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Holes in sensor networks are regions that have no operating nodes and that may occur due to several
reasons, including cases caused by natural obstacles or disaster suffered areas. Determining the location
and shape of holes can help to monitor these disasters (such as volcano, tsunami, etc.) or help to make
smart, early routing decisions for circumventing a hole. There are many hole determination algorithms
proposed in the literature, however, these only consider the networks with static holes i.e. with stable
boundary nodes. Moreover, most of these are designed in a centralized manner which is not suitable to the
unstable situation of networks with an expanding hole. In this paper, we propose an algorithmic scheme not
only for determining the initial shape but also for monitoring and quickly reporting about the area of a hole
gradually expanding. Our algorithms are designed in a distributed manner and our initial simulation results
show that our protocol is lightweight and feasible with monitoring sensor networks with an expanding
hole.

Povzetek: Razvita je nova metoda za obravnavo lukenj v brezžičnih omrežjih.

1 Introduction

Let start by considering an example scenario of a forest
wherein fire rather frequently occurs in summer. Since it
is very large and difficult to access and monitor by human,
one thinks of using helicopters to disseminate thousands of
wireless sensor nodes through out this forest area for de-
ploying a fire monitor system. Due to the cost limitation,
these pieces are equipped with just a temperature and hu-
midity sensing device, a very simple processing unit and
a small radio communication module that allows them to
communicate with the others in their communication range.
The mission of these sensor nodes is to monitor the envi-
ronment, detect the fire and report to a central host via some
special sink nodes (with more powerful resource). Para-
doxically possibly when the fire occurs, the sensor nodes
in the area of an on-going fire can be destroyed and thus
cannot perform their monitor task and fail to report about
the fire. To solve this problem, a common approach is let-
ting the alive nodes surrounding the fire areas detect the

boundary of the fire area fast enough and report to the cen-
tral host. This scenario belongs to a well-known problem
in sensor network which is called hole detection and deter-
mination.

The hole detection-determination (HDD) problem is not
only used to detect the events that are being monitored as
described above but also is, and in fact known more as,
an important technical issue in geographic routing. Geo-
graphic routing [1][2] which exploits the local geograph-
ical information at the sensors is popular for its simplic-
ity and efficiency. The traditional geographic routing strat-
egy works well and can achieve the near-optimal routing
path length in networks without holes, however with the
occurrence of network holes, the path length can grow as
much as θ(c2) where c is the optimal path length [3]. In
order to solve the problem of path enlargement, a com-
mon approach is to determine the hole boundary, describe
it by a simpler shape whose information is disseminated to
the surrounding area. This information will help to estab-
lish a hole awareness and mechanism to find short detour
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routes [4][5][6][7][8].
There are many HDD algorithms proposed however,

these just consider the problem of detecting a typically
static hole (hole whose boundary never changes). More-
over, almost of these algorithms are conducted in the cen-
tralization manner and is time ineffective. A very common
approach is based on the possibility of having a monitor
packet to travel a full route around the hole, which could
be unlikely possible in our problem scenario – the network
hole can be expanding fast enough that could destroy any
attempt to send a packet around in one simple loop.

In this paper, we propose a novel approach to detect and
regularly report about the hole boundary, that to the best of
our knowledge is the first one that targets expanding holes
(whose boundary change continually). Especially, we aim
at scenarios where holes can occur and grow rapidly; i.e.,
we aim to design fast algorithms for detecting and monitor-
ing hole boundaries. Our main idea is actually to distribute
this task of capturing the dynamic hole perimeter into the
hands of several boundary nodes and network cells that are
carefully selected to take this joint responsibility.

In our protocol, the network is divided into small grid
squares by a given grid. The squares (cells) are to be di-
vided into three groups: black, gray and white. A black
square is one which already belongs to or is heavily af-
fected by a hole, a gray square is not yet touched by any
hole but is detected being close enough and getting soon
affected by an expanding hole, and a white is a currently
safe one. A white square can later get turned into a gray
and then a black square when facing an expanding hole,
which can be seen as a set of the black squares. Each
square in the black and the gray group is monitored by a
local node, called a pivot, which is elected from the sen-
sors in that square. These pivots monitor the status of the
sensors and the squares and help to manage the square sta-
tus changes.

The contribution of this paper are threefold:

– We propose a distributed hole detection algorithm
which can determine a hole boundary efficiently with
respect to time and energy saving.

– We propose a distributed hole updating algorithm
which monitors the expansion of the hole boundary
and reports regularly to the central host.

– We conduct initial experiments by simulation to ana-
lyze our protocol and evaluate its feasibility and ad-
vantages.

The remainder of the paper is organized as follows. Our
hole detecting and updating protocols are proposed in sec-
tion 2. Section 3 evaluates the performance of our protocol
using simulation experiments. We also discuss further on
related work in section 4 and finally conclude the paper in
section 5 with further concerns about open issues.

A preliminary version of this paper appears in [12]. Be-
sides a significant revision effort for improving the clarity,

formality and preciseness we also add new substantial el-
ements to this full version. That is we reshape and adjust
some important parts in our proposed algorithm and thus
make it more efficient; as a result, we redo the evaluation
task but in a larger scale for obtaining a more insightful
about the performance of our algorithm. Below we briefly
mention the most important adjustments. In section 2.1,
for the task of detecting a hole boundary we justify our
decision to choose the approach used in [10] over the one
in [26]. In section 2.2 we optimize the way we define and
use Bitmap Presentation for reducing incurred communi-
cation overhead and delay. In 2.3 we tune the process of
forwarding the hole boundary info towards the sink(s): the
pivots fully involve in this process that increases the effi-
ciency of the whole mechanism.

