉𝜂(𝐴,𝐵)𝑈(𝑥𝑖),𝑁𝑉𝜂(𝐴,𝐵)𝐿(𝑥𝑖),

𝑁𝑉𝜂(𝐴,𝐵)𝑈(𝑥𝑖) for any 𝑥𝑖 ∈ 𝛺 

⟹ E(∅(A, B)) = E(∅(B, A)) 

⟺ S(A, B) = S(B, A) 
 

Property 4): Let A, B and C be  any three IvIFSs such that 

A ⊆ B ⊆ C, then for any 𝑥𝑖 ∈ 𝛺, we have 𝑀𝑉𝐴(𝑥𝑖) ≤
𝑀𝑉𝐵(𝑥𝑖) ≤ 𝑀𝑉𝐶(𝑥𝑖),𝑁𝑉𝐴(𝑥𝑖) ≥ 𝑁𝑉𝐵(𝑥𝑖) ≥ 𝑁𝑉𝐶(𝑥𝑖) or 

𝑀𝑉𝐴𝐿(𝑥𝑖) ≤ 𝑀𝑉𝐵𝐿(𝑥𝑖) ≤ 𝑀𝑉𝐶𝐿(𝑥𝑖),𝑁𝑉𝐴𝐿(𝑥𝑖) ≥
𝑁𝑉𝐵𝐿(𝑥𝑖) ≥ 𝑁𝑉𝐶𝐿(𝑥𝑖) and 𝑀𝑉𝐴𝑈(𝑥𝑖) ≤ 𝑀𝑉𝐵𝑈(𝑥𝑖) ≤
𝑀𝑉𝐶𝑈(𝑥𝑖), 𝑁𝑉𝐴𝑈(𝑥𝑖) ≥ 𝑁𝑉𝐵𝑈(𝑥𝑖) ≥ 𝑁𝑉𝐶𝑈(𝑥𝑖). 
⟹ |𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐶𝐿(𝑥𝑖)| ≥ |𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)|, 
|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐶𝑈(𝑥𝑖)| ≥ |𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|; 
|𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐶𝐿(𝑥𝑖)| ≥ |𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)|, 
|𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐶𝑈(𝑥𝑖)| ≥ |𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|; 

and |𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐶𝐿(𝑥𝑖)| = |2(𝑀𝑉𝐶𝐿(𝑥𝑖) −
𝑀𝑉𝐴𝐿(𝑥𝑖)) + 2(𝑁𝑉𝐶𝐿(𝑥𝑖) − 𝑁𝑉𝐴𝐿(𝑥𝑖))| ≥
|2(𝑀𝑉𝐵𝐿(𝑥𝑖) − 𝑀𝑉𝐴𝐿(𝑥𝑖)) + 2(𝑁𝑉𝐵𝐿(𝑥𝑖) −
𝑁𝑉𝐴𝐿(𝑥𝑖))| = |𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)|,  
Similarly, we have |𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐶𝑈(𝑥𝑖)| ≥
|𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)| 
So, we have from definition 7 

𝑀𝑉𝜂(𝐴,𝐶)(𝑥𝑖) ≥ 𝑀𝑉𝜂(𝐴,𝐵)(𝑥𝑖) ≥ [
1

3
,
1

3
] and 𝑁𝑉𝜂(𝐴,𝐶)(𝑥𝑖) ≤

𝑁𝑉𝜂(𝐴,𝐵)(𝑥𝑖) ≤ [
1

3
,
1

3
] for any 𝑥𝑖 ∈ 𝛺. ⟹ η(A, C) ⊇

η(A, B) ⊇ 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉 

Similarly, we have ⟹ η(A, C) ⊇ η(B, C) ⊇

〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉. Thus  

D(η(A, B), 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉)

≤  D (η(A, C), 〈[
1

3
,
1

3
] , [
1

3
,
1

3
] , [
1

3
,
1

3
]〉) 

and D(η(B, C), 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉) ≤

 D (η(A, C), 〈[
1

3
,
1

3
] , [

1

3
,
1

3
] , [

1

3
,
1

3
]〉).  

