
Informatica 31 (2007) 29–39 29

A General Brokering Architecture Layer and its Application to Video
on-Demand over the Internet

Franco Cicirelli and Libero Nigro
Laboratorio di Ingegneria del Software
Dipartimento di Elettronica Informatica e Sistemistica
Universitá della Calabria, I-87036 Rende (CS) - Italy
E-mail: f.cicirelli@deis.unical.it, l.nigro@unical.it

Keywords: service oriented computing, application framework, middleware, peer-to-peer, Internet, video on-demand,
Java, Jini, Java Media Framework, RTP/RTCP protocols

Received: February 7, 2006

GOAL -General brOkering Architecture Layer- is a service architecture which allows the development
and the management of highly flexible, scalable and self-configurable distributed and service-oriented ap-
plications over the Internet. GOAL centres on a design pattern which decouples the design of service
functionalities from the distribution concerns. A service wrapper is specifically responsible of the distri-
bution aspects. The wrapper is weaved at runtime to its corresponding service by a dynamic proxy object.
GOAL makes it possible to augment, in a transparent way, the behaviour of a software object in order to
permit it to be remotely accessible. Current implementation of GOAL depends on Sun Microsystems’ Jini
as the brokering/middleware layer. The paper describes GOAL and demonstrates its practical use through
the design and implementation of a Video on-Demand system. Java Media Framework is used for pumping
multimedia data at the transmitter side and for rendering purposes at the receiver side, RTP/RTCP proto-
cols are used for multimedia streaming.

Povzetek: Predstavljen je GOAL – arhitektura za napredne spletne aplikacije, npr. video na zahtevo.

1 Introduction

Service Oriented Computing [1] emerged in the last decade
as a computing paradigm centred on the concept of ser-
vice [2, 3] as basic building block. Services are suitable
for developing and organising applications for large-scale
open-environments. They are effective in improving soft-
ware productivity and quality, as well as fostering system
evolution and maintenance. A service is a coarse-grained
software component virtualizing a hardware or software re-
source which is made exploitable for on-demand use. Bind-
ing to the service/resource typically occurs just at the time
the component is needed. After usage the binding may be
discarded. Applications, tailored according to user require-
ments, are constructed through a combination and compo-
sition [4] of independent, outsourced service components
exposing a well-defined interface. Main features of the ser-
vice paradigm include dynamism and transparency. The
former refers to services which can appear or disappear in
a community without centralized control, possibly notify-
ing about their presence/absence. This behaviour depends
on the use of the so called discovery protocols [5, 6, 7].
The latter feature means that services can be used with-
out knowledge about service provider platforms and ser-
vice provider locations. Service dynamism and interaction
model strongly relate service architectures to peer-to-peer
architectures [8]. Service computing relies on the high-

level abstraction entities defined by Service Oriented Ar-
chitecture (SOA) [9, 10] in order to (i) characterize and
organize service-based applications and (ii) capture the re-
lationships existing among these entities. Basic entities in
a SOA are the service provider, the service client, and the
service registry which acts as a broker among clients and
providers. Each service, offered by a provider, prelimi-
narily requires to be advertised in a registry in order for
it to become subsequently discoverable and utilizable by a
client (e.g. a human user or another service).

GOAL, the General brOkering Architecture Layer pro-
posed in this paper, is a novel service architecture allow-
ing the development of highly flexible, dynamic and self-
configurable service-based applications. GOAL aims at
simplifying the management of service lifecycle by reduc-
ing the burden of designing, developing and deploying soft-
ware objects suitable to work in a distributed context. Dif-
ferent distribution aspects like data consistency, fault tol-
erance, security and remote communications are treated as
cross-cutting aspects. In particular, the latter two concerns
are directly addressed by the system and are the respon-
sibility of proxy objects. GOAL offers a minimal frame-
work [11], easy to understand and use, and a few meta-
services. A service design pattern, enforcing common
guidelines for service development, is provided. Design-
ing a new service does not introduce dependencies from a
particular API or system components. Weaving customer-

30 Informatica 31 (2007) 29–39 F. Cicirelli et al.

objects and system-objects occurs only during service op-
eration. Meta-services are system entities which allow one
to publish, search and use customized services. A service,
once advertised, becomes available within a GOAL com-
munity. Matching criteria can be specified during a search-
ing phase. In addition, when a new service appears/leaves
the community, interested clients can be automatically noti-
fied. The notification mechanism ensures system flexibility
and scalability and permits the development of highly dy-
namic and self-adapting software. A service can leave the
community due to an explicit removing operation or due to
a crash. In the latter case, self-healing properties are car-
ried out using a fail silent model [12] based on a leasing
mechanism.

Current implementation of GOAL depends on Jini [7,
13, 14] as the underlying service infrastructure, borrow-
ing advantages of dynamic registration, service lookup, no-
tification of remote events, distributed object access and
platform-independence enabled by Java. However, the bro-
kering layer, i.e. Jini, is fully abstracted and can possibly
be replaced. Communication among services is based on
the exchange of Java objects and fully exploits benefits of
runtime code mobility [15].

GOAL can be used as the starting point for building fur-
ther abstraction layers targeted to specific application do-
mains. As a significant example, a Management Architec-
ture for Distributed meAsureMent Services -MADAMS-
[16] was developed directly on top of GOAL mechanisms.
MADAMS is tuned to the requirements of distributed mea-
surement systems [17, 18, 19]. MADAMS rests on the con-
cept of measurement service as the basic abstraction en-
tity modelling a (physical or virtual) measurement instru-
ment, and the concept of connector which provides inter-
instrument communications. MADAMS also supports re-
cursive service composition. MADAMS was successfully
employed for demand monitoring and control [16] and for
remote calibration of distributed sensors [20].

This paper describes GOAL features and the general de-
sign guidelines for achieving distributed services. As an
application, GOAL capabilities are demonstrated through
the development of a distributed Video on-Demand (VoD)
system [21, 22, 23]. The VoD system depends on Java
Media Framework (JMF) [24] which is responsible both
for pumping multimedia data into a network connection at
a sender side and for presenting multimedia data at a re-
ceiver side. Data streaming depends on RTP/RTCP proto-
cols [25].