Compared to the previous version, moreover, we also ex-
tend our evaluation work to a significant deeper level where
we redesign a new, significant larger set of simulation sce-
narios, inspired by new observations and thus obtain new
findings. Most notably, our 3 main simulation settings (for
studying the effects of 3 system parameters: Dead Node
Threshold, Notification Threshold & Report Threshold) are
all extended by our new deployment where we use two sep-
arate scripts to simulate an expanding hole: the Fast Expan-
sion and the Slow Expansion scripts. We focus more on the
Fast Expansion scenario (a hole expands fast for simulating
a forest fire) and we identify some value region of the Dead
Node Threshold that could optimize our algorithm. We also
extend our study on these main parameters with some ini-
tial consideration of the relationship with another variable
that is the grid cell size. In spite of this rather extensive
evaluation analysis there still remain many unknowns that
can be challenging enough for good results in future work.

2 Our hole monitor scheme

2.1 Scheme overview
Our goal is to detect and update the hole as fast as possi-
ble so that our hole monitor scheme can beat the expanding
speed of a hole. Therefore, we aim to determine the ap-
proximate shape of the hole boundary rather than its exact
shape. The approximate shape of the hole boundary is de-
termined via a set of the unit squares of a given grid (with
certain predefined unit length) which are affected by the
hole, i.e. ether intersecting the hole boundary or staying
inside the hole.

Our hole monitor scheme consists of two protocols: the
hole boundary detection protocol, denoted by the HBD pro-
tocol, and the hole boundary update protocol, denoted by
the HBU protocol. Let us discuss the basics of the HBD
protocol first. The main idea is to have some nodes on the
hole boundary detect that they are on a hole’s boundary.
This initial awareness helps to start the process of learning
about the whole hole shape by arranging a special monitor
packet to travel around the hole: this packet is being for-
warded from one boundary node to another as a neighbor.
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Technically, we know of two main approaches in detect-
ing a hole boundary, one from the research works on ge-
ographic routing in WSNs e.g. in [10], and one from the
research work on coverage hole e.g. [26]. We have done
certain probing experiments and found out that the former
approach appears more efficient (we show our experimen-
tal evaluation on this in section 3) and thus, we choose to
use this approach for designing our HBD protocol where
we aim at approximating the hole shape in a distributed
manner.

Based on the above mentioned approach, our HBD pro-
tocol is conducted by using the stuck nodes introduced
in [10]: by definition, a node u is considered a stuck node
if there exists a position w outside u’s transmission range
such that u is closer to w than all the neighbor nodes of
u 1. Note that a stuck node always stays on a hole bound-
ary but not all the boundary nodes are stuck node. Each
stuck node can detect its status as being stuck (using the
TENT rule [10]) and then creates a hole-monitor packet,
which contains a HBA message (denoted for Hole Bound-
ary Approximation), and forwards it to the next neighbor,
boundary node (determined by the right hand rule [10]).
The mission of this HBA message is to record the approxi-
mate shape of the path it has gone through: at each bound-
ary node, the HBA gets updated about the new, just traveled
edge. Upon reaching the next stuck node, a HBA message
has fulfilled its mission by capturing the approximate shape
of the boundary segment between this pair of successive
stuck nodes, which will be forwarded to the nearest sink
node (via a cell pivot node that we will introduce later).
Note that each boundary segment (a chunk between two
successive stuck nodes) is determined and approximated
by using a separate HBA message. The sink node com-
bines information received from all these stuck nodes (via
the pivot nodes) and sends the whole info to the central
node.

We now discuss the HBU protocol. Because the holes
can enlarge quickly we want to have each update ac-
tion performed as fast as possible to reflect well with the
changes. Therefore, instead of determining the changes af-
ter happening we predict and update the changes of the hole
boundary based on the prediction. Specifically, we monitor
the status of the nodes (i.e. of being alive or dead) in the
unit grid squares (also called cells) around the hole bound-
ary. When the amount of the dead nodes of a given cell
exceeds a predefined threshold, this cell is predicted to be-
long the hole soon and thus the hole area gets updated by
adding that cell. To make the mechanism distributed, the
task of monitoring within each unit square is performed by
a so-called pivot node of this cell. The cell pivot is a sensor
node (by default, the one closest to the center of the square)
that is elected from all the nodes locating inside the cell.

During the HBD protocol, when a HBA message is about
to fulfill its mission (and then stop being forwarded), the
receiving stuck node can initiate the election of the pivot

1Thus, a task of forwarding to destination w would gets ‘stuck’ at node
u if greedy routing is being used

node of its cell if not selected yet, then forward the HBA
info to this pivot.

2.2 Bitmap representation

The main idea of our approximation mechanism is to de-
scribe the status of the cells (unit grid squares) in the net-
work area by a bitmap representation where each bit would
reflect if a corresponding cell belongs to a hole or not.
More specifically, let m&n denote the width and length of
the network; we use a grid with the edge length (of the unit
squares) a that divides the network into ([ma ]+1)×([na+1])
cells. We use a two dimension array bmp[.][.] to repre-
sent the status of the cells, where bmp[i][j] corresponds
to the unit grid square whose center has the coordinates
(1/2 + i)a; (1/2 + j)a and bmp[i][j] = 1 if the corre-
sponding cell belongs to a hole (i.e. this cell stays inside
this hole or intersects its boundary) or else, bmp[i][j] = 0.

During the execution of the HBD protocol, the chunks
of a hole’s boundary (boundary segments between two suc-
cessive stuck nodes) are approximated and these approxi-
mation info pieces are recorded into the HBA messages,
which then are later forwarded to the sink(s) for being com-
bined. To facilitate this computing mechanism, below we
formally define bitmap representations as data structures to
keep data at the HBA messages as well as at the pivots and
the sink(s).

Definition 1 (Bitmap representation). For a line segment
l on the plane, the bitmap representation of l is defined as
a two dimension array bmpl[.][.], where bmpl[i][j] = 1 if
and only if l intersects the unit grid square whose center’s
coordinates are ((1/2 + i)a, (1/2 + j)a); bmpl[i][j] = 0,
otherwise.