So from definition of entropy corresponding to distance 

function, we get E(∅(A, C)) ≤ E(∅(A, B)) and 

E(η(A, C)) ≤ E(η(B, C)) 

or S(η(A, C)) ≤ S(η(A, B)) and S(η(A, C)) ≤

S(η(B, C)).     ∎ 

 

Corollary 2: Let E be an entropy for 𝐼𝑣𝐼𝐹𝑆𝑠 and 

η(A, B) be an 𝐼𝑣𝐼𝐹𝑆 defined on 𝐴, 𝐵 ∈ 𝐼𝑣𝐼𝐹𝑆𝑠(𝛺)  as 

defined in definition 7, then  E(η(A, B)̅̅ ̅̅ ̅̅ ̅̅ ̅) is measure of 

similarity for 𝐴, 𝐵 ∈ 𝐼𝑣𝐼𝐹𝑆𝑠(𝛺). 
Proof: Proof followed from the definition of complement 

of 𝐼𝑣𝐼𝐹𝑆𝑠 and theorem 5. ∎ 

4.1 Weighted similarity measure 

Let w = (w1, w2, … , wn)
T be the weights provided to 

each element 𝑥𝑖 ∈ 𝛺, 𝑖 = 1,2, … , 𝑛. Then the weighted 

similarity measure based on the aforesaid similarity 

measures are defined as 𝑆(𝐴, 𝐵) =
∑ 𝑤𝑖  𝑆(𝐴(𝑥𝑖), 𝐵(𝑥𝑖))
𝑛
𝑖=1 , where 𝑤𝑖 ≥ 0 and ∑ 𝑤𝑖 = 1𝑛

𝑖=1 . 

4.2 Comparison with some select measures 

of similarity 

Here, we compare the performance of proposed measure 

of similarity with some of the existing similarity 

measures as follows. 

For any two IvIFSs A and B, then some existing 

similarity measures are given as follows: 

• 𝑆𝑊(𝐴, 𝐵) =
1

𝑛
∑

4−(𝑀𝑉𝐿(𝑥𝑖)+𝑀𝑉𝑈(𝑥𝑖)+𝑁𝑉𝐿(𝑥𝑖)+𝑁𝑉𝑈(𝑥𝑖))+(𝐻𝑉𝐿(𝑥𝑖)+𝐻𝑉𝑈(𝑥𝑖))

4+(𝑀𝑉𝐿(𝑥𝑖)+𝑀𝑉𝑈(𝑥𝑖)+𝑁𝑉𝐿(𝑥𝑖)+𝑁𝑉𝑈(𝑥𝑖))+(𝐻𝑉𝐿(𝑥𝑖)+𝐻𝑉𝑈(𝑥𝑖))

𝑛
𝑖=1

,  

where 𝑀𝑉𝐿(𝑥𝑖) = |𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)|, 𝑀𝑉𝑈(𝑥𝑖) =
|𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|, 𝑁𝑉𝐿(𝑥𝑖) = |𝑁𝑉𝐴𝐿(𝑥𝑖) −
𝑁𝑉𝐵𝐿(𝑥𝑖)|, 𝑁𝑉𝑈(𝑥𝑖) = |𝑁𝑉𝐴𝑈(𝑥𝑖) −
𝑁𝑉𝐵𝑈(𝑥𝑖)|,𝐻𝑉𝐿(𝑥𝑖) = 𝐻𝑉𝐴𝐿(𝑥𝑖) + 𝐻𝑉𝐵𝐿(𝑥𝑖) and 

𝐻𝑉𝑈(𝑥𝑖) = 𝐻𝑉𝐴𝑈(𝑥𝑖) + 𝐻𝑉𝐵𝑈(𝑥𝑖) is proposed by Wu et 

al.(2014). 