The structure of the paper is the following. Section 2
summarizes some related work. Section 3 presents the
proposed service architecture along with its programming
model. In particular, a description about the service design
pattern, system security and the catalogue of meta-services
is provided. Section 4 illustrates design and implementa-
tion and service catalogue concerning the prototyped VoD
system. Finally, an indication of directions which deserve
further work is furnished in the conclusions.

2 Related Work

As with other technologies suited to the development of
distributed systems, ensuring transparency and hiding man-
agement of distribution concerns allow developers to fo-
cus only on domain-specific problems. For these purposes,
different infrastructures and middleware layers have been
proposed centred on the service metaphor. Sun Microsys-
tems’ Jini [13, 7, 26] permits the construction of service-
based applications in terms of fundamental mechanisms of
service publication/discovery, leasing management, remote
event notification and transaction support.

In [27] an approach based on tuple-space [28] for build-
ing service frameworks is proposed. Concepts like actor,
which execute client requests, virtual resource and virtual
service are introduced. Virtual entities enable abstraction
layers to be achieved on top of either physical resources
or services thus ensuring a common and uniform way for
accessing them. Spaces are used to manage (e.g. create,
destroy, search) agents, services and resources.

Other solutions are targeted to abstracting and hiding de-
tails of the adopted middleware/brokering layer in order to
favour its interchangeability. By providing a well-defined
set of components (i.e. interfaces and objects) and through
code generation mechanisms, Iceni [29, 30] allows an auto-
matic service management in different computing contexts
such as Open Grid Service Infrastructure or Jini service
community. In [31] a framework is proposed which hides
behaviour of underlying transport layer and separates coor-
dination patterns, i.e. request/response interactions, from
computational logic, i.e. service functionalities.

Colombo platform [32] introduces the concept of ser-
vicelet as the unit of development and deployment. A ser-
vicelet is a stateless object corresponding to a single service
or to a collection of them. Context information are man-
aged by specific Servicelet Context entities which are han-
dled by the runtime system. Management of explicit meta-
data in the form of machine-readable service descriptions,
including functional and non-functional QoS characteris-
tics, is an important characteristic of Colombo. The goal is
to avoid generating a gap between the internal representa-
tion of service capabilities and the external, interoperable
service view which is defined by the service contract.

Sirena framework [33] defines an architecture to seam-
lessly connect heterogeneous (resource constrained) de-
vices and services furnished by such devices. Sirena com-
prises an incoherent set of tools having the responsibility
of generating service stubs and skeletons, managing service
lifecycle, supporting visual composition for service orches-
tration and so forth.

A different goal is pursued in Arcademis [34] which is
a Java-based framework enabling the implementation of
modular and highly customizable middleware architectures
for specific application domains. A distributed system built
on top of Arcademis is structured according to three ab-
straction levels. The first level is constituted by basic com-
ponents like invokers, which are responsible for emitting

A GENERAL BROKERING ARCHITECTURE LAYER AND. . . Informatica 31 (2007) 29–39 31

remote calls, or schedulers which are used to possibly order
remote calls. Although these are abstract classes and inter-
faces, Arcademis also provides concrete components that
can be used without further extensions. The second level is
represented by the concrete middleware platform obtained
from Arcademis basic components. The framework defers
to this level decisions about serialization strategy, commu-
nication and lookup protocols that will be adopted. Finally,
the third abstraction level is made up by components which
make services available to end users.

In the context of the above mentioned proposals, the
original contribution of GOAL is twofold: (i) to allow
development of new services without introducing, at de-
sign time, bindings to specific framework components (e.g.
abstract classes or interfaces), (ii) to transparently handle
distribution concerns as cross-cutting aspects. All of this
fosters low coupling among entities, system evolution and
maintenance in a natural way.

3 GOAL Service Architecture
GOAL addresses all the activities involved in the lifecycle
of services by exploiting a specific service design pattern
and by using a set of well-defined system components and
interfaces having specific roles. A main concern rests in en-
capsulating and hiding implementation details of core com-
ponents by using stable interfaces so that if changes occur,
e.g. in the middleware layer which is replaced or in the
communication protocol stack, no consequence is induced
in the implemented and working applications. GOAL com-
ponents and features are discussed in the following.

3.1 Service Design Pattern
The development of a generic service follows the service
design pattern depicted in Fig. 1. Each remote service, i.e.

<<interface>>
GOALService

getServiceInfo():ServiceInfo
setExceptionListener(l:GOALEventListener):void
setUser(user:UserACK):void
getServiceID():StringServiceWrapper

+bootstrap():boolean

+shutdown():boolean

+setServiceInfo(info:ServiceInfo):void

+getServiceLoadFactor():short

+setServiceID(id:String):void

<<interface>>

InvocationHandler

(from:java::lang::reflect)

<< interface >>

LocalService

WrapperFactory

+getServiceWrapper(service:Object,interface:Class):ServiceWrapper

<<interface>>
ServicePublisher <<interface>>

ServiceFinder

find and return a published

GoallService object, if required

a cast to the specific

LocalService is allowed.