We call the bitmap representation of the whole network
a two dimension array bmp, where bmp[i][j] = 1 if and
only if the unit grid square whose center’s coordinates
((1/2+ i)a, (1/2+ j)a) belongs to a hole and bmp[i][j] =
0, otherwise.

Figure 1: Illustration of bitmap representation

Fig. 1 illustrates a network with a big hole. The
unit grid squares which intersect the hole are colored
black. The bitmap representation of line segment N1N2 is
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0 0 0 0
1 1 0 0
0 1 0 0

 and the bitmap representation of the net-

work is

1 1 1 0
1 1 1 0
0 1 0 0

.

In the HBD algorithm, the bitmap representations of the
boundary segments are determined by using HBA mes-
sages and sent to the local cell pivots, which forward these
info pieces to the sinks. During the HBU algorithm, the
pivots of the newly alarmed cells (who have been alarmed
about the expanding hole after the HBD’s execution) keep
monitoring the hole and reports its status to the sinks as
a black cell (belonging to the hole) when the number
of the dead nodes inside exceeds a predefined threshold.
The sinks maintain their bitmap representations (as about
the network from their viewpoints) and periodically report
them to the central node, which can combine these pieces
into the bitmap representation of the whole network by
simple bitmap XOR operations.

2.2.1 Forwarding mechanism with compact hole info

The main goal of our scheme is to monitor the hole(s)
and update the sink(s) with any new status of the network
shape. Our algorithm scheme is fully distributed where
several nodes independently and concurrently capture info
about pieces of a hole’s boundary and forward towards the
sink(s) via the cell pivots – the intermediate hubs. The
bitmap presentations of the network are only formed at
the sink(s), however “pieces" of that being formed and for-
warded at node- and pivot- levels, at which sending a hole
bitmap would be too much a luxury to afford (by a piece
we mean a chunk of adjacent nodes on the hole boundary).
In fact, the bitmap presentation of a line segment, or even
a full hole’s boundary (a collection of segments) can be
compactly described, i.e. specifically, stored into memory
as follows. Starting with an end vertex of the line segment
(or any of the hole boundary polygon) we store the full co-
ordinates (indexes) of its cell and then continually check
the adjacent vertices for newly separate cells, per each of
which store just two bits for describing its relative position
to the preceding cell 2. By this mechanism, even a complex
full hole boundary can be compactly described (as for re-
flecting the bitmap presentation of the network) by just the
coordinates of a cell plus a rather short binary string (just a
few bytes) as illustrated in 2.

2.3 Hole boundary detection algorithm
This section discusses further details of our HBD algo-
rithm.

At the initial, all the network nodes detect if each is
a stuck node by using the TENT rule described in [10].
Each stuck node then creates its HBA message and sends

2It only needs two bits to describe 4 possible directions that may in-
volves left, right, up and down

Figure 2: Compact Hole Info
This hole can be reflected by the coordinate of cell S plus a string of 24
bits to locate the remaining 12 cells at the hole boundary.

it to the left boundary neighbor node (using the right hand
rule [10]) which then forwards it towards the next stuck
node. Here we use the forwarding mechanism as suggested
in [10] but the HBA message is customized to reflect bmps
– the bitmap representation of the boundary segment be-
tween the two successive stuck nodes. When a node N on
the hole boundary receives the HBA message, it determines
the cells intersecting the line segment connectingN and the
previous boundary node by the algorithm suggested in [11]
and updates bmps and the HBA message accordingly. The
details are described in algorithm 1.

In the deployment of our HBD algorithm, to reduce
size of data transferred between nodes, we do not store in
the HBD packet this full bitmap representation but instead
use the compact form as discussed in section 2.2.1, which
would take just a few bytes in a HBA packet.

Figure 3: Illustration of hole boundary detecting algorithm

To prepare for the hole boundary update (HBU) phase,
the HBD algorithm not only detects the hole boundary but
also determines the pivots of the cells intersecting the hole
boundary. Such a pivot is determined by the following
algorithm. Each node u receiving a HBA message deter-
mines the cell(s) which intersect the line segment connect-
ing u and the previous boundary node v but does not con-
tain v; there may exist none, one, or more such cell; for
each such a cell if exists, u sends a pivot election message
towards this cell’s center. Note that, such a message then
stops at the node w where none of its neighbors is nearer to
the cell center than w, i.e w can see it as elected as the cell
pivot. Each pivot then broadcasts a pivot announcement
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Algorithm 1 Algorithm to update compression form of
bitmap representation bmpcomp

Require: P: HBA packet; Nc(xC , yC): current node and
its coordinate; NP (xP , yP ): previous node and its co-
ordinate

Ensure: updated bmpcomp
1: bmpcomp ← the compression form from packet P
2: tmp← transfering bmpcomp into bitmap
3: U ← set of the unit grid squares which intersect
NCNP

4: for all the unit grid square Ui(xi, yi) in U do
5: tmp[

⌊
xi

a

⌋
][
⌊
yi
a

⌋
]← 1

6: if
(⌊
xi

a

⌋
6=
⌊
xP

a

⌋)
and

(⌊
yi
a

⌋
6=
⌊
yP
a

⌋)
then

7: Send a election packet to Ui(xi, yi).
8: end if
9: end for

10: bmpcomp ← transfer tmp into compression form
11: update P with new bmpcomp

message to all the nodes in the cell.
Fig. 3 illustrates the algorithm. In the figure, the yel-

low nodes S1, S2, . . . , S5 found themselves as stuck nodes
using the TENT rule. They initiate and forward the HBA
messages along the boundary (using the right hand rule to
determine the next boundary neighbor) until each arriving
at the next stuck node. So, the HBA message initiated by
Si is forwarded until arriving at Si+1 wherein this mes-
sage captures the bitmap representation of the line segment
of the boundary between Si and Si+1. For example, the
bitmap representation of the segment between S1 and S2

is

0 0 0 0
1 1 0 0
0 1 0 0

. After the HBD algorithm finishes, the

approximate shape of the hole as well as the pivots of the
cells surrounding the hole are determined. In Fig. 3, the ap-
proximate shape of the hole is colored black and the pivots
are colored red.