⟺  𝑚𝑖𝑛 (

(|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|)
𝛼 ,

(|𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|)
𝛼 ,

(|𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝐻𝑉𝐴𝑈(𝑥𝑖) − 𝐻𝑉𝐵𝑈(𝑥𝑖)|)
𝛼

)

= 0 

and 

𝑚𝑎𝑥 (

(|𝑀𝑉𝐴𝐿(𝑥𝑖) − 𝑀𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)|)
𝛼 ,

(|𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|)
𝛼 ,

(|𝐻𝑉𝐴𝐿(𝑥𝑖) − 𝐻𝑉𝐵𝐿(𝑥𝑖)| ∨ |𝐻𝑉𝐴𝑈(𝑥𝑖) − 𝐻𝑉𝐵𝑈(𝑥𝑖)|)
𝛼

)

= 0 
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• 𝑆𝐻𝐿(𝐴, 𝐵) = 1 −
1

4𝑛
∑ |𝑀𝑉𝐴𝐿(𝑥𝑖) −
𝑛
𝑖=1

𝑀𝑉𝐵𝐿(𝑥𝑖)| + |𝑀𝑉𝐴𝑈(𝑥𝑖) − 𝑀𝑉𝐵𝑈(𝑥𝑖)| +
|𝑁𝑉𝐴𝐿(𝑥𝑖) − 𝑁𝑉𝐵𝐿(𝑥𝑖)| + |𝑁𝑉𝐴𝑈(𝑥𝑖) − 𝑁𝑉𝐵𝑈(𝑥𝑖)|is 

given by Hu and Li (2013). 

 

• 𝑆𝑆(𝐴, 𝐵) =

1

𝑛
∑

[
(𝑀𝑉𝐴𝐿(𝑥𝑖)+𝑀𝑉𝐴𝑈(𝑥𝑖))(𝑀𝑉𝐵𝐿(𝑥𝑖)+𝑀𝑉𝐵𝑈(𝑥𝑖))

+(𝑁𝑉𝐴𝐿(𝑥𝑖)+𝑁𝑉𝐴𝑈(𝑥𝑖))(𝑁𝑉𝐵𝐿(𝑥𝑖)+𝑁𝑉𝐵𝑈(𝑥𝑖))
]

[
 
 
 √(𝑀𝑉𝐴𝐿(𝑥𝑖)+𝑀𝑉𝐴𝑈(𝑥𝑖))

2
+(𝑁𝑉𝐴𝐿(𝑥𝑖)+𝑁𝑉𝐴𝑈(𝑥𝑖))

2

√(𝑀𝑉𝐵𝐿(𝑥𝑖)+𝑀𝑉𝐵𝑈(𝑥𝑖))
2
+(𝑁𝑉𝐵𝐿(𝑥𝑖)+𝑁𝑉𝐵𝑈(𝑥𝑖))

2
]
 
 
 

𝑛
𝑖=1 is 

introduced by Singh(2012) 

• 𝑆𝑆𝑢(𝐴, 𝐵) =

1

𝑛
∑

|𝑀𝑉𝐴𝐿(𝑥𝑖)−𝑀𝑉𝐵𝐿(𝑥𝑖)|⋁|𝑁𝑉𝐴𝐿(𝑥𝑖)−𝑁𝑉𝐵𝐿(𝑥𝑖)|

+|𝑀𝑉𝐴𝑈(𝑥𝑖)−𝑀𝑉𝐵𝑈(𝑥𝑖)|∨|𝑁𝑉𝐴𝑈(𝑥𝑖)−𝑁𝑉𝐵𝑈(𝑥𝑖)|

3−𝑚𝑖𝑛{
|𝑀𝑉𝐴𝐿(𝑥𝑖)−𝑀𝑉𝐵𝐿(𝑥𝑖)|⋁|𝑁𝑉𝐴𝐿(𝑥𝑖)−𝑁𝑉𝐵𝐿(𝑥𝑖)|,

|𝑀𝑉𝐴𝑈(𝑥𝑖)−𝑀𝑉𝐵𝑈(𝑥𝑖)|∨|𝑁𝑉𝐴𝑈(𝑥𝑖)−𝑁𝑉𝐵𝑈(𝑥𝑖)|
}

𝑛
𝑖=1  

 

is proposed by Sun & Liu (2012). 