GOALProxy

use to get wrapper

instances

manage instances of

instanciate at runtime

wrap an instance of
 return a published

GOALService

realize only at runtime realize only at runtime

dispatch method calls to

dispatch method calls to

publish instances of

Figure 1: Components of service design pattern.

a new software object made available within a GOAL com-
munity, is first developed as a local object. This permits
design efforts to concentrate only on the effective service
functionalities. In this design phase, the only constraint to
fulfil is in defining functional aspects of the new service
by means of an interface. One such interface is shown in

Fig. 1 as the LocalService interface. Interfaces allow a
what-how decomposition [35] which ensure service client
code immutability with respect to service implementation
changes. Any object can be a candidate for a remote ser-
vice because no restrictions are introduced in the definition
of its functional behaviour except for the serializability of
the parameters appearing in method signatures. Remote
concerns are managed by means of a service wrapper. This
kind of object extends local service behaviour with distri-
bution aspects like transaction support and so forth. As a
common guide line, the wrapper may enfold the local ser-
vice and execute distributed tasks by interleaving them with
method calls on the wrapped service. A service wrapper
can require to be bootstrapped, for instance by initializing
its internal state with information retrieved by contacting
other services. A shutdown operation allows a wrapper to
tear down, i.e. becoming out of work or unpublished. All
of this is reflected in Fig. 1 by the ServiceWrapper abstract
class. Other common functionalities allow: (a) setting the
service identifier, (b) setting service info (e.g. a description
of service behaviour and functionalities) and (c) managing
an estimated load factor value of the service provider. By
default, the above concerns are system addressed. When
no special requirements have to be met, a DefaultWrapper
can be transparently used. Would new functionalities be
added to the local service, e.g. in order to cope with data
consistency and integrity among multiple system nodes,
an extension of the default wrapper may be supplied. At
compile time, the local service interface and the relevant
wrapper may be completely unrelated. A wrapper has to
override only the local service operations whose capabili-
ties require to be extended. Only at runtime, the wrapper
and the local service behaviour will be weaved according to
an aspect-oriented programming style [36]. Two problems
arise when making a local service remotely accessible: (i)
the service has to be advertised into a community, (ii) a
representative object for the service, i.e. a GOAL proxy,
is required to be downloaded on service client in order
to support remote communications. Service advertisement
is the responsibility of the ServicePublisher meta-service
(see Fig. 1). Service finding and proxy download activ-
ities are in charge of the ServiceFinder meta-service (see
Fig. 1). The proposed publisher/finder mechanisms help
in hiding details about the actual brokering layer. Would
the brokering layer be replaced, e.g. CORBA used instead
of Jini, only the publisher/finder objects have to be cor-
respondingly modified. While publishing a local service,
behind the scene the service publisher (i) asks to a Wrap-
perFactory for a wrapper instance, (ii) correlates service
and wrapper with the proxy and (iii) makes the latter one
object available to a GOAL community using functional-
ities of the actual brokering layer. The GOALProxy (see
Fig. 1) is a remotely accessible object which, moving to
a service client host, transparently acts as a dispatcher of
request/response messages between remote user and local
service provider. In the case the communication protocol
changes, e.g. XMLRPC is preferred to Java RMI, only

32 Informatica 31 (2007) 29–39 F. Cicirelli et al.

the proxy requires to be changed. By preferring the exe-
cution of overridden methods, the proxy realizes the inter-
weaving among local service and the corresponding wrap-
per. At runtime, by exploiting Java dynamic proxy mech-
anisms [37], a GOALProxy is able to implement a list of
specified interfaces without requiring code generation. Im-
plementing a specific interface of a local service ensures
that a generic client would not be able to perceive any dif-
ference between direct service usage with respect to proxy
mediate usage. The sequence diagram in Fig. 2 summa-
rizes the effects of the service design pattern on service
publication and utilization. Figure 3, instead, depicts com-
munication details characterizing interactions among ser-
vice client and the associated service provider. A GOAL-

ServiceProvider ServiceClient

2.5://advertise

proxy

2.1://get service

wrapper

2.2://create an

instance of

3://get a service

3.1://retrieve

service

proxy

4.1://do something

5.1://do

 something

2.3://relate proxy,

service and

wrapperproxy advertisement

occurs by using underlaid

middleware functionalities 2.4://configure and

bootstrap

wrapper

proxy retrievement

occurs by using underlaid

middleware functionalities

1://create an

instance of

2://publish the

instance of

local service

5.1.1://do something

4://do something

5:// do something

:Local

Service

:Service

Publisher

:Wrapper

Factory

:Service

Wrapper

:GOAL

Proxy

:Service

Finder

Figure 2: Sequence diagram capturing service utilization.

GOALProxy(Stub)

ServiceClient

JavaRMIJavaRMI

TCP / IP

Logical link

LocalService

ServiceWrapper

GOALProxy (Skeleton)GOALProxy (Skeleton)

Data flow

Jini

Figure 3: GOAL service usage scenario: communication
details.

Proxy may enforce the download of the entire service code
on a user node. This is useful when the service must be
executed on the client side, e.g. for accessing to hard-
ware or software resources hosted on a particular comput-

ing node [20]. Proxy behaviour is defined during publi-
cation simply by setting some of the so called GOALSer-
viceProperty(s). If no constraints appear in the object se-
rializability or persistence, a service may be used accord-
ing to remote or downloadable mode. A GOALProxy may
be specialized in order to augment the capabilities of the
overall system. For instance, to deal with fault-tolerance
concerns, a proxy can be designed to abstract communi-
cations between a single client and a group of equivalent
service providers, so as if one of the provider becomes un-
available or crashes, the client remains able, in a transpar-
ent way, to continue its work [38]. The class diagram of
the service design pattern (see Fig. 1) makes also clear
that, once published, a local service becomes a GOALSer-
vice. GOALService interface defines a set of functionali-
ties which are common to all services in a GOAL system.
In particular, the setExceptionListener method is used to
set a listener whose aim is to handle exceptions not thrown
by local service methods but raised during remote opera-
tion. The setUser method is used to set a UserACK ob-
ject especially devoted to cope with security concerns (see
section 3.2). Remaining operations should be self explana-
tory. Other common issues of the service design pattern
are user friendliness and load balancing support. Each ser-
vice may possess a graphical user interface (GUI) obtained
through a GUIfactory object previously published by us-
ing the service publisher (see also Fig. 6). Service finder
is then used by clients in order to search and retrieve the
factory. Advantages of this approach are: (i) a service is
developed independently from its graphical interface, (ii)
the GUI is instantiated only on the client side thus avoid-
ing serialization of graphical objects, (iii) the GUI allows
use of the service without any previous knowledge about it,
(iv) multiple graphical user interfaces, possibly tied to dif-
ferent user node capabilities, can be supported. Load bal-
ancing is carried out by using the so-called remote service
attributes. Every service has one of such an attribute that
expresses its load factor, i.e. NORMAL for a low or nor-
mal load factor, and WARNING or BUSY for a high/very
high load factor. Although services are usually supposed to
remain context-free, remote attributes can provide a kind of
context information [39, 40] exploitable during the finding
phase. For instance, the service finder always tries to return
services in the NORMAL state, if there are any, otherwise
the first one matching searching criteria is returned. The
service publisher keeps up to date remote attributes by pe-
riodically querying service wrappers state or (possibly) by
monitoring the CPU usage on provider nodes.