2.4 Hole boundary update algorithm
We discuss further details on the HBU protocol. As men-
tioned above, se call an unit grid square, i.e. a network
cell, belonging to a hole (i.e. staying inside the hole or in-
tersecting its boundary) a black one. After the HBD phase
finishes, each black cell has a pivot elected. All nodes in
these black cells notify their status (i.e. whether alive or
not) to its cell’s pivot periodically.

When the ratio of the number of the dead nodes (over
the total) of this cell exceeds a predefined threshold, which
we call Notification Threshold(NTT), the situation with this
expanding hole is seen serious. Thus, the cell’s pivot sends
an alert message to each of the four neighbor cells which
share an edge with it to notify about the high possibility that
they would soon get affected by the hole, i.e. these four are
considered gray (becoming black). Note that some of these
neighbors may have already been black cells wherein this

alert simply gets ignored. Also, the destination of such an
alert is set to be the center of the targeted gray cell and
thus, the last node receiving the alert is elected as the pivot
of this gray cell.

When the ratio of the number of dead nodes in a black
cell exceeds a predefined threshold, which we call Report
Threshold (RPT), the cell is considered severely damaged
by the hole and thus, this dangerous state gets reported to
the nearest sink by the cell pivot.

Similarly to the pivot of a black cell, the pivot of a gray
cell also monitors the status of all the nodes within the
cell. When the ratio of the number of the dead nodes of
this cell exceeds the NTT, the cell situation gets serious
and thus, it turns into a black one. At this same time the
cell’s pivot sends an alert to its four neighbor cells (noti-
fication) to make any white remainder of them to become
gray. The details of these algorithmic operations executed
at the white, gray, and black cells are described in algo-
rithms 2a, 2b and 2c, respectively.

Fig. 4 illustrates an example. In this figure, the network
is divided into 4× 3 unit grid squares. The black nodes are
dead and others are alive. After conducting the HBD al-
gorithm, the hole boundary has been detected and the cells
that belong the hole are colored black as shown in Fig. 4(a).
The red nodes P1, P2, . . . , P6 represent the pivots of the
black cells. Suppose that, the hole is expanding to the right,
then after sometime some nodes in square (6) die, which
is enough to make pivot P6 send an alert to the neighbor
squares as shown in Fig. 4(b). Among these neighbors, (0)
and (5) are already black which ignore the alert; the oth-
ers i.e. squares (7) or (8) are still white, so become gray.
The cell center nodes P7 and P8 then become the pivots
of (7) and (8), respectively – Fig. 4(a). When the ratio of
the number of dead nodes in (7) exceeds NTT, it is consid-
ered black and P7’s pivot sends alerts to the neighbor cells
– Fig. 4(d).
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(a) (b) (c) (d)

Figure 4: An example of hole boundary updating process
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Figure 5: Algorithm to determine hole boundary from bitmap representation

Algorithm 2a HBU process at nodes in a white cell
(state = WHITE) when receives a message

Require: P : received message, C: the current node
Ensure:

1: if P is an alert message then
2: state← GRAY
3: if C is the closest node of center then
4: C takes responsibility of the cell pivot
5: Broadcast a notification to all nodes in the cell
6: else
7: if C has not received a pivot notification then
8: Forward P to the center of cell (Vote the closest

node of center as the pivot node)
9: end if

10: end if
11: else if P is a notification message then
12: Be informed that the source of message as the

elected pivot
13: else
14: Send HELLO packet
15: end if

Algorithm 2b HBU work at nodes in a gray cell (state =
GRAY )

Require: C: current node
Ensure:

1: loop periodically
2: if C is a pivot then
3: d← the number of dead nodes in the cell
4: if d > NTT then
5: state← BLACK
6: Send alert packet to 4 neighbor cells
7: end if
8: else
9: Send HELLO packet to update node’s state

10: end if
11: end loop

Algorithm 2c HBU work at nodes in a black cell (state =
BLACK)

Require: C: current node
Ensure:

1: loop periodically
2: if C is a pivot then
3: d← the number of dead nodes in the cell
4: if d > RPT then
5: Report to the nearest sink
6: end if
7: else
8: Send HELLO packet to update node’s state
9: end if

10: end loop
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2.5 Hole information combination

At the central node, we obtain the bitmap representation
of the whole network. Although this bitmap gives us a
view of location of the holes, in some applications (e.g.
in geographic routing) geometric expressions (i.e. polygo-
nal shapes) of the holes are required. We now describe an
algorithm to determine the boundary of a hole approximate
shape as a polygon, called an A-polygon, which satisfies
the following condition:

– This A-polygon vertices are the vertices of the grid
squares which intersect the hole

– All the centers of the unit grid squares belonging to
the hole stay inside this A-polygon

We will compute the (coordinates of) the vertices of this A-
polygon in the clockwise order. The following fact helps to
show the process during each step for obtaining the next
vertex; this fact is quite simple so we omit the proof.

In fact 1, we consider the scenario where we have just
determined that Gi and Gi+1 are two consecutive vertices
of the A-polygon (in the clockwise order), and we need
to determine the next vertex. Let (1), (2), (3), (4) denote
the unit squares that has Gi+1 as a vertex and let M,N
and P denote the adjacent vertices of Gi+1 in (2), (3) and
(4), respectively as shown in Fig. 5. Let (xi, yi) be the
coordinates of the center of square (i) and α(i) be the cor-
responding bit value of square (i) in the network bitmap,
then:

Fact 1. Having Gi and Gi+1 just determined as the ver-
tices of an A-polygon from the given network bitmap, the
next vertex of this A-polygon (in the clockwise order) can
be determined as follows:

– M if and only if α(2) = 1 (Fig. 5(a)).