To review the performance of similarity measures let 

us consider an example. Consider the following IvIFSs 

A = {𝑥𝑖 , 〈[0.5,0.5], [0.5,0.5], [0,0]〉, 𝑥𝑖 ∈ Ω},  
B = {𝑥𝑖 , 〈[0.3,0.4], [0.4,0.5], [0.1,0.3]〉, 𝑥𝑖 ∈ Ω},  
C = {𝑥𝑖 , 〈[0.3,0.3], [0.3,0.3], [0.4,0.4]〉, 𝑥𝑖 ∈ Ω}, 
 D = {𝑥𝑖 , 〈[0.6,0.6], [0.4,0.4], [0, 0]〉, 𝑥𝑖 ∈ Ω} 

Intuitively, it is clear that A is more similar to D than 

B and C. The result corresponding to measure of 

similarity measures given in Table 3: 

 A B A C A D 

SW 0.83333 0.69308 0.8181 

SHL 0.9 0.8 0.9 

SS 0.99227 0.9 0.98058 

SSu 0.89655 0.8571 0.9310 

S1(ϕ) 0.7450 0.73722 0.8646 

S2(ϕ) 0.78806 0.761886 0.89594 

S3(ϕ) 0.72614 0.68377 0.84188 

S4(ϕ) 0.78806 0.74188 0.89594 

S5(ϕ) 0.68210 0.62283 0.84391 

S6(ϕ) for p=2 0.77639 0.77141 0.87090 

S1(η) 0.93205 0.89426 0.98708 

S2(η) 0.95217 0.92075 0.99184 

S3(η) 0.91759 0.85853 0.98418 

S4(η) 0.95217 0.92075 0.99184 

S5(η) 0.92825 0.88113 0.98776 

S6(η) for p=2 0.93292 0.89590 0.98709 

Table 3: Comparison of Similarity Measures. 

From the similarity measures listed in table 3, we can see 

that 

SW, SHL and SS are inconsistent with intuition where as 

SSu, Sj(ϕ) and Sj(η), j = 1, … , 6. 

In this section we have derived a relation between 

entropy and similarity measure. Then we defined some 

similarity measures, compared its performance with 

existing similarity measures. In section 5 we applied 

proposed similarity measures to draw conclusion in 

pattern recognition and medical diagnoses. 

5 Applications of proposed 

similarity measures 
Here the proposed similarity measures are applied to 

some of the situation that deals with imperfect 

information. 

5.1 Pattern recognition 

Here we use an example of pattern recognition 

considered by Xu (2007) and adapted by Wei et al. 

(2011) and Wu et al.(2014) for classification of building 

material. 

Example: There are four types of building materials 

𝐴𝑖 , 𝑖 = 1,2,3,4 and an anonymous building material B, 

which is characterized by the IvIFSs defined on 𝑋 =
{𝑥1, 𝑥2, … , 𝑥12} with weighted vector 

 w = (
0.1, 0.05, 0.08, 0.06, 0.03, 0.07,
 0.09, 0.12, 0.15, 0.07, 0.13, 0.05

)
T

 

and we have the data given as follows by Xu (2007). 

“𝐴1 

=

{
  
 

  
 (

〈𝑥1, [0.1,0.2], [0.5, 0.6]〉, 〈𝑥2, [0.1,0.2], [0.7, 0.8]〉,
〈𝑥3, [0.5,0.6], [0.3, 0.4]〉, 〈𝑥4, [0.8,0.9], [0.0, 0.1]〉,

)

(
〈𝑥5, [0.4,0.5], [0.3, 0.4]〉, 〈𝑥6, [0.0,0.1], [0.8, 0.9]〉,

〈𝑥7, [0.3,0.4], [0.5, 0.6]〉, 〈𝑥8, [1.0,1.0], [0.0, 0.0]〉,
)

(
〈𝑥9, [0.2,0.3], [0.6, 0.7]〉, 〈𝑥10, [0.4,0.5], [0.4, 0.5]〉,

〈𝑥11, [0.7,0.8], [0.1, 0.2]〉, 〈𝑥12, [0.4,0.5], [0.4, 0.5]〉
)
}
  
 

  
 

 

𝐴2

=

{
  
 

  
 (

〈𝑥1, [0.5,0.6], [0.3, 0.4]〉, 〈𝑥2, [0.6,0.7], [0.1, 0.2]〉,
〈𝑥3, [1.0,1.0], [0.0, 0.0]〉, 〈𝑥4, [0.1,0.2], [0.6, 0.7]〉,

)