3.2 Security Concerns

Handling security is an essential issue in a distributed and
multi-user scenario. The service code downloaded from a
remote site requires to be trusted along with the remote site
itself. User credentials must be verified, usage of system re-
sources granted and resource accesses controlled. Authen-
tication and authorization mechanisms of GOAL are im-

A GENERAL BROKERING ARCHITECTURE LAYER AND. . . Informatica 31 (2007) 29–39 33

plemented through the UserACK object (see Fig. 1) which
permits user identification and acknowledgment of its roles
(e.g. administrator or normal user), privileges and grants.
The concept of user groups is introduced and users may
become members of one or multiple groups. Each group,
e.g. admin group, owns some GOAL permissions and the
UserACK holds the union of all permissions relevant to the
user joined groups. Information stored in a permission fol-
low the same hierarchical schema adopted in Java pack-
age specifications. Creating a permission with a service
package info and service name enables access to the corre-
sponding service. By providing only package information,
a grant is given to all services belonging to the package.
A finer authorization control is achieved by specifying ser-
vice method/function name(s) in the permission. The use
of UserACK makes it possible, in a decentralized context,
to accept or discard a user request. User grants are checked
directly by GOAL proxies. Therefore, authentication and
authorization concerns are transparently managed with re-
spect to service functionalities and service implementation.
During publication, a specific GOALServiceProperty can
be used to state if the proxy has to enable or disable the
management of security concerns, i.e. to state if the ser-
vice has to be considered secure or public. In the case se-
curity aspects are to be explicitly managed by a service, the
UserACK object must be transmitted as a parameter when
invoking its methods.

Users can freely propose new groups and create their
own UserACK. However, only signed UserACKs and ac-
cepted groups can be effectively used. A system admin-
istrator signs a new UserACK and establishes its expira-
tion time. Signed UserACKs cannot be modified by users:
the system is able to recognize when a UserACK is cor-
rupted, modified or just invalid (e.g. it expired). UserACK
and group management is responsibility of the core down-
loadable Grant Management service whose GUI is shown
in Fig. 4. A UserACK submission form is offered and
group membership is achieved by choosing items from a
list of already accepted groups. Inspection of group prop-
erties is allowed. Likewise to UserACK, a group submis-
sion form is also available. Submitting a new group re-
quires the group name and the list of group permissions
to be provided. A reserved area, offering an overall vi-
sion of existing UserACKs and groups, is under the con-
trol of the system administrators (see Fig. 5). New User-
ACKs/groups can be signed/accepted and single permis-
sions can be added/removed in a group as well as in a sub-
mitted UserACK.

The accesses to a service can be also allowed or de-
nied depending on other criteria. Load balancing aspects,
service availability or service exclusive use may often be
considered during the UserACK acquisition phase. Confi-
dentiality and privacy can be ensured by using the Secure
Socket Layer for service communications, whereas trust-
ness can be achieved by exploiting Java standard security
mechanisms relevant to remote code management [41].

Figure 4: Grant Management service GUI.

3.3 Meta-Service Catalogue

GOAL meta-services are responsible for publishing,
searching, retrieving or removing services from a com-
munity. Figure 6 portrays the UML class diagram of the
publisher/finder services which depend only on interfaces.
Actual objects are created by a singleton factory which
ensures a coherent delivering according to the underly-
ing middleware layer. To cope with security concerns, a
valid UserACK is required when using meta-services. Only
the method find(String):GOALService can be used with-
out a UserACK. This provides a bootstrap mechanism ex-
ploitable by new users for contacting the service devoted
to grant management in order to obtain the personal User-
ACK. The advertisement process is carried out by requir-
ing the service to publish and a list of GOALServiceProp-
erty. These properties allow to specify descriptive and be-
havioural attributes. Descriptive attributes may be used,
for instance, to provide service description. Behavioural
attributes must be used to specify the name of the inter-
face through which the service will be retrieved by clients,
the wrapper to use and so forth. Following a successful
invocation, the publish method returns the unique service
identifier. A service may be published using different in-
terfaces thus allowing multiple views of the same local ob-
ject. Among service properties it is also possible to specify
a service working directory which will be used, by the sys-
tem, for storing persistent information like the service iden-
tifier. Service properties may also be labelled as search-
able. In this case, properties may be specified as match-
ing attributes during the finding phase. The publishSer-
viceUIFactory method is used to publish the UIFactory of
a specified service, unpublish is used instead to remove
a service from the community. Finding a service requires
the service name, i.e. its interface name, and (possibly)

34 Informatica 31 (2007) 29–39 F. Cicirelli et al.

Figure 5: Administration panel of the Grant Management
service.

<<interface>>
ServicePublisher

publish(service:Object,properties:GOALServiceProperties,user:UserACK):String
publishServiceUIFactory(serviceID:String,factory:UIFactory,user:UserACK):void
unpublish(serviceID:String, user:UserACK):void

<<interface>>
ServiceFinder

find(serviceClassName:String,serviceIDs:String[],user:UserACK):GOALService
find(serviceClassName:String):GOALService

findAllServices(serviceClassName:String,l:ServiceListener,u:UserACK):GOALService[]
findServiceUIFactory(service:GOALService,user:UserACK):UIFactory

CoreServiceSingletonFactory

+getServicePublisher():ServicePublisher

+getServiceFinder():ServiceFinder

create and return an instance of

create and return an instance of

Figure 6: Publisher/finder service design.

service identifier information. Although the finding pro-
cess is based on naming criteria, the matching can also oc-
cur when a published service implements any interface in
a hierarchy. As a side-benefit, the use of textual name and
the availability of service GUI enable usage of any pub-
lished service without requiring specific Java code to be
installed on the client node. The findAllService method al-
lows service retrieval by bypassing the load balancing pol-
icy. If specified, a ServiceListener (see Fig. 6) notifies
when a new searched service joins or leaves the commu-
nity. Meta-services require their code to be pre installed on
every GOAL node.