– N if and only if α(2) = 0 and α(3) = 1 (Fig. 5(b)).

– P if and only if α(2) = 0 and α(3) = 0 (Fig. 5(c)).

Using fact 1, we come up with algorithm 3 below to de-
termine an A-polygon of a hole from the network bitmap.
It is easy to observe that for a given hole the vertex of the
unit square (intersecting it) with the lowest y-coordinate
must be a vertex of the A-polygon.

Algorithm 3 Determining A-polygon from array bmp

Require: bitmap bmp; (xA, yA): coordinates of boundary
node A that has lowest y − coordinate

Ensure: G: the set of vertices of the A-polygon
1: Denote r as the edge length of the unit square
2: G← G

⋃(⌊xA

r

⌋
r + r,

⌊
yA
r

⌋
r
)

3: G← G
⋃(⌊xA

r

⌋
r,
⌊
yA
r

⌋
r + r

)
4: while the top element of G 6=

(⌊
xA

r

⌋
r + r,

⌊
yA
r

⌋
r
)

do
5: U ← the top element of G
6: (xu, yu) is the coordinate of U
7: V is the previous element of U
8: (xv, yv) is the coordinate of V

//the following code is for the case when yu = yv ,
the other case (xu = xv) is similar

9: i← bxv

r c; j ← b
yv
r c − 1

10: if bmp[i− 1][j] = 1 then
11: G← G

⋃
(xv, yv − r)

12: else
13: if bmp[i− 1][j + 1] = 1 then
14: G← G

⋃
(xv − r, yv)

15: G← G \ (xv, yv)
16: else
17: G← G

⋃
(xv, yv + r)

18: end if
19: end if
20: end while

3 Performance evaluation

3.1 Comparison between the approaches in
detecting hole boundary

As we mentioned above in section 2.1, we now compare by
simulation experiments between the two HBD mentioned
approaches, i.e. the Boundhole approach from [10] and the
BCP approach from [26] to find out which suits better to
our main goal: we need our HBD algorithm to be as fast as
possible and to consume energy as less as possible (to help
with monitoring expanding holes). 3 In this evaluation, we
run the experiments with 2 network models: 1800 nodes
and 2500 nodes. Table 1 summarizes the parameters which
are suggested by [13]:

The results of experiments are evaluated by these met-
rics: average consumed energy and running time (the lower
is better). We can see in Fig 6, the Boundhole approach
gives better result with slightly less consumed energy and
running time. It appears that the Boundhole uses simpler
operations while the BCP uses a bit too many floating-point
operations (especially, when computing circle-circle inter-
sections).

3Note that here we do not compare the original algorithms from the
two mentioned papers, instead we compare two versions of our HBD al-
gorithm each of which is based on each of these two approaches.
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Figure 6: Comparison between the BoundHole and the BCP approaches

Variables Values
Communication range 40m
Voltage 3V
Receiving current 15mA
Transmitting current 29.5mA
Idle current 3.2mA
Number of nodes 29.5mA
Period of HELLO packet 30s
Simulation time 1050s

Table 1: Simulation parameters for comparing the Bound-
Hole and BCP approaches

3.2 Experiment deployment and settings
We have proposed our very first algorithmic solution to deal
with a possibly new and challenging problem of hole ex-
pansion in WSN. Bellow we show our initial results in eval-
uating our algorithm through experiments by simulation.
Here we propose to use the following metrics to evaluate
our algorithm performance:

– The Approximation Ratio (AR) is the ratio between
the area that our algorithm approximately describes
of a hole and the true area of this hole.

– The Death Report Error (DRE) reflects how well
we monitor the dead nodes, which is calculated as
|RN−TN |

TN where RN is the number of nodes reported
as dead by our algorithm and TN is the true number
of the dead nodes.

– The Consumed Energy (CE) of network which is com-
puted as the average energy consumed by any node in

the network.

More specifically, we study the effect of choosing the
following parameters, crucial in our algorithm, in achieving
good performance by the above mentioned metrics.

– Dead Node Threshold (DNT): All the alive nodes pe-
riodically sends the HELLO packets to their neighbor
nodes, hence in our algorithm after waiting for a time
period called DNT if a node does not receive the next
HELLO from a certain neighbor, this node can decide
that this neighbor is dead.

– Notification Threshold (NTT): As described in sec-
tion 2, the pivot of a black/gray square decides to send
a NOTIFY packet to each of its 4 neighbor squares
(to notify about the hole expansion) when the ratio of
the number of dead nodes (per the total) in its square
exceeds a NTT.

– Report Threshold (RPT): The pivot of a black square
decides to send a REPORT packet to the nearest sink
when the ratio of the number of dead nodes in this
square exceeds a RPT.

We run the experiments on the ns-2 simulator (802.11
as MAC protocol). Table 2 summarizes the parameters
which are suggested by [13]. In our simulation, about
2500 sensor nodes are deployed randomly in an area of
1400m× 1400m.

We conduct three different simulation settings to evalu-
ate the effect of these parameters on three metrics described
above. Also in our simulation settings, we deploy two
different scripts of a large hole expanding: one is called
Fast Expansion (EF), where we focus on, and the other
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Variables Values
Communication range 40m
Voltage 3V
Receiving current 15mA
Transmitting current 29.5mA
Idle current 3.2mA
Network size 1400m× 1400m
Number of nodes 2500
Period of HELLO packet 30s
Simulation time 1050s for FE

2500s for SE

Table 2: Simulation parameters for our protocol experi-
ments

Slow Expansion (SE). In each script we program so that
the hole gradually expands from a chosen center point to-
ward a fixed given shape, which is a random set of points
with distances to the center varying randomly from a mini-
mum value (300 m) to a maximum value (450 m). The hole
reaches its maximum, final shape in 1000 seconds in our FE
script, and 2500 seconds in our SE script. We believe that
these scripts would reflect reasonably to the expansion of a
typical forest fire.