(
〈𝑥5, [0.0,0.1], [0.8, 0.9]〉, 〈𝑥6, [0.7,0.8], [0.1, 0.2]〉,

〈𝑥7, [0.5,0.6], [0.3, 0.4]〉, 〈𝑥8, [0.6,0.7], [0.2, 0.3]〉,
)

(
〈𝑥9, [1.0,1.0], [0.0, 0.0]〉, 〈𝑥10, [0.1,0.2], [0.7, 0.8]〉,

〈𝑥11, [0.0,0.1], [0.8, 0.9]〉, 〈𝑥12, [0.7,0.8], [0.1, 0.2]〉
)
}
  
 

  
 

 

𝐴3

=

{
  
 

  
 (

〈𝑥1, [0.4,0.5], [0.3, 0.4]〉, 〈𝑥2, [0.6,0.7], [0.2, 0.3]〉,
〈𝑥3, [0.9,1.0], [0.0, 0.0]〉, 〈𝑥4, [0.0,0.1], [0.8, 0.9]〉,

)

(
〈𝑥5, [0.0,0.1], [0.8, 0.9]〉, 〈𝑥6, [0.6,0.7], [0.2, 0.3]〉,

〈𝑥7, [0.1,0.2], [0.7, 0.8]〉, 〈𝑥8, [0.2,0.3], [0.6, 0.7]〉,
)

(
〈𝑥9, [0.5,0.6], [0.2, 0.4]〉, 〈𝑥10, [1.0,1.0], [0.0, 0.0]〉,

〈𝑥11, [0.3,0.4], [0.4, 0.5]〉, 〈𝑥12, [0.0,0.1], [0.8, 0.9]〉
)
}
  
 

  
 

 

 

𝐴4

=

{
  
 

  
 (

〈𝑥1, [1.0,1.0], [0.0, 0.0]〉, 〈𝑥2, [1.0,1.0], [0.0, 0.0]〉,
〈𝑥3, [0.8,0.9], [0.0, 0.1]〉, 〈𝑥4, [0.7,0.8], [0.1, 0.2]〉,

)

(
〈𝑥5, [0.0,0.1], [0.7, 0.9]〉, 〈𝑥6, [0.0,0.1], [0.8, 0.9]〉,

〈𝑥7, [0.1,0.2], [0.7, 0.8]〉, 〈𝑥8, [0.1,0.2], [0.7, 0.8]〉,
)

(
〈𝑥9, [0.4,0.5], [0.3, 0.4]〉, 〈𝑥10, [1.0,1.0], [0.0, 0.0]〉,

〈𝑥11, [0.3,0.4], [0.4, 0.5]〉, 〈𝑥12, [0.0,0.1], [0.8, 0.9]〉
)
}
  
 

  
 

 

 

𝐵 =

{
  
 

  
 (

〈𝑥1, [0.9,1.0], [0.0, 0.0]〉, 〈𝑥2, [0.9,1.0], [0.0, 0.0]〉,
〈𝑥3, [0.7,0.8], [0.1, 0.2]〉, 〈𝑥4, [0.6,0.7], [0.1, 0.2]〉,

)

(
〈𝑥5, [0.0,0.1], [0.8, 0.9]〉, 〈𝑥6, [0.1,0.2], [0.7, 0.8]〉,

〈𝑥7, [0.1,0.2], [0.7, 0.8]〉, 〈𝑥8, [0.1,0.2], [0.7, 0.8]〉,
)

(
〈𝑥9, [0.4,0.5], [0.3, 0.4]〉, 〈𝑥10, [1.0,1.0], [0.0, 0.0]〉,

〈𝑥11, [0.3,0.4], [0.4, 0.5]〉, 〈𝑥12, [0.0,0.1], [0.7, 0.9]〉
)
}
  
 

  
 

” 
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We need to identify which pattern is most similar to B 

using the maximum degree principle of measures of 

similarity between IvIFSs. Using the anticipated 

similarity measures defined in this paper, we get the 

following results given in table 4: 

 A1 B A2 B A3 B A4 B 

S1(ϕ) 0.688569 0.803061 0.84671 0.936548 

S2(ϕ) 0.725141 0.854747 0.868809 0.95075 

S3(ϕ) 0.654357 0.742627 0.818343 0.9265 

S4(ϕ) 0.725141 0.861997 0.868809 0.95075 

S5(ϕ) 0.587711 0.789371 0.803214 0.926125 

S6(ϕ) 
for p=2 0.738413 0.80768 0.863582 0.939988 

S1(η) 0.780631 0.773645 0.768612 0.979413 

S2(η) 0.816725 0.811175 0.804125 0.98595 

S3(η) 0.767465 0.749444 0.76081 0.975 

S4(η) 0.816725 0.811175 0.804125 0.98595 

S5(η) 0.725088 0.716763 0.706188 0.978925 

S6(η) 
for p=2 0.814325 0.801194 0.810194 0.979588 

Table 4: Application to pattern recognition. 