4 A GOAL-based VoD System
The following describes a VoD system developed on top
of GOAL. The VoD system consists of a service feder-
ation which permits publishing, searching and retrieving
as well as streaming and rendering of multimedia con-
tents. Java Media Framework [24] is used for pumping
(at provider side) and rendering (at client site) multime-
dia data. Streaming of multimedia contents relies on the
RTP/RTCP protocols [42]. First the service architecture is

described, then the list of developed services for the VoD
system is provided.

4.1 System Architecture

The architecture of the achieved VoD is depicted in Fig.
7. It consists of five types of computing nodes having dif-
ferent roles in supporting VoD services. Nodes, and rel-
evant services, can dynamically join or leave the system
and when this occurs the other nodes are notified. Some

Intranet/Internet

StreamingNode BrowsingNode RenderingNode

SearchingNode TheatreNode UserNode

Figure 7: Architecture of the GOAL-based VoD system.

nodes may be duplicated: multimedia files and related de-
scriptions are normally distributed across multiple stream-
ing nodes. Other kind of nodes, instead, may be duplicated
for fault-tolerance and load balancing issues. VoD services
are ultimately requested and made it available to final users
through user nodes (see Fig. 7). The architecture was de-
signed so as to minimize code requirements on the user
nodes. Here only some standard code like JMF and obvi-
ously GOAL meta-services code, is supposed to be stati-
cally available. All of this contributes to system evolution
because, by exploiting the download of the service code, a
user, on-demand, will always use the latest version of the
various software components. A description of each node
is provided in the following.

Streaming nodes are media servers. They contain mul-
timedia data files and associated descriptions (e.g. title,
authors etc.). Streaming nodes enable to: (i) access the
descriptions of media data; (ii) add/remove multimedia
files; (iii) create and manage multimedia sessions (for data
streaming and control) on behalf of end users.

Browsing nodes respond to management functionalities.
Relevant services offer a unified list of the multimedia con-
tent available on the various streaming nodes and allow
users to organize multimedia data across them. The organi-
zation consists in adding/removing/modifying multimedia
contents on different streaming nodes.

A GENERAL BROKERING ARCHITECTURE LAYER AND. . . Informatica 31 (2007) 29–39 35

Searching nodes portray a whole vision of all the exist-
ing multimedia contents by providing: (i) the unified list
of available media files distributed across streaming nodes;
(ii) searching facilities, e.g. for selecting specific movies;
(iii) user profiles in order to tailor media information on a
per user basis or to send notifications when relevant new
media data come into existence; (iv) trace facilities about
media utilizations like reviews, user preferences and so
forth.

Rendering nodes act as remote libraries from which user
nodes can dynamically download the code required for ren-
dering a video content, possibly by ensuring also receiver
based QoS control, e.g. lip-sync [43].

Theatre nodes provide a service which is used as entry
point for user interactions. In order to view a movie a user
has to (i) searching it by using searching node functionali-
ties, (ii) starting and managing multimedia sessions by us-
ing streaming node services, (iii) managing the rendering
process on the user node by retrieving and using rendering
libraries downloaded from a rendering node. All of this re-
quires the utilization and the coordination of multiple VoD
services which in turn are provided by different computing
nodes. By using the service exported by a theatre node, a
user obtains an holistic vision of the entire VoD system. In
this way, issues concerning single service invocation and
coordination are fully abstracted.

4.2 Service Catalogue
SessionController and VideoFileManager

Are specific of streaming nodes. SessionController nego-
tiates and creates a multimedia session between a client
node and a streaming server node, with distinct control
and streaming bindings. The streaming binding is used
for media data streaming, e.g. unicast, and relies on the
RTP/RTCP protocols [25]. A negotiation phase is required
for establishing port identifiers at both receiver and trans-
mitter side. The control binding is TCP-based and is
used for exchanging session control commands (e.g. play,
rewind, pause and stop). SessionController does not re-
quire its functionalities to be extended for remote access.
Therefore, the DefaultWrapper can be transparently used
during the publication phase. SessionController service has
a VCR-like GUI which is automatically made available at
the end of the negotiation phase.

The VideoFileManager service is mainly devoted to
adding/removing media files to/from a specific streaming
node and managing media file information, e.g. title, di-
rector and language. Information about duration, file en-
coding and so forth are automatically detected and made
available by the service. Media information are stored in
XML format. VideoFileManager also notifies a set of lis-
teners when, for instances, a new movie is added. A com-
plete list of available movies is also provided. In order to
enforce data consistency, listeners require to be notified un-
der transactional support. Transaction management is re-
sponsibility of the VideoFileManagerWrapper (see Fig. 8)

and relies on the Jini transaction mechanism. The class

GOALProxy <<interface>>

GOALService

<<interface>>

VideoFileManager

addNewVideoDescriptor(v:VideoDescriptor,file:String):BinaryManager
deleteVideo(video:VideoDescriptor):void
modifyVideoDescriptor(old:VideoDescriptor,new:VideoDescriptor):void
getVideoDescriptorResult():StreamingVideoResult
addVideoChangeListener(l:VideoChangeListener):RegistrationInfo
removeVideoChangeListener(listener:VideoChangeListener):void