3.3 Simulation results
1. Effect of Dead Node Threshold: We conducted the

simulation with four values of the Dead Node Threshold
(DNT): 1x, 1.3x 4, 2x, 3x, where nx means the DNT equals
n times of the HELLO period (at which the HELLO pack-
ets being periodically sent from a node to a neighbor).

Fig. 7 and 8 show the simulation results of our first simula-
tion settings (with the Fast Expansion script) on the effect
of DNT on the Death Report Error (DRE) and the Approx-
imation Ratio (AR), respectively. It can be seen that the
DRE tends to decrease with the increasing of the time val-
ues during the simulation. That is, for all the different DNT
values, the trend is that the performance keeps improving
(DRE gets closer to 0% and AR gets closer to 1) along the
the simulation process (better performance for captures at
later simulation moments - larger timestamps).

With the case of 1x, the DRE is very large at first: it
can be explained as because the HELLO packets and re-
sponses may get delayed or stuck (and dropped) at some
nodes; therefore, when the threshold is too short, the nodes
whose HELLO packets are delayed or dropped are wrongly
judged as dead nodes (so DRE very large, initially). How-
ever later the HELLO packets (and its responses) can be
retransmitted and thus, the nodes which have been judged
as dead can be reconsidered as alive and so the DRE de-
creases.

4A HELLO packet may be sent a bit later than expected due to some
random delay in processing; thus, we take this into account by using
DNT= 1.3x.

The simulation results also shown that FN − TN , the dif-
ference between the number of reported dead nodes and
the true number of dead nodes, tends to decrease when
the DNT increases. Especially, with the DNT = 2x or
larger FN − TN is even negative, i.e. the number of the
dead nodes determined by our algorithm is less than the
true number of real dead nodes. This is because, when the
DNT increases, the pivots tend to become dead too early
to send alerts about its cell situation to the neighbor cells,
thus many dead nodes may not be recognized. It can be
seen that, the DRE in case of 1.3x is closest to 0 and thus,
parameter DNT = 1.3x can be considered (near) the best
for maintaining low DRE.

Fig. 8 represents the relation between the approximation
ratio (AR) and the DNT. Similarly as with the DRE, the
AR decreases with the increasing of the DNT. The AR with
the DNT = 1x is quite greater than 1 and the AR with the
DNT as 2x/3x is often/always (much) smaller than 1. It
can be seen that the hole area determined by our algorithm
is always much larger than the real hole with the DNT as 1x
and always much smaller than the real hole with the DNT
= 3x (or quite smaller with 2x). For the later phase of hole
expansion, both 1.3x and 2x seem competing for the best
AR (but in both sides of 1). Overall, it can be seen that a
small enough DNT value may lead to a high DRE because
of many alive nodes being wrongly judged as dead while
a large enough DNT value may make unreasonably small
AR because of many dead nodes being unrecognized. For
our experiment setting with the FE script, the DNT= 1.3x
seems (near) the optimum option.

So far we have just analyzed the simulation with the FE
script, where the considered hole expands to the maximum
distance 450m (from the center) in only 1000sec, we now
take a quick look at the results with the SE script (reaching
maximum distance in 2500s). As can be seen in table 3
and table 4, the general trend is that the performance keeps
improving (DRE gets closer to 0% and AR gets closer to
1) along the the simulation process for most of cases. Most
notably, the choice of DNT= 2x results in poor AR while
still quite good at keeping low DRE. For keeping AR close
to 1, the ideal DNT value should be between 4x and 5x,
however with this range the DRE is rather high (compared
to that of DNT= 2x). This is because for a larger DNT the
network acts slower with the hole expansion and hence, a
number of new dead nodes cannot get reported fast enough.
Thus, in fact for the SE script we face a complexity in
choosing good DNT (further work needed in future work).

2. Effect of Notification Threshold: The effect of the
NTT on the Consumed Energy (CE) and Approximation
Ratio (AR) is shown in Fig. 9. In this simulation setting
with the FE script we fix DNT= 1.3x (as seen best from
simulation results above). Another parameter needs taken
into account is the size of the unit grid square which we
choose within 80m − 120m (ranges in small multiples of
the sensor transmission range, 40m).

It is clear that, the consumed energy becomes lesser for
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Death Report Error (%)
Timestamp -
S.moment (s) 1x 1.3x 2x 3x

560 44.94 17.98 35.58 75.66
620 27.49 15.41 37.76 76.13
680 17.17 12.37 30.3 71.46
740 13.95 10.52 33.26 72.75
800 7.33 11.54 34.07 72.89
860 1.3 10.73 32.03 77.89
920 7.05 7.78 33.92 73.57
980 1.49 6.79 28.13 65.9

1040 3.72 4.52 21.94 60.51
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Figure 7: Effect of DNT on the Death Report Error

Approximation Ratio
Timestamp -
S.moment (s) 1x 1.3x 2x 3x

560 1.6674 1.1672 0.9588 0.0834
620 1.6422 1.1632 0.9238 0.1711
680 1.4422 1.1826 0.8941 0.2019
740 1.3117 1.089 0.8167 0.2227
800 1.2255 1.141 0.8663 0.2113
860 1.1099 1.1099 0.9218 0.2822
920 1.1422 1.1251 0.8865 0.2898
980 1.1289 1.1289 0.9408 0.3136

1040 1.1815 1.1815 1.0127 0.3529
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Figure 8: Effect of DNT on Approximation Ratio

larger NTT as well as for smaller grid square (cell) sizes.
That is for a larger NTT, the pivots of the black cells need to
wait longer to notify its neighbor squares, i.e. the squares
become gray later rather than sooner, lessening the mon-
itoring work and hence, reducing the CE incurred due to
our monitor mechanism. Also, for smaller cell sizes, ob-
viously the total area being monitored is also smaller and
thus, reducing the consumed energy as well.