From the above values it is clear that B is most similar to 

A4 as the value corresponding to each similarity measure 

is highest for A4. So, we can conclude that A4building 

material consistent with the specification and this result 

is consistent with the results presented by Wu et 

al.(2014). 

5.2 Medical diagnoses 

Many authors Wei et al. (2011), Wu et al. (2014), Singh 

(2012)  employed IvIFSs to execute medical diagnosis in 

their works. Here we use the data used by Singh(2012) to 

do medical diagnosis using the proposed measure of 

similarity  

 

Example: Let A and B be the set that represent the set of 

diagnoses and symptoms respectively given as A =
{〈A1, Viral fever〉, 〈A2, Malaria〉, 〈A3, Typhoid〉} and =
{〈B1, Temperature〉, 〈B2, Headache〉, 〈B3, Cough〉} . 

Assume the patient is represented by 

 𝑃 = {
〈𝐵1 , [0.6,0.8], [0.1,0.2]〉, 〈𝐵2, [0.3,0.7], [0.2,0.3]〉,

〈𝐵3, [0.6,0.8], [0.1,0.2]〉
}  

and the weights corresponding to each attribute is equal 

and each diagnosis is given by the following 𝐼𝑣𝐼𝐹𝑆𝑠 

 

A1 = {
〈B1, [0.4,0.5], [0.3,0.4]〉, 〈B2, [0.4,0.6], [0.2,0.4]〉,

 〈B3, [0.4,0.8], [0.1,0.2]〉
} 

A2 = {
〈B1, [0.3,0.6], [0.3,0.4]〉, 〈B2, [0.5,0.6], [0.3,0.4]〉,

〈B3, [0.4,0.5], [0.1,0.3]〉
} 

A3 = {
〈B1, [0.7,0.8], [0.1,0.2]〉, 〈B2, [0.6,0.7], [0.1,0.3]〉,

 〈B3, [0.3,0.4], [0.1,0.2]〉
} 

Using the proposed similarity measure we classify the 

patient P in one of the diagnoses A1,A2, A3.  The results 

are as follows in Table 5. 

 

 

 A1 P A2 P A3 P 

S1(ϕ) 0.80666 0.753483 0.770859 

S2(ϕ) 0.840736 0.788069 0.808633 

S3(ϕ) 0.766473 0.703639 0.743099 

S4(ϕ) 0.840736 0.788069 0.808633 

S5(ϕ) 0.761105 0.682104 0.712949 

S6(ϕ) for p=2 0.821222 0.776552 0.796418 

S1(η) 0.916133 0.872675 0.885256 

S2(η) 0.938333 0.9025 0.911667 

S3(η) 0.89835 0.847525 0.865842 

S4(η) 0.938333 0.9025 0.911667 

S5(η) 0.9075 0.85375 0.8675 

S6(η) for p=2 0.918319 0.877512 0.891129 

Table 5: Application to Medical diagnoses. 

From the above table 5 it is clear that patient P can be 

diagnosed with viral fever. 

6 Conclusion 
Entropy, distance and similarity measure are 

significant research area in fuzzy information theory as 

they are efficient tools to deal with uncertain and 

insufficient information. Here we have derived new 

definition of entropy based on distance measure by 

considering degree of hesitancy in to account and derived 

relation between distance, entropy and similarity 

measures under IvIFE. Further, we have compared the 

derived similarity measures with some of the existing 

similarity measure and instances are used to show that 

the derived measures are able to draw conclusion when 

existing measures give the same result. Thereafter, 

proposed measures of similarity are applied to 

recognition of patterns and medical diagnoses. 
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