ServiceWrapper

<<interface>>
GUIFactory

getGUI(s:GOALService):java.awt.Component

<<interface>>
VideoChangeListener

notify(event:VideoEvent):void

javax.swing.JFrame

VideoFileManagerGUI

VideoFileManagerGUIFactory

dispatch method call to

dispatch method call to

dispatch method call to

wrap an
instance of

instantiateis a GUI of

implement only at runtime

implement only at runtime

RemoteVideoChangeListener
<<interface>>

VideoFileManagerWrapper

+addVideoChangeListener(l:VideoChangeListener):RegistrationInfo
+removeVideoChangeListener(l:VideoChangeListener):void

Figure 8: Class diagram of VideoFileManager and related
entities.

diagram in Fig. 8 makes clear that the wrapper and the
corresponding service are unrelated at compile time, i.e.
they do not implement or extend any common entity. As
discussed in section 3.1, the weaving between the two ob-
jects is only established at runtime by means of a GOAL-
Proxy. During the bootstrap phase (see section 3.1), the
wrapper registers itself as a listener of the VideoFileM-
anager. Subsequently, it will act as a dispatcher of noti-
fications coming from the wrapped service and going to-
ward remote listeners. By overriding the methods ad-
dVideoChangeListener and removeVideoChangeLis-
tener, the wrapper obtains to be the exclusive manager
of the RemoteVideoChangeListener(s) which are handled
under transaction. A RemoteVideoChangeListener is a lis-
tener whose functionalities are extended to support notifi-
cation and management of remote events. In addition, the
remote listener behaves as a transaction participant when
notified by a transaction client [26], i.e. a VideoFileMan-
agerWrapper. To enforce self-healing properties, the regis-
tration of a remote listener is regulated by a lease. As one
can see, all the methods reported in Fig. 8 makes no use
of UserACK objects, this is because security concerns are
transparently handled by the GOALProxy. Figure 8 also
shows the relationship existing between VideoFileManager
and its GUI. Figure 9 depicts the GUI of a VideoFileMan-
ager service while an upload of a new movie occurs.

StreamSearcher

It is specific of searching nodes and provides a searching
facility allowing a uniform access to all the media data
available on existing streaming nodes. A StreamSearcher
enriches media data with information about user activities
and collects user reviews and profiles. It acts as a listener of
events coming from VideoFileManager, e.g. informing that
a new movie has been added to the video library, or com-
ing from other StreamSearcher, e.g. informing that another
review was added. This is reflected in the class diagram
reported in Fig. 10 where a StreamSearcher interface ex-
tends the VideoChangeListener interface. As one can see,

36 Informatica 31 (2007) 29–39 F. Cicirelli et al.

Figure 9: VideoFileManager GUI.

some methods of StreamSearcher require a UserACK ob-
ject as parameter. Although security concerns are always
managed by the proxy, one of such an object is required for
tracing user’s activities. Likewise to the VideoFileManager

<<interface>>

StreamSearcher

addVideoChangeListener(l:VideoChangeListener):RegistrationInfo
removeVideoChangeListener(l:VideoChangeListener):void
getUsersProfile(user:UserACK): UserProfile[]
getVideoInfo(request:Request,user:UserACK): Result

<<interface>>
VideoChangeListener

notify(event:VideoEvent): void

<<interface>>

GOALService
ServiceWrapper

javax.swing.JFrame

StreamSearcherGUI

GOALProxy

StreamSearcherGUIFactory

<<interface>>

GUIFactory

getGUI(s:GOALService): java.awt.Component

<<interface>>
RemoteVideoChangeListener

instantiate

wrap an
instance of

dispatch method call to dispatch method call to

dispatch method call to

StreamSearcherWrapper

+addVideoChangeListener(l:VideoChangeListener):RegistrationInfo
+removeVideoChangeListener(l:VideoChangeListener):void

implement only at runtime implement only at runtime

Figure 10: Class diagram of StreamSearcher and related
entities.

service, a StreamSearcherWrapper (see Fig. 10) was intro-
duced for guaranteeing consistency and integrity of the data
exchanged with other services, i.e. VideoFileManager(s)
and StreamSearcher(s). In this case, the wrapper extends
the RemoteVideoChangeListener interface. In particular
the wrapper registers itself as a listener of the enfolded ser-
vice and as listener of the VideoFileManager and Stream-
Searcher working in the service community. At the boot-
strap phase (see Figg. 1 and 2) the wrapper is in charge of
initializing its own media data repository. If other search-
ing nodes are available, a data mirroring is performed, oth-
erwise it has to contact all the VideoFileManager(s) in or-
der to retrieve info about movies. Media data and the so
called enriched media data (i.e. title, authors, user reviews,
and so forth) are represented in XML and stored in an XML
DBMS such as eXist [44]. Figure 11 shows an interac-
tion with the StreamSearcher service with a specification

of searching criteria for finding a movie. The wrapper acts
either as a transaction participant or a transaction client.
Only at transaction commit, data received from other nodes
are transmitted to the enfolded service.

Figure 11: StreamSearcher GUI.

Renderer

It is specific of rendering nodes and, in the context of a mul-
timedia session, it assists the audio/video rendering process
on a client node. The rendering process can possibly be
accompanied by a receiver-based QoS control filter [45].
Within an allowed end-to-end delay, one of such a filter
separately buffers incoming audio/video packets, assem-
bles media frames and synchronizes media frame presenta-
tion on the basis of their presentation time (this is achieved
by elaborating either timestamps of RTP packets and report
packets of the RTCP sender in order to periodically adjust
the real-time clock of the receiver subsystem to the real-
time clock of the sender). Too late arriving or corrupted
packets are discarded. The filter is capable of controlling
intra-medium jitter and inter-media skew directly affecting
the lip-synch problem [43]. Rendering service allows man-
agement of volume and video zoom factor as well as shows
reproduction time of the rendering movie. This service re-
quires to be fully downloaded on client node and no remote
functionalities are added.

Browser

Specific of Browsing nodes, this service allows the listing
of the VideoFileManager available into the VoD system.
This service is only for management purposes i.e. select-
ing a streaming node to administrate. Browser service re-
quires to be fully downloaded on a client node and no re-
mote functionality is added.