The effect of the NTT on the AR is reported in Fig. 9(b). It
can be seen that the AR decreases with the increasing of the
NTT. It can be explained as below. For smaller NTT values,
the notification of the expanding hole is done earlier and
hence, the gray area tends to get large earlier, i.e. the AR

tends to increase. For AR greater than 1, the approximate
area of the hole is larger than the real hole area. When
the NTT is larger enough (from about 15%) the AR can be
smaller than 1 (for grid size 100m or less). This is because
the times to send NOTIFY packets may come too late (with
a speed slower than the expansion speed of the hole) and
thus, many black pivots may get dead before the time to
notify their neighbor cells. Consequently, some should-be-
black squares get unrecognized and the approximate hole
area becomes smaller than the real hole area.

It can be remarked that the NTT should be selected in ac-
cordance with the speed of the expansion of the hole. When
the hole expands fast, we should choose a small NTT. Par-
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Death Report Error (%)
Timestamp -
S.moment (s) 2x 4x 5x 6x

760 18.75 31.25 39.58 45.83
1000 14.63 28.05 31.71 36.59
1240 15.27 26.72 31.3 38.93
1480 11.29 21.51 25.81 37.1
1720 8.8 20 24.8 35.6
1960 8.18 17.3 22.01 35.53

Table 3: Effect of DNT on DRE with the Slow Expan-
sion script

Approximation Ratio
Timestamp -
S.moment (s) 2x 4x 5x 6x

760 1.6393 1.4572 1.0929 0.7286
1000 1.2247 1.1134 1.002 0.8907
1240 1.3219 1.175 0.9547 0.7344
1480 1.2502 1.1958 1.0327 0.7066
1720 1.2382 1.1144 0.9493 0.7429
1960 1.3046 1.1742 0.9785 0.6849

Table 4: Effect of DNT on AR with the Slow Expan-
sion script
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Figure 9: Effect of Notification Threshold (NTT) with FE script

ticularly, in this simulation setting with the FE script, the
best NTT is about 15%.

For our simulation with the SE script (see Fig.10), the AR
becomes close to 1 for NTT about 25−30%, larger than the
setting with the FE script, which is an advantage for keep-
ing the gray squares in smaller number. However, the CE
looks quite higher to that in the setting with the FE script.
This is because the gray/black squares live longer in this SE
setting and hence more monitor traffic would get incurred.
Of course, one would consider to use a smaller grid size
but this would result in need of low NTT which is a disad-
vantage. Thus, again we face some complexity in choosing
proper parameter values that needs further consideration in
our future work.

Fig. 11 illustrates the growth of the real hole area (repre-
sented by the orange line) and the approximate hole area
determined by our algorithm (represented by green line)
with images captured at 4 different time values. This also
illustrates the same general trend as before: the perfor-

mance keeps improving (AR gets closer to 1) along the the
simulation process.

3. Effect of Report Threshold: The simulation result in
this aspect is shown in Fig. 12 where we also fix DNT
= 1.3x and we evaluate only the AR because the energy
consumption is not affected much by the RPT. It can be
seen that the AR tends to decrease when the RPT increases;
especially if the RPT ≤ 30%, the AR becomes ≥ 1, i.e.
the approximate hole area is larger than the real hole area.
However if the RPT is ≥ 35%, the AR becomes less than
1.

This is because, for RPT small enough the pivots report
to the sink about the approximate hole soon enough (after
discovering a small enough fraction of the dead node in
the their squares), thus the approximate hole area, which
is the area defined by the black squares (called the black
area), tends to contain the real hole area and hence, the AR
is greater than 1. The smaller is the RPT, the larger is the
difference between the black area and the real hole are and
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Figure 10: Effect of Notification Threshold(NTT) with the SE script
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Figure 11: The growth of the approx. and the real hole areas
(DNT= 1.3x; NTT= 15%; RPT= 15%)
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Figure 12: Effect of RPT on the Approx. Ratio

thus, the larger is the AR. However, for RPT large enough
(e.g. ≥ 35%), some pivots may get dead before the time
to send a REPORT packet to the sink and thus, their black
squares are not reported to the sink, i.e. the AR becomes
less than 1.

Similarly as with the NTT evaluation, it can be concluded
that the RPT should be selected in accordance with the
speed of expansion of the hole. For example, in this simu-
lation setting, the best RPT is about 30%.

4 Related work
An algorithmic approach for locating holes in WSN has
been firstly introduced in [10] where Fang et al. propose
a procedure to obtain the exact boundary of the hole as
a polygon with vertices being adjacent nodes on the hole
side. The basic idea is to have a packet traveling around the
hole, learning the position of the nodes on its side. Other
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follow-up works [27, 9, 28] study a generalized problem in
computing the exact shape of the network as collection of
boundaries, i.e. the outer perimeter of the whole network
area and boundaries of inside holes. In [11], we introduce
an efficient and flexible approach and techniques to approx-
imate the shape of a hole.

However, this approach is based on the possibility of
having a packet to travel a full route around the hole, which
could be unlikely possible in our problem scenario – the
network hole can be expanding fast enough that could de-
stroy any attempt to send a packet around in one simple
loop. Our main solution is actually to distribute this task of
capturing the hole perimeter: several HBA packets (sent by
the stuck nodes) and later, the cell pivots are responsible to
pick up a collection of segments of the hole perimeter.

There are many HDD algorithms have been proposed
which can be classified into three categories: geometric
methods, statistical methods and topo-logical methods. Ge-
ometrical approach uses the coordinates of the nodes and
standard geometric tools (such as the Delaunay or Voronoi
diagrams) to detect coverage holes and their boundaries.
Several simple distributed algorithms have been proposed
in [29, 30, 31] to detect the boundary nodes (i.e. non-
covered sensor in our definitions) and build the routes
around holes. In [33], Zhang et al. proposed an algorithm
to detect the hole boundary nodes on the basis of Voronoi
Diagram. The authors also described a method to calcu-
late the accurate location of hole boundary by analyzing
the sensing edges of the boundary nodes. In the topological
approach, there are neither coordinates nor localization of
nodes are required. Instead, this approach use topological
properties such as the information of connectivity to iden-
tify the boundary nodes; e.g. Ghrist et al. [32] proposed a
purely connectivity-based coverage hole detection method.
Recently, Chu et al. [35] exploited information of three-
hop neighboring nodes and propose a distributed protocol
to identify sensor nodes nearby the hole. In this protocol,
the hole is determined on the basis of the so-called 2-hope-
neighbor graph maintained at each sensor node. Although
it is said that, the protocol can detect all hole boundaries
with a small overhead, it is not suitable for our expand-
ing hole scenario because it requires all nodes running the
protocol on their 2-hope-neighbor graph to detect the ex-
panded hole.

Routing hole is a critical issue in geographic routing
where data packets are forwarded based on the positional
information of the sensor nodes (assuming that they are
equipped with GPS devices). Early approaches are based
on greedy and perimeter routing where with the former a
packet is forwarded to the 1-hop neighbor that is closest
to the destination. However, greedy forwarding can lead
into the local minimum phenomenon whenever the packet
encounters a routing hole. To bypass such a hole, the tra-
ditional schemes appropriately switch between greedy and
perimeter forwarding modes (initiated by the GPSR pro-
posal in [2]), in the later of which the data packets are
forwarded along the hole boundary [2][14][15][16][17].

These proposals require a specific embedding of a planar
graph (e.g. Gabriel Graph). Recently, Yu et al [34] pro-
posed a scheme to relieve the local minimum problem by
allowing a node in a concave area of a hole to mark itself as
a potential stuck node and thus do not participate in data de-
livery. Through this policy, the packets are prevented from
entering the concave area of the hole and thus can avoid the
long detour path problem.

There are quite a few papers in geographic routing which
propose to learn about the hole shape then disseminate this
hole info to the surrounding area for supporting routing
tasks performed later. This approach as we call learn-
and-disseminate strategy has been used in e.g. [25][5][4],
however, the main aim there is to achieve a bounded route
stretch in their routing algorithms. As a result, although
achieving a desired route stretch, these schemes can in-
cur heavy extra communication in broadcast and significant
load imbalance due to congestion on these major routes.
For example, in [4], the holes are compactly described as a
set of extreme points of the convex hull covering the bound-
ary nodes and thus, the hole detour will be along these
points, that may cause the traffic concentration around the
boundary of the convex hull.

We briefly review the two mentioned (in section 2.1)
approaches in detecting a hole boundary, i.e. the work
in [10] for supporting geographic routing in WSNs and the
work in [26] for solving the problem of wireless hole cov-
erage. The BOUNDHOLE algorithm [10] can be shortly
described as follows. Each stuck node p initiates a HBD
message (denoted for Hole Boundary Detection) which in-
cludes its location and sends it to p’s closest neighbor node
with respect to the stuck angle. The closest neighbor can
be defined as follows: consider the stuck angle at p (facing
the hole area by this angle) if we use the angle’s bisector
line to conduct counter-clockwise sweeping then the clos-
est neighbor is the first one that is met by the sweeping
line. Upon receiving the HBD message, this newly identi-
fied hop writes its location into the message and passes it
to the next-hop in the same manner mentioned. The HBD
message will finally come back to the origin as basically,
the HBD message creates a closed cycle of traveling.

The coverage hole detection algorithm in [26] is based
on the concept of Boundary Critical Points (BCPs). A
boundary critical point is defined as the intersection point
of two sensing circles that cannot be covered by any other
sensing circles. Each sensor node first computes its BCPs.
Note that the sensors that are not along the boundary of
any coverage holes cannot have any boundary critical point.
Then each consecutive boundary critical points is con-
nected by constructing an boundary line along the border
of the nodes having those boundary critical points. The
construction of boundary line is continued until the starting
boundary critical point is revisited or border of the moni-
toring region is touched.
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5 Conclusion and future work
In this paper we have proposed an algorithmic scheme
for detecting, determining and monitoring the shape and
boundary of an expanding hole in sensor networks. Our al-
gorithms are designed in a distributed manner to help their
surviving of the expanding of a hole and reporting regularly
about the hole status.

We have also conducted the simulation experiments to
evaluate the effects of the important thresholds (DNT, NTT,
RPT) on the performance metrics of our algorithms. The
simulation results show that the performance metrics are
strongly dependant on how suitably we choose the men-
tioned threshold parameter for a given network setting. Ob-
viously, the thresholds should be selected in accordance
with the characteristics of the network, especially the ex-
pansion speed of the considered hole.

It is obvious that although we have done some compli-
cated experiments which require some heavy simulation
work there still remain many unanswered interesting ques-
tions and important technical issues. There are 3 important
threshold parameters yet there still are other important pa-
rameters such as the grid square size or the speed of the
hole expansion; thus, it seem challenging to mix the selec-
tion of these to a good effect. Most challenging, perhaps
is the concern that the hole expansion speed is normally
unforeseeable and hence, we face a big trouble: a parame-
ter set that is nicely suitable to a fast expansion setting can
perform very poorly in a slow expansion setting. Thus, it is
natural to think of further work with improved algorithms
where the important parameters such as the grid size can be
adjusted dynamically during the execution process.
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