A GENERAL BROKERING ARCHITECTURE LAYER AND. . . Informatica 31 (2007) 29–39 37

Theatre

Specific of Theatre nodes, this composed service provides
added value to final user activities. Behind the scene a the-
atre asks for a searching service and for a rendering service
as well as, once a movie is chosen, for the right session
controller service in order to start and manage the incom-
ing multimedia session. A negotiation phase is required be-
tween the SessionController and the Renderer for accord-
ing IP addresses and port numbers. Theatre is a down-
loadable service which does not require remote function-
alities to be added and the DefaultWrapper is used during
its advertisement. The theatre service does not have an own
graphical interface: it supports user interaction through the
GUI(s) of the component services (see Fig. 12).

Figure 12: Theatre service vision.

5 Conclusions
The General brOkering Architecture Layer facilitates the
development of general-purpose distributed service-based
applications. GOAL is based on a service design pattern
and makes an application development independent with
respect to a specific middleware technology. By keeping
a clear separation between local vs. remote concerns and
by exploiting the service metaphor GOAL fosters software
evolution and maintenance. Development time and design
efforts as well as the initial background required for mak-
ing an application remotely usable are very small. Man-
agement, though, of more complex distribution concerns
like transaction support, requires a deeper knowledge about
GOAL components and the underlying middleware layer.
GOAL mechanisms have been successfully experimented
in the realization of significant applications like distributed
measurement systems [16, 20]. This paper reports about
the achievement of a Video on-Demand system over the
Internet. Current implementation of GOAL depends on
Java/Jini technology. Directions of further work include
the following:

– specializing service proxies with the purpose of allow-
ing interoperability between GOAL services and Web
Services [46]

– introducing design by contract [47] by foreseeing
pre-conditions and post-condition to be transparently
managed via service proxy when calling a service
method

– making it available functionalities for supporting long
term transaction [48] by offering a coordinator core-
service accepting a list of methods to be managed un-
der transaction

– adding management of non functional aspects [49],
such as service availability, service response time
and throughput, either in the service advertisement or
within the finding process

– extending the VoD system in order to support multi-
cast and cooperative multimedia sessions [23].

References
[1] M.P. Papazoglou and D. Georgakopoulos. Service

oriented computing. Communications of the ACM,
46(10):24–28, 2003.

[2] K. Bennett, P. Layzell, D. Budgen, P. Brereton,
L. Macaulay, and M. Munro. Service-based soft-
ware: the future for flexible software. In Proceed-
ings of the Seventh Asia-Pacific Software Engineer-
ing Conference (APSEC’00), pages 214–221, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

[3] R. Perrey and M. Lycett. Service-oriented archi-
tecture. In Proceedings of the Symposium on Ap-
plications and the Internet Workshops (SAINT’03
Workshops), pages 116–119. IEEE Computer Society,
2003.

[4] J. Yang and M. P. Papazoglou. Service components
for managing the life-cycle of service compositions.
Information Systems, 29(2):97–125, 2004.

[5] E. Guttman, C. Perkins, J. Veizades, and M. Day. Ser-
vice location protocol, version 2, rfc 2608. http://
www.ietf.org/rfc/rfc2608.txt. Accessed
on October 2005.

[6] UPnP. Universal plug and play device archi-
tecture. http://www.upnp.org/download/
UPnPDA10_20000613.htm. Accessed on Oc-
tober 2005.

[7] W.K. Edwards and W. Edwards. Core Jini. NJ: Pren-
tice Hall, second edition, 2001.

[8] R. Schollmeier. A definition of peer-to-peer network-
ing for the classification of peer-to-peer architectures
and applications. In Proceedings of the First Interna-
tional Conference on Peer-to-Peer Computing (P2P
’01), pages 101–102, Lingkoping, Sweden, August
2001. IEEE.

38 Informatica 31 (2007) 29–39 F. Cicirelli et al.

[9] M.P. Papazoglou. Service-oriented computing: Con-
cepts, characteristics and directions. In Proceedings
of the Fourth International Conference on Web Infor-
mation Systems Engineering, pages 3–12. IEEE Com-
puter Society, December 2003.

[10] M. Shaw and D. Garlan. Software architecture: per-
spective on an emerging discipline. Prentice-Hall,
1996.

[11] M.E. Fayad and D.C. Schmidt. Object-oriented ap-
plication framework. Communications of the ACM,
40(10):32–38, 1997.

[12] D. Cotroneo, C. Di Flora, and S. Russo. Improv-
ing dependability of service oriented architectures for
pervasive computing. In Proceeding of the Eighth
International Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS’03), pages 74–
81. IEEE Computer Society, 2003.

[13] Sun Microsystems. Jini network technology -
specifications (v2.1). http://www.sun.com/
software/jini/specs/index.xml. Ac-
cessed on May 2006.

[14] Jini network technology. http://www.sun.
com/software/jini/. Accessed on October
2005.

[15] A. Carzaniga, G.P. Picco, and G. Vigna. Designing
distributed applications with mobile code paradigms.
In Proceedings of the 19th International Conference
on Software Engineering, pages 22–32. ACM Press,
1997.

[16] F. Cicirelli, D. Grimaldi, A. Furfaro, L. Nigro, and
F. Pupo. MADAMS: a software architecture for
the management of networked measurement services.
Computer Standards & Interfaces, 28(4):396–411,
2006.

[17] D. Grimaldi, L. Nigro, and F. Pupo. Java based dis-
tributed measurement systems. IEEE Transactions on
Instrumentation and Measurement, 47(1):100–103,
1998.

[18] A. Furfaro, D. Grimaldi, L. Nigro, and F. Pupo. A
measurement laboratory over the internet based on
Jini. In Proceedings of the Twelfth IMEKO TC4,
pages 479–501, 2002.

[19] W. Winiecki and M. Karkowski. A new Java-based
software environment for distributed measuring sys-
tems design. IEEE Transactions on Instrumentation
and Measurement, 51(6):1340–1346, 2002.

[20] F. Cicirelli, A. Furfaro, D. Grimaldi, and L. Ni-
gro. Remote sensor calibration through MADAMS
services. In Proceedings of the IEEE International

Workshop on Intelligent Data Acquisition and Ad-
vanced Computing Systems: Technology and Appli-
cations (IDAACS’05), Sofia, Bulgaria, 2005.

[21] L.A. Rowe, D.A. Berger, and J.E. Baldeschwieler.
The Berkeley Distributed Video on-Demand System.
In T. Ishiguro, editor, Proceedings of the Sixth NEC
Research Symposium, pages 55–74. SIAM, 1995.

[22] K.C. Almeroth and M.H. Ammar. The Interactive
Multimedia Jukebox (IMJ): a new paradigm for the
on-demand delivery of audio/video. In Proceedings
of the Seventh International World Wide Web Confer-
ence (WWW7), pages 431–441, 1998.

[23] G. Fortino and L. Nigro. ViCRO: an interactive and
cooperative videorecording on-demand system over
Internet MBone. Informatica, 24(1):97–105, 2000.

[24] Java Media Framework. http://java.sun.
com/products/java-media/jmf/index.
jsp. Accessed on November 2005.

[25] C. Crowcroft, M. Handley, and I. Wakeman. Internet-
working Multimedia. UCL Press, London, 1999.

[26] R. Flenner. Jini and JavaSpaces Application Devel-
opment. SAMS, first edition, 2001.

[27] J. Jang. An approach to designing reusable service
frameworks via virtual service machine. In Pro-
ceedings of the Symposium on Software reusability
(SSR’01), pages 58–66. ACM Press, 2001.

[28] N. Carriero and D. Gelernter. How to write parallel
programs. MIT Press, 1990.

[29] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and
J. Darlington. ICENI: an open grid service architec-
ture implemented with Jini. In Proceedings of the
ACM/IEEE Conference on Supercomputing, pages 1–
10. IEEE Computer Society Press, 2002.

[30] N. Furmento, J. Hau, W. Lee, S. Newhouse, and
J. Darlington. Implementations of a Service-Oriented
Architecture on top of Jini, JXTA and OGSI. In
Proceedings of the Second Across Grids Conference,
pages 90–99. Springer-Verlag, 2004.

[31] L. Fuentes and J.M. Troya. Towards an open multi-
media service framework. ACM Computing Surveys
(CSUR), 32(1):24–29, 2000.

[32] F. Curbera, M. J. Duftler, R. Khalaf, W. A.
Nagy, N. Mukhi, and S. Weerawarana. Colombo:
Lightweight middleware for service-oriented comput-
ing. IBM Systems Journal, 44(4):799–820, 2005.

[33] H. Bohn, A. Bobek, and F. Golatowski. SIRENA
- service infrastructure for real-time embedded net-
worked devices: A service oriented framework for

A GENERAL BROKERING ARCHITECTURE LAYER AND. . . Informatica 31 (2007) 29–39 39

different domains. In Proocedings of IEEE Interna-
tional Conference on Networking, International Con-
ference on Systems and International Conference on
Mobile Communications and Learning Technologies
(ICNICONSMCL’06), Silicon Valley, USA, July 16–
19 2006.

[34] F.M.Q. Pereira, M.T.O. Valente, R.S. Bigonha, and
M.A.S. Bigonha. Arcademis: a framework for
object-oriented communication middleware develop-
ment. Software Practice and Experience, 36:495–
512, 2006.

[35] N. Suh. The Principles of Design. Oxford University
Press, New York, 1990.

[36] T. Elrad, R.E. Filman, and A. Bader. Aspect Oriented
Programming: Introduction. Communications of the
ACM, 44(10):29–99, April 2001.

[37] I.R. Forman and N. Forman. Java Reflection in Ac-
tion. Manning Publications Co, 2004.

[38] A. Montresor, R. Davoli, and O. Babaoglu. Middle-
ware for dependable network services in partitionable
distributed systems. SIGOPS Operating Systems Re-
view, 35(1):73–96, 2001.

[39] C.Lee and S. Helal. Context attributes: An approach
to enable context-awareness for service discovery. In
Proceedings of the Symposium on Applications and
the Internet (SAINT’03), pages 22–31, Washington,
DC, USA, 2003. IEEE Computer Society.

[40] S.K. Mostefaoui and B. Hirsbrunner. Context
aware service provisioning. In Proceedings of the
IEEE/ACS International Conference on Pervasive
Services (ICPS’04), pages 71–80, Washington, DC,
USA, 2004. IEEE Computer Society.

[41] Sun Microsystems. Java Security Overview.
http://java.sun.com/developer/
technicalArticles/Security/
whitepaper/JS_White_Paper.pdf, 2005.
Accessed on October 2005.

[42] H. Schulzrinne, S. Casner, R. Frederick, and V. Ja-
cobson. RTP: A Transport Protocol for Real-Time
Applications. http://www.ietf.org/rfc/
rfc3550.txt. Accessed on October 2005.

[43] I. Kouvelas, V. Hardman, and A. Watson. Lip
synchronization for use over Internet: analysis
and implementation. In Proceedings of the IEEE
Global Telecommunications Conference, pages 893–
898, 1996.

[44] exist. http://www.exist-db.org. Accessed
on October 2005.

[45] A. Furfaro, L. Nigro, and F. Pupo. Multimedia
synchronization based on aspect oriented program-
ming. Microprocessors and Microsystems, 8(2):47–
56, 2004.

[46] Service Oriented Computing. Communications of the
ACM, 46(6):29–60, October 2003.

[47] B. Meyer. Advances in Object-Oriented Software En-
gineering, chapter Design by Contract. Prentice-Hall,
1992.

[48] M. Little. Transactions and Web services. Communi-
cations of ACM, 46(10):49–54, 2003.

[49] H. Ludwig, A. Keller, A. Dan, R.P. King,
and R. Franck. Web Service Level Agree-
ment (WSLA), Language Specification.
http://www.research.ibm.com/wsla/
WSLASpecV1-20030128.pdf, 2003. Accessed
on October 2005.

40 Informatica 31 (2007) 29–39 F. Cicirelli et al